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ABSTRACT: Thc problem of the photon field radiated by a classical electric

current distriburion is equivalent te that of a forced harmonic
oscillator. h is shown how certain aspects oí the time evo-
lurion oí rhis problem arise, in a natural way, by first considering

rhe canonical transformation rhar describes the evolution of the

corresponding classical problem. We then construcr the quantum-
mechanical evolution through the unirary representarion of the

classical canonical uansformarion •
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Ler liS consider [he problem oC (he photon f¡cId radiated by an e1enrie
current distribution, which is oí a classical natuce and does nor suffer ao)'

noticeable rcaerían from (he process oí radiarían. \Ve may chen represent

(he radiating current by a prescribed vector function of spacc and time J (r, t)
which wil1 then be treated as a c-numher.

As usual 1, (he vector potential can be cxpanded in [he form

(l)

whcrc ak i5 dimensionlcss, uk i5 aplane wave and [he polarizarían index
has beco suppressed. The f¡cld i5 quantized anó the total hamiltonian f{'
can be wcitten, in che SchrOdinger picture, as

where

•
JI' =L [15úJk(al;ak +Y,) +j3¡(t) al; +j3¡(t) ak]

k
(2)

j3¡ (1) ~ 3
- (15/2úJk) JJ (r, t) . Uk (r) dr.

Sincc (he various modes are uncoupled, from now on we shall work

with a single mode and drop the index k. For each mode, the hamiltonian
will thus be written as

•l/' = 15úJ(a+a + Y,) + 13' (1) a+ +13' (1) a . (4)

We shall now assume that at t = O there were no photons present and
seck the solution for latcr times, the hamiltonÍan being the cxplicitly time-
dcpendenr expression (4). The solution ro this probIcm is well known and
has been discusscd, for example, by Glaubcr2, who employs field theorcrical
techniques, amI by P. Carrurhcrs and :\1. .\1. Nieto3, who p-eseflt a parricularly
simple approach to the problem. We want to show in rhis paper how thar
solution can be obtaÍned in a simple way by firsr considering the canonical
transfonnarion that describes rhe evolurion of the cIassical counrerpart of



Linear canonical transjormations ... 259

(4), which is a driven harmonic oscil1awr. We then construct the quanturn-
rnechanical evolution through the unitary representation of the classical
canonical transforrnation.

lntroducing the dirnensionlcss variables x,p through

k
a+ = (2r'(x-ip),

k
a = (2)-'(x + ip), (5)

and measuring the energy 10 units of'fjw, we have

/1 = Y,(P'+x') +¡3,(t) x +¡3,(t)P ,

whcrc /1 = /1 '/(15w), ¡3 = ¡3' /(15w) = (¡3, + i¡3, )/12 .

(6)

Considering JI as a classical hamiltonian, the time evolution oí x and p, in
terms of the values x .p at time t:;:::: O, is given by the canonical [fansfor-o O
matioo

x = ax + bp + eo O

where

(7)

a :;::::cos t, b SIn t, e
,

=J [cos(t-I')¡3(t')-sin(t-I')¡3(I')]dl',
o ' ,

(8)
- s in f, d ~ c os t,

I

/ = - J [s in (t - 1') ¡3 (t ') + eos (t -1 ') ¡3 (t ')] dI ' .
o ' ,

Ir is shown in Appendix I that a Ii!lear canonical transformation-4.5 oí
the type (7) describes the time evolution of any problem. whose hamiltonian
is at most quadratic in x and p with coefficients that can be arbitrary functions
of time. In passing ro the quantum mechanical problem, one can considcr
(7) as the rebtion between the position operators at time t :::;O and at time t,
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In (he Heiscnberg picture. Several conclusions can be drawn in a ver)'
elementar)' way, concerning (he time evolution of (he spread of a wave packet.
This is presented in Appendix JI.

One of (he authors has found" (he unitary representation U of an In-

homogencous canonical transformation of (he eype (7). U is dcfined by

x=uxu-1
O

where x is (he posicion operaror at time t in (he Iteisenberg plcturC,

(he corresponding operator ar time t = O. If we denote by I Y;o> a

vector in (he Heisenberg reprcsentation, we have

(9)

and xo
s[a(c

whece

(10)

(11)

Therefore U -1 describes che time evolution of (he state, in (he Schrodinger
representatlon.

