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ABSTRACT: The problem of the photon field radiated by a classical electric
current distribution is equivalent to that of a forced harmonic
oscillator. It is shown how certain aspects of the time evo-
lution of this problem arise, in a natural way, by first considering
the canonical transformation that describes the evolution of the
corresponding classical problem. We then construct the quantum-
mechanical evolution through the unitary representation of the

classical canonical transformation.
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Let us consider the problem of the photon field radiated by an electric
current distribution, which is of a classical nature and does not suffer any
noticeable reaction from the process of radiation. We may then represent
the radiating current by a prescribed vector function of space and time J (r,t)
which will then be treated as a c-number.

As usuall, the vector potential can be expanded in the form

Alr,t) = ¢ S5/2w) " Lag (8)up () + af (D k(0] (1)
k

where @) is dimensionless, vy is a plane wave and the polarization index

- . - . . [
has been suppressed. The field is quantized and the total hamiltonian H
can be written, in the Schrodinger picture, as

H' =3 [pay (agap +5) + 8 (1) af +B3 (1) a; ], (2)
k
where

/6;( (t) = - ('5/2wk)/2f1(r, t) - u’: (r) . (3)

Since the various modes are uncoupled, from now on we shall work
with a single mode and drop the index 2. For each mode, the hamiltonian
will thus be written as

H' =#w(ata +%)+ﬁ'(t)a++,8'(t;a . (4)

We shall now assume that at ¢ = 0 there were no photons present and
seek the solution for later times, the hamiltonian being the explicitly time-
dependent expression (4). The solution to this problem is well known and
has been discussed, for example, by Glauber?, who employs field theoretical
techniques, and by P. Carruthers and M.M. Nieto?, who present a particularly
simple approach to the problem. We want to show in this paper how that
solution can be obtained in a simple way by first considering the canonical
transformation that describes the evolution of the classical counterpart of
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(4), which is a driven harmonic oscillator. We then construct the quantum-
mechanical evolution through the unitary representation of the classical
canonical transformation.

Introducing the dimensionless variables x, p through

= (3 % emip), 2= (22 (x + ip), ()

and measuring the energy in units of #w, we have

=
|

=50 )+ W +B,(1Np (6)

where H =H'/(bw), B :,B'/(ﬁw) = (,81 + lﬁz )/‘/3 .

Considering H as a classical hamiltonian, the time evolution of x and P, in

terms of the values X2 b, at time ¢ = (), is given by the canonical transfor-
mation

=ax +hp +
% axo bpo e

p=cx tdp tf, (7)

where

*
@i= ¢os ¥; =8k, e=j [Cos(t—tr)ﬁz(z")-sin(t-t')lﬁl(t')]dt',
0

(8)
t

€ = -=gig £, d =eosi, [= -f [sin(t—t')ﬁz(t')+cos(t—t')ﬁl(t')]dt'.
0

It is shown in Appendix I that a /inear canonical transformation* 5 of
the type (7) describes the time evolution of any problem, whose hamiltonian
is at most quadratic in x and p with coefficients that can be arbitrary functions
of time. In passing to the quantum mechanical problem, one can consider
(7) as the relation between the position operators at time # = 0 and at time ty
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in the Heisenberg picture. Several conclusions can be drawn in a very
elementary way, concerning the time evolution of the spread of a wave packet.
This is presented in Appendix II.

One of the authors has found* the unitary representation U of an in-
homogeneous canonical transformation of the type (7). U is defined by

x=Us U™, (9)

where x is the position operator at time ¢t in the Heisenberg picture, and x
the corresponding operator at time ¢ = (. If we denote by |L,b0> a state
vector in the Heisenberg representation, we have

<¢0|x|¢0>=<¢O|UxDU-1|%>=<¢-]x0|17b>, (10)

where
ly>=uv"y > . (11)

-1 . 3 P ; e as
Therefore U " describes the time evolution of the state, in the Schrodinger
representation.

