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RELATIONS BETWEEN THE HYPERSPHERICAL HARMONIC AND THE
HARMONIC OSCILLATOR METHODS FOR THE THREE BODY PROBLEM

E. Chacén*, D. Levi and M. Moshinsky 1
Instituto de Fisica, Universidad Nacional de México

(Recibido: agosto 15, 1973)

ABSTRACT: We give a systematic and explicit-procedure for deriving hyper-
spherical harmonics for the three body problem with given permu-
tational symmetry. The matrix clements of a two body inter-
action with respect to these hyperspherical harmonics are de-
termined in terms of the corresponding ones for harmonic oscil-
lator states. This allows us to reduce the three body problem
to a system of coupled ordinary differential equations for the

hyperradial functions.

1. INTRODUCTION

In the last few years there have been many papers dealing with the
hyperspherical harmonic approach to the few nucleon problem with particular
emphasis on the three body case!. In the present work we describe a tech-
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nique that allows us to obtain a system of orthonormal spherical harmonics
with well defined permutational symmetry for the three body problem. We
also discuss a new method for the evaluation of matrix elements of two body
interaction potentials with respect to the three body hyperspherical harmonics.
With the help of these matrix elements one can, as is well known!,
reduce the three body problem to a system of coupled ordinary differential
equations. For the sake of simplicity we consider only the case of central

interactions. Then the wave function can be written as

¥ o= 3 Xy (0) Yp ) (1.1)

a

where 0 is the hyperradius given in terms of the relative coordinates and ()
is the set of angles on which the hyperspherical harmonic Y, depends.
This last function is characterized by the integer K which gives the irreduci-
ble representation (IR) of the 0(6) group and a set of “inner” quantum numbers
o which include the IR of the $(3) group of permutation and completely define
the state.

The equation we want to satisfy is then

H_ ¥=EY, (1.2)

where H_, is the intrinsic hamiltonian in which we eliminated the center of
mass motion. Substituting (1.1) in (1.2) one can immediately obtain! for the
three body problem the system of coupled differential equations

[p7° (d/dp)(p°d/dp) - p 2 K(K+ 4) - E] Xy ()

=6 T Xgrp (o) EX Koy (1.3)
K'a'

where, denoting by rs' ,s =1,2,3 the coordinates of the particles, we have

ER Koy = [Yge g @ v/ -] ]) v, @) 40 (1.4)

as the matrix element of the two body central interaction V with respect to
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hyperspherical harmonic functions. We can of course write r!=r! in terms
of o and Q) and thus this last matrix element is only a function of o .

As we see from Eq. (1.3), the basic ingredient for the determination
of the hyperradial functions X (©), and thus the wave function ¥of Eq. (1.1),

is the matrix element FIS’K(,D). In section 5 of the present paper we shall
use, for the determination of these matrix elements, a method introduced earlier
by two of us? for the determination of many body matrix elements in the
Ha-iree-Fock approximation. In this approach we can thus make use of
pc werful techniques developed formerly in connection with harmonic oscil-
| wave functions?®.

In section 2 we give a derivation of a system of hyperspherical poly-
norials adequate for the description of the intrinsic motion of the three body
svstem; we use a classification scheme involving the groups

(1)

06)> 0 (3) e 0 (3)

wh h uniquely defines the functions.

Section 3 contains the derivation of harmonic oscillztor states in
relative coordinates, with a classification scheme similar to that of section
2, namely, a classification according to the group chain

(1) (2)
U(6) D0(6) D0 (3)e0 (3) .

We obtain also the transformation coefficient between these oscillator states
and the more familiar ones® classified by the group chain

vy v 3yev3) .

In section 4 we describe a method by which, starting from the oscil-
lator functions of section 3, we obtain linear combinations of them having
a definite permutational symmetry. The basic step here is the diagonalization
of the square of an operator M which is a generator of a group 0(2), contained
in O(6) and which in turn contains a representation of the group 5(3) of
permutations of the three body problem.
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2. HYPERSPHERICAL POLYNOMIALS FOR THE THREE BODY PROBLEM

As usual in the three body problem we introduce the Jacobi coordi-

nates

N

=2 1 8 ]

r =6 (r1+r2 2r3) {2.1)
. -I/2 l+ I+ ’

b =8 i £y

where rs' » s =1,2,3 are the original coordinates of the particles. We shall
only be interested in functions of the relative coordinates r , r_ in terms of
which we can define the intrinsic wave function of the three body problem.
As is well known!, the hyperspherical polynomials in the vectors
r.»r, will be homogeneous polynomials of degree K in the components of
these vectors which satisfy the Laplace equation in this six dimensional
configuration space. Besides, we can require that they are eigenfunctions

of the angular momentum in each coordinate, i.e. of the operators

(1) (1) (2) (2)
B =L L™ o " oo

(1) (2)
L =E%p , L =r,xp, . (2.2)

We ask also that the polynomials be eigenfunctions of the total angular mo-
mentum L% and its 3rd component L, , where

L=L(1)+L(2). (2.3)

We denote then these polynomials by

PKI112LM("1’ ). (2.4)
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We determine them explicitly in algebraic fashion, in contrast with the analytic
technique of Morse and Feshbach and Fabre de la Ripelle 5. We consider
first the case when

L=N=l+i, . (2.5)
We have then that
PR =Py b 0 sl b s (2.6)
12 1 2

satisfies the following set of equations

(rl'v1+r2‘ vz) PK[ 1 =KPKI ! (2-73)
12 12
VZ 2
( 1 +v2 )PKilzz =0 (2-7b)
(1) (2)
Ly Pgy; =0, Ly Pg; ; =0 (2.7¢,d)
12 I 2
L(I)P i P L(z)P I P (2.7e,f)
=] ? = ’ . e’
z K1112 1 Klllz z Kl).lz 2 K1112

where V_, s = 1,2 is the gradient vector with components (a/axs » 0/,
d/3z_) in terms of the cartesian components of the Jacobi vectors r_.