\\le shall write U = UIunUinh ' where Uhcmcorresponds to (he homogencous
pan of [he canonical transformation (7), characterized by the parameters

a, b, e, d; Uinh corrcsponds to the inhomogeneous pan and is characterized by
the parameters e,j_ In rhe particular case in which a,b,c,d are given by

(8), the unitary reprcsentation Uhom takes on a ver)' simple form in the basis

1,1' > in which the hamiltonian of the harrnonic oscillator is diagonal:

<'1' I Uhom 1'111> = cxp [i(n I + 1) t] Sn',¡1I (I2)

That Uhom with a, b, e, d given by (8) is diagonal in [he basis In>
IS clear from the facr that [his is jusr rhe symmerry group of rhe ooe-dirncnsional
oscillator. The particular form (12) is just the conjugate of the time evolution
of lhe state 1'1> of a free harmonic oscillaror.

On the orher hand. Uinh has a simple expressioll in rhe basis Ix' > in
which rhe operator Xo of Eq. (9) is diagonal;
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'11" ("¡")o' ")< x Uinh x > = exp -1 X o(x + e - x . (3)
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In' > , making use of (he gener-
Combining (he resulting ex-

The displacemen( e in the coordina(e gives rise (O (he ó.function,
while [he' displacemen[ / in [he momentum gives [he exponencial as one can
easily verify passing (O momen(um space.

One can (hen express Uinh.in (he basis
ating funcf.Íon of (he Hermite polynomials 04.

pression with (12), one ob(ains

k
[

2 2 n tn 2 n +n
xexp -~(e -2iel+1 )](n !n!/20 ) iO xo

"'[ " " ]x k (- 2) (f + e. ) /"(no - r)!(n - r)! ,, (14)

which gives, a( time t, (he overlap wich In> of the state that was In> ato
time t = O. If no = O, chis resulc reduces to (he simpler expression

1 11 " k< n U- O> = exp [x(I)]['\(I)] /(n!) ,

t
,\(1) = -iJ exp [-i(l-I')]/3(1')dl',

o

x(l) = - y,il - ~(e' + l' - 2ief)

so that the sta[c a[ time t is

I t/J (1) > = exp [X(t)] exp [,\(1) a+] lo>

'X'esee tha[

05a)

05b)

(6)

(7)
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i.e.IJ.j;(t» is ao eigenfunction oí (he annihilation operaror, and (his is the
definirion ol a coheceot state 1. It is convenient tú write I f (1) > as a unitary
operaror acting on I O>. Using the fact char exp (- >\ a) I O>= lo > and making
use oí (he identity6

expA expR =exp(A+B+)¡ [A,B]) (18)

valid if [[A,B],A] = [[A,B],B] = O, ,he state l.p(l» takes ,he form

Suppose thar one proposes a wave functionl1.J; > with (he structure
of Eq. (16)

l.p> = exp [X'(I)Jexp [iI.'(I)a+J lo> (20)

and asks (har ir satisfies SchrOdinger' s equation

idl.p>;dl =ul.p> . (21)

The function iI.'(I) ,hat one obtains is identical wi,h the iI.(l) given by (l5b);
however X'(t) does noc coincide with X(t)

I 2
X(I) - X'(I) = )¡iJ (j _.2 + 2/3 f)dl

o 2
(22)

The difference is pure imaginary and does nO[ affect, oí CDurse, any transition
probability. Notice thar if 1 tjJ > satisfies Schrodingcr's equation (21), then
tjJ exp [iy(t)] satisfies the modified SchrOdinger's equation

[(id/dI) + (dY(I)/dt)] [exp(iY(I)).pJ = 11 [exp(iy(I)).pJ. (23)

This is similar to the freedom that one has7 in defining the momentum opcr-
ator as
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(- jO/ox) + (dy (x)/dx) • (24)
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which reduces ro rhe usual definirion by an appropriare choice of rhe phase
in rhe wave function. When one starts from the c1assical solution and derives
from it rhe quantum~mechanical one, as we are doing here, one looses conrrol
on th(' quantiry y, bccause rhe various quamum solurions all map into rhe
same classical one. lIowever, it is inrcresring ro note thar while (12) and
(13) give an exrra phase in rhe problem of rhe forced harmonic oscil1aror.
rhey do not in the case of rhe free oscillator, nor in rhe case of rhe free
panicle. At presenr it is nor clear whac is rhe condirion rhar has ro be im-
posed, in order ro obrain a solurion of the ordinary Schrodinger' s equarion.
with the simple form ;'0/'0, fm rhe energy operaror,

APPENlJIX 1

IIAMILTONIANS T1IAT GIVE IUSE '1'0 A LINEAR CANONICAL

TRANSFORMATlON.