We shall _ertff U= Ulnrntnh » where U, corr.espouds to the homogeneous
part of the canonical transformation (7), characterized by the parameters
a,b,c,d; U._, corresponds to the inhomogeneous part and is characterized by

inh
the parameters e, f. In the particular case in which @,b,c,d are given by
(8), the unitary representation Uhom takes on a very simple form in the basis
]n "> in which the hamiltonian of the harmonic oscillator is diagonal:

<n' U |n"> =explitn'+%)218 s o . (12)

n n

That U, with @,b,c,d given by (8) is diagonal in the basis |n>
is clear from the fact that this is just the symmetry group of the one-dimensional
oscillator. The particular form (12) is just the conjugate of the time evolution
of the state |n > of a free harmonic oscillator.

On the other hand, U, , has a simple expression in the basis lx' > 1in
which the operator X, of Eq. (9) is diagonal:
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<x'|U | x">=exp(-ifx") S(x"+ e-x") . (13)

The displacement e in the coordinate gives rise to the $-function,
while the displacement f in the momentum gives the exponential as one can
easily verify passing to momentum space.

One can then express U, , in the basis |n "> making use of the gener-
ating function of the Hermite polynomials*. Combining the resulting ex-
pression with (12), one obtains

<n | uy |n0 > = exp [- z'(no +'/2)t] (f +ie)”°(f* 1'e)" ®

T
exp [_}4(82_. 2f€f+f2)1(n0!n!/2”0 ﬂ)z z_"o nx

x

X

S+ M -t -0t (14)

r

which gives, at time ¢, the overlap with |n > of the state that was |n0 > at
time ¢t = 0. If n = 0, this result reduces to the simpler expression

<n|Ut0> = exp [XO] IMD] /a1y (15a)

XLy = —1'fxexp [-it-t"H) B dr",
]

(15b)
X(8) = =%it-4(e? + % - 2ief) ,
so that the state at time ¢ is
[ ()> = exp [xX()] exp [M(8) a*] 0> . (16)

We see that

aly)> = a@)|y@)> ; (17)
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i.e. |l,b(t) > is an eigenfunction of the annihilation operator, and this is the

1

definition of a coherent state'. It is convenient to write lgb(t) > as a unitary

operator acting on | 0> . Using the fact that exp(-X'a) | 0>= |0 > and making
use of the identity®

exp AexpB =exp(A+B+%[A,B]), (18)
valid if [[4,B],4] = [[A,B],B] = 0, the state | (#)> takes the form
[y (> = exp [x(0) +| A Texp [Ny a* - () al 0>, (19)

Suppose that one proposes a wave function| Y > with the structure
of Eq. (16)

|y > = exp [X'()]exp [N (1) a*] 0> | (20)
and asks that it satisfies Schrodinger’s equation
dly>Rt=H|y> . (21)

The function A'(¢) that one obtains is identical with the A(#) given by (15b);
however X'(¢) does not coincide with x(1)

I
X0 - X' = %i (f - e2+2p,f)dr . (22)
0

The difference is pure imaginary and does not affect, of course, any transition

probability. Notice that if |L,Ll > satisfies SchrSdinger’s equation (21), then
 exp [y (2)] satisfies the modified Schrodinger’s equation

[Go/3n) +(dy (8)/31)] [expliy () ] = H [exp(iv (1) Y] . (23)

This is similar to the freedom that one has” in defining the momentum oper-
ator as
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b= (-i0/9x) +(d’y(x)/dx) ; (24)

which reduces to the usual definition by an appropriate choice of the phase
in the wave function. When one starts from the classical solution and derives
from it the quantum-mechanical one, as we are doing here, one looses control
on the quantity ¥, because the various quantum solutions all map into the
same classical one. However, it is interesting to note that while (12) and
(13) give an extra phase in the problem of the forced harmonic oscillator,
they do not in the case of the free oscillator, nor in the case of the free
particle. At present it is not clear what is the condition that has to be im-
posed, in order to obtain a solution of the ordinary Schrodinger’s equation,
with the simple form i9/d¢ for the energy operator.