Consider rhe classical mechanical problem of a one dimensional
s)'st<.'m sarisfying lIamihon's equations of motíon. If we specify rh<.'posiriofl
and momenlum x and p at time O, their values x,p for future times will be. o o
conn(Tted to x ,p by a canonical rransformarion. In this section we shall

n o
find th(, most g<"flc.'ralhamiltonian fm which rhis canonical transformarion is
linear in x ,p .o o

Using lIamilwn's equacions of motion

x = OIJ /op , p - 01J /ox , (Al.l)

w(' can wrir(' che firs[ rwo rerms of a Taylor expansion of x(t) and p(t) near
rhe original instant , = O as

x(l) ~ x(O) + ;(0) I x + [OIJ(x ,p , O)/op ] I() o () () (AI.2a)

p(l)%P(O)+ P(O)I =p - [OIJ(x ,R, O)/OX]I .() () o o (A 1.2b)
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If the canonical transformation has to be linear roc ever)' time, ir must
be linear {oc (he infinitesimal transformadon (Al.2). If we allow dIe potencial
to depend on x, p and t. we ask

Oll/Op = f (1) x + 1 (I)P + 1 (1)
1 2 3

Oll/Ox = 1,(1) x + 1,(1) p + 16(1) ,

(AI.3a)

(A.1.3b)

which, on integrating. lcad [O a hamiltonian chat is [he most general bilinear
expression in x,p, with coefficicnts which can be arbitrar)' functions of time:

lI(x,p,t) = );
n,m

1 (I)xnpm
nm (A 1.4)

It has now to be shown thar (AlA) leads to a linear transformarion
foe any f¡nhe time interval. Tú (his cod, we shall construct (he time evo-
lutioo of an)' {unce¡on ¡(x,P, t), knowing thar

where

dl(x,p,/)/dl = li(x,P,/)/(x,P,/) + ol(x,p,/)/ol

"(X,P,/): (Oll/Op)(%x)- (oll/ox)(%p)

(A 1.5)

(A 1.6)

Notice thar (he firsr rerm on (he right-hand side of (A!.5) is juse (he Poisson
bracket of 11 and l. We are looking for an operalOr U(x ,p ,t) wi<h <heo o
propeny chat acting on any function j(xo 'Po ,1'), it takes Xo to x(xo 'Po' l}and

Po IOP(XO'Po,t)

x(x ,p ,1) and P(x ,p ,t) are <he values ofo o o o
time 1 if they have evolved according to the

the posltlOn and momentum at
equations of motion from x ,po o
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at time zero. lf 11 does not depend on / explicitly, it is clear that
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(Al.8)

~Iowcver, if /1 depends explicitly 0'l time, one has to be more careful, because
lI(xo 'Po ,1,) will not cornrnute wi,h lI(xo 'Po ,(2), Differentiating both sides
of (Al.7) with respect to 1, we obtain

[CiU(x ,p ,1)/Cit1¡(x ,p ,1')o o o o

= [Ci¡(x(xo'Po,t), P(Xo,Po,I), 1')/CixJ(dx/dl) +

+ [Ci¡(x(xo 'Po ,1), P(xo 'Po ,1), I')/Cip] (dp/dl)

= H(x,P, 1) ¡(x,P, 1')

Using property (Al.7) we have

(A 1.9)

and since this equation must hold for any function 1, we have
(Al.IO)

(A l.lla)

.
The operator U is uniquely defined by this differential equation, together
with the ¡nitial condition

Ool' can check directly that the operator



266 ~{cllo and Moshinsky

" !

U(x , P , 1) = J + J di I/(x , P , I ) +
00 01001

(Al.JZ)
1 12 A •••

+Jdl J di I/(x,p' ,1 )1/(x,P ,1) + ...o 20 1 O O 1 O O 2

satisfies (Al.IJa, b).
\tic sh~ll now apply (hese considerations ro rhe hamiltonian (AI.4).

The operator 11 ¡s, in this case

(Al.13)

It is clear that rhe repeated application of (A 1.13) to x Uf P , in order to
" o o

construct.\' = UXo' will always be linear in (hese quantiries. Wc have thus
provcd our statement thar (Al .4) is rhe must general hamiltonian fOf which
x and p evolve in time according tú a canonical transformar ion rhar is linear
in rhe (n¡tia! conditions .\'0' Po'

APPENDIX 11

TIME EVOLUTION OF TIIE SPREAD OF A WAVE PACKET

We shalI consider a system whose classicaI time evolution is given
by rhe linear canonical transformation (7), wichout restricring rhe parameters
tu rhe specific values given by (8); rhey will only have to satisfy the relation

ad - be = J , (A2.1)

so tha( (he (rnnsformation is canonical.
Noticc (ha(, having solved (he classical problcm, we have also solved

(he quantum-mechanical one in (he Heisenberg represcn(a(ion. Tha( is, if
now x and p stand for (he lfeiscnberg operawrs a( time t = Oand x and p a(o o
time 1, they will be related preeiseJy by Eq. (7).

Consider a wave packe( and call
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2 2 >2(6x) " <x >-<x ,
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(A2.2)

the square of the spreads in x and p at time t. One can easily show. for any
linear canonical transformation of the type (7), that

22222 [ ](6x) = a (6x) + h (6p) + ah <x p + P x > - 2 <x ><p >1;;;0 t~o o o o o o o

22222 [ ](6p) = e (6x) + d (6p) + cd <x p + P x > - 2 <x ><p > .t~o 1=0 o o o o o o

(A2.3)

We thus obtain the result that the inhomogeneous part of a linear
canonical transformation does not affect the time evolution of the spread of
the wave packet. lf the system is a (hiven harmonic oscillator, !he driving
JOTce does no! a{{ec! the spread as a {unc/ion 01 time.

It is interesting that if the wave function at t = O (in the lIeisenberg
picture it remains constant in time) is a gaussian ol the type

,
2 o"' [( 2 2 ]</1 (x) = (2mT) exp - (x- a) /4a ) +ikx ,

the square bracket in (A2.3) vanishes and we have

(6X)2 = a2 (6x)2 + h2 (6 )2
'=0 P '=0

(6p)2 = c2 (6x)2 + d2(6 )2
1=0 P '=0

The wave packe, (A2A) ís such tha,

(A2.4)

(A2.S)

(A 2 .6)



268 Mello and Moshinsky

\Ve shall consider sorne particular cases, assuming thar (A2.S) are fulfillcd.

1) Free partie/e. In this case the paramctl'rs ofdlC canonical transformation

are

a 1 , b l/m. e = O

e

Therefore

O, d = 1, I = O
(A2.7)

2 2 . 2 2
(Llx) = a [1 + (iJl/2ma ) ]

(LlP)' = (LlP)~ =" = &' /4a' ,

2) Free lal/ .

(A 2.8)

a = 1, b l/m,
, ,

e = -'1 g/

e = O, d = 1 • I = gl .
(A2.9)

6.x and 6p be ha ve cxacdy as for (he free particl( ..

3) Free harmmúc oscilJator.

a cos (vI , h = (l/múJ) sin WI • e = O

e = - múJ sin WI, d = eos Ct.J/ ,

2 --, 2 2 . 2
(ox) = a~ COS ül + (ti/2m(~>CT) sin ú)/

2 ..• '} 2 2
(8.P) - (múJuf sill ....uJr i (hila) ClIS úJ!

I O
(A2.1O)

(:\2.11)

The spre.1l16 ..•..¡loes IH)[ inCfeaSl' illdefinitciy with time as in (he
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case of d)(: frl'e paniclc. as is clear physically fmm the fan (har the system
is confined. Eveo more. both 6,.. and 6p are periodic in time.

4) F()rceriharm(mic()scil/a/or. 6xand6.p are again given by (¡\2.11).
{\otice rhar if w(' ChOOSl'

y,
a = (f>/2mw) (A2.12)

rhen 6x amI 6p hl'COml.' time independent: /he Il'ar'e packe/ /hus shou's a
c()hereul hehar'iour,
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REsmlEN

El problema del eampo de fotones radiado por una dis[ribución clási-
ca de corrien[e. es e<.juiva!entc al problema de un oscilador armónico forzado.
Se lTluesrra cómo al,gllflos aspecros de la evolución temporal de es[e problema
se describell. de ulla manera natural. considerando primero la transformación
C<lIl(;nica qUl' describe la eyolución del correspondien[l" problema clásico. Se
construye despu( ....•1<1 evolución cuántica mediantl' la represelHación unitaria
de 1.1 rran ..•formaci(ln canúnica clásica.