APPENDIX I

HAMILTONIANS THAT GIVE RISE TO A LINEAR CANONICAL
TRANSFORMATION.

Consider the classical mechanical problem of a one dimensional
system satisfying Hamilton’s equations of motion. If we specify the position
and momentum x and p, at time 0, their values x,p for future times will be
connected to x5 By by a canonical transformation. In this section we shall
find the most general hamiltonian for which this canonical transformation is
linear in X 5P, -

Using Hamilton's equations of motion

x=0H/3p , p=-0H/3x, (A1.1)

we can write the first two terms of a Taylor expansion of x(¢) and p (f) near
the original instant ¢ = 0 as

l

x(0) % x(0) +x(0) 1 = x +[BH(x ,p , 0)/3p,]¢t , (Al.2a)

PR p(O)+p(0VE =p, - [OH(x ,p,0)/3x 1t . (A1.2b)
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If the canonical transformation has to be linear for every time, it must
be linear for the infinitesimal transformation (A1.2). If we allow the potential
to depend on x,p and ¢, we ask

OH/dp = f(t)x +{ ()p +[ (1), (Al.3a)
OH/dx = [ x +[()p [ (), (A.1.3b)

which, on integrating, lead to a hamiltonian that is the most general bilinear
expression in x, p, with coefficients which can be arbitrary functions of time:

H(x,p,t)= Z [ _()x"p™ . (A1.4)

n,m

osn+m< 2

It has now to be shown that (A1.4) leads to a linear transformation
for any finite time interval. To this end, we shall construct the time evo-
lution of any function f(x, p, t), knowing that

df(x,p,1)/dt =H(x,p,1) [ (x,p,1) + df (x,p,1)/3t , (A1.5)

where

H(x,p,t)= (3H/3p)3/3x) - (3H/Ix)3/3p) . (A1.6)

Notice that the first term on the right-hand side of (A1.5) is just the Poisson
bracket of H and f. We are looking for an operator U(xo 18, »#) with the
property that acting on any function f(xu 0, ,t"), it takes x to .vc(:nrD ,po , t)and

by t0p(x ,p ,1)
Ulxy 2,00 (5,8, 04") = [(x (e, 0y D px 0,00, ") W (ALT)

x(xn ,pu ,t) and p(xo,po, t) are the values of the position and momentum at
time ¢ if they have evolved according to the equations of motion from X 20,
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at time zero. If H does not depend on ¢ explicitly, it is clear that
(x5, p,8) = exp [H(x, ,p,) 1) f(x,,0,,1) - (A1.8)

However, if H depends explicitly on time, one has to be more careful, because
H(Jﬂj A tl_) will not commute with H(xO Py tz)' Differentiating both sides
of (A1.7) with respect to ¢, we obtain

[ou(x,,p, . 0/3t] f(x,,p,,1")

= [3f (x(x,,0,,0) p(x .0, 1), t")/3x] (dx/dt) +
+ [0 (x(x, .8, .0, p(x,,8,, 1), ¢")/Op) (dp/dr)
=’;(x1pvt)f(xapst') (A1.9)

Using property (A1.7) we have

[QU(x .8 ,8)/04] fix .0, 8" )= Ulx, . b, I H(x ,p ,0) f(x. 2. ,4") ,
(A1.10)
and since this equation must hold for any function f, we have

[Bﬁ(xo, 0,:.')/Bzr] =f}(x0, o,t)f}(xo,po,t). (Al.11a)

The operator U is uniquely defined by this differential equation, together
with the initial condition

Ulx, £, 0 =1 (A1.11b)

One can check directly that the operator
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Ulx .p,,2) =1 +Jod‘n H(x ,p,,t)+

(A1.12)
t

[de [ “ar i ) A )
+ [ dt t H(x ,p ,t YH(x ,p ,t )+ ...
0 20 1 0 0 1 0 0 2

satisfies (Al.11a,b).
We shall now apply these considerations ro the hamiltonian (Al.4).

The operator H is, in this case

Hx, 0, )= [ () + /()% + 21 (2)p,)(3/3%) +
(Al1.13)

- [f) + 1, (D), + 27, (£) %, 1(3/3p,) -

It is clear that_the repeated application of (A1.13) to X, orp in order to
construct x = Ux_, will always be linear in these quantities. We have thus
proved our statement that (Al.4) is the most general hamiltonian for which
x and p evolve in time according to a canonical transformation that is linear

in the initial conditions X, 2B, -

APPENDIX II
TIME EVOLUTION OF THE SPREAD OF A WAVE PACKET

We shall consider a system whose classical time evolution is given
by the linear canonical transformation (7), without restricting the parameters
to the specific values given by (8); they will only have to satisfy the relation

gd~bc =1 5 (A2.1)

so that the transformation is canonical.

Notice that, having solved the classical problem, we have also solved
the quantum-mechanical one in the Heisenberg representation. That is, if
now x and p stand for the Heisenberg operators at time ¢ = 0 and x and p at
time £, they will be related precisely by Eq. (7).

Consider a wave packet and call
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(Ax) = <x?> - <x 3%, (Lpf= <p®> - <p>?, (A2.2)

the square of the spreads in x and p at time #. One can easily show, for any
linear canonical transformation of the type (7), that

(Ax)’

az(Ax)f:G+b2(Ap)f=0+ ab [<xp + p %, > - 2<x ><p >]

(L)

cz(Ax)f:D +d2(Ap)f:0+ cd [<x0po+poxo> - 2<x0><p0>] .

{A2.3)

We thus obtain the result that the inhomogeneous part of a linear

canonical transformation does not affect the time evolution of the spread of

the wave packet. If the system is a driven harmonic oscillator, the driving
force does not affect the spread as a function of time.

It is interesting that if the wave function at ¢ = 0 (in the Heisenberg
picture it remains constant in time) is a gaussian of the type

Yr(x) = (2'”02)-4 €xp [‘((’f— 0)2/402) +ikx) (A2.4)

the square bracker in (A2.3) vanishes and we have

(Bx)* = a By, + 6 (D),
(A2.5)
Bp)’ = (B, +dDpy, _
The wave packet (A2.4) is such that
(Bx),_ =0
(A2.6)

Bp), _ =#"/ko? |
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We shall consider some particular cases, assuming that (A2.5) are fulfilled.

1) Free particle. In this case the parameters of the canonical transformation

are
a=1, b=1t/m, e =10
(A2.7)
€= i} d=1, [ =0
Therefore
2 2 2,2
(Ax)" =o” [1+ Ht/2mc”) ]
(A2.8)
2 2
(Bp) = (Dp), -, =F /4o®
2) Free fall.
L o2
=1, b=1t/m, e = 5pt
(A2.9)
| ol 0, d =i f = gt
Ax and /Ap behave exactly as for the free particle.
3) Free harmonic oscillator .
a = cos wt , b = (1/mw) sin wt , e =i
(A2.10)
c=-mwsinwt, d=coswt, f =0
2 2 2 2 p.2
(Ax) = o° cos wt +(#B/2mwaT) sin” wt
(A2.11)

2 3 . 2 2 2
(Ap) = (mwo) sin“wt 1 (h/20) cos” wt .

The spread Ox does not increase indefinitely with time as in the
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case of the free particle, as is clear physically from the fact that the system
is confined. Even more, both Ax and Ap are periodic in time.

4) Forced barmonic oscillator . Ax and Ap are again given by (A2.11).
Notice that if we choose

2

o =#/2mw) (A2.12)

then Ax and Ap become time independent: the wave packet thus shows a
coberent behaviour.
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P T S

RESUMEN

El problema del campo de fotones radiado por una distribucién clasi-
ca de corriente, es equivalente al problema de un oscilador arménico forzado.
Se muestra como algunos aspectos de la evolucién temporal de este problema
se¢ describen, de una manera natural, considerando primero la transformaciéon
canonica que describe la evolucién del correspondiente problema clasico. Se
construye después la evolucién cuantica mediante la representacion unitaria
de la transformacion canénica clasica.