The analysis of Egs. (2.7) is much simplified if we introduce spherical
components for the Jacobi vectors, name ly Xpsgrm=1,0,-1. In this no-

(s)
tation the operators L, andL_ ,s =1,2 become
e 3 3/3
L, = -(xls( /3x,6) tx  (3/ L)
(2.8)

(s)
Ly = (/%) -x, (3/3x_) .

The polynomial (2.4) can now be written as
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K
PKIIIE(H : rz) =% PKlliz(xn/xu’ xm/xur’ x_“/xu, jroz/xm’ ¥o12 /’12) ’
(2.9)
We note that
2 1 _ 2
Ts = %(_1) XmsX-ms = _lesx-l.s +xos (2.10)
and thus
/ s - 2 2 2 2 A
. 12’/"12 =% [ fz/xu ) +("02/"1.2)]’
(Z.11)
o . 2 9 % 5l
NCE R (S AR CAVE SRS CAVE S0l
where
5, 3 2
7= T (2-12)

We see then that x_u,’x could be replaced by fi/xfz , and x_u/x12 by pz/:n;lz2
and we would still have a polynomial function which we could call P":

K SN R )
PKlllgfrl’r2) ~x12P (xu/xlz’x s %) X /x12"0/x12) :

o1/ 712’ T2’ T127 2
(2.13)

: (1) (2) : . :
Applying L, and L, to the polynomial (2.13) we immediately see

that P’ can not be a function of either x 1/x12 nor xm/xu . Wriring it then

w ; (1) (2)
explicitly and applying L., , L, we have that

1 (K-l -1 )-v v
= e 1 2y.9 2 1 2 25,2
PK[1[2“]"2)_xlz(x“/xm) %CV(,D /x12) (r /%)

" Kl -1 - 2v g
_ 1 2v
= nKIllzx“ X, % C,pP T (11!12!)

(2.14)
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Finally, the remaining equation (2.7b) gives a two-erm recursion
formula for C , whose solution, as shown in Appendix A gives

¢, = (D (5(K+1 + 1+ 2+ ) /(5 (K=1 =) -p)1TU, 3 +v)

(2.15)

The summation in Eq. (2.14) can now be identified with a Jacobi polynomial*
if desired; the constant H‘Kl ; Pplays the role of a normalization factor.

We have thus obtained the harmonic polynomial P of (2.4)

Kl l LM
1

with L =M =17 +/ . In order to obtain the polynomial with arburary values
o L,M, we nouce that without disturbing the part dependmg on ,o and r .

(s)
by application of L _ on Eq. (2.14) we can, Lransform (x ) (i’ 1y ’ into
solid spherical harmonics [471/(21 + 1) 14; r,s =12, which then

we can vector-couple to definite values of L. and M
Therefore the general harmonic polynomial will be

e

T2
Pt 1 1or) = Ty (A P v Ly ) Wy ],

12

-2114»1‘(-.!1-12 -

x 473G, p e (2.16)

From the foregoing analysis it is apparent that these harmonic polynomials
have a group theoretical classification according to the chain of groups

(1)
o (3) 0
0(6) D 20(3)D20(2) . 2.17)
0 0(2)(3)

In the next section we discuss harmonic oscillator functions with a similar
classification scheme.
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3. THE HARMONIC OSCILLATOR FUNCTIONS OF THE THREE BODY PROBLEM

The intrinsic motion of a system of three identical particles in harmonic
oscillator potential can be described by wave functions of the two Jacobi
relative vectors FisF, of Eq. (2.1). However, when dealing with oscillator
systems it is often very convenient to express the wave functions as poly-
nomials in creation operators acting on a ground state3. We shall follow the
second alternative, and accadingly, let us introduce “relative” creation ()
and annihilation (£) operators, defined in terms of the relative coordinates

and momenta, as

- % -4
Te ={D " ho~da), =2 (-#ip): 8=1,2. @D

(We shall use throughout this section a system of units in which
m =% =w=1). We introduce also a normalized ground state |O> , charac -
terized by the properties

<0lo> =1, £l0>=0; i=xy,z; s=1,2. (3.2)
The operators (3.1) obey the commuration rules

[é'is’ni's’} = 81’:" 555' ? [é—:'s’g;"s’] a [T)is’ni's'] =0

(3.3)

and from (3.2) and (3.3) we immediately see that if P (m) is a polynomial in
creation operators, then

&is PO 0> = (3P(m)/3n, )] 0> forall 4,s . (3.4)

The wave function of an oscillator in the relative coordinate r  has
) 1
the well known expression®

n
"111m1>:N11m1(771"1’]1) iull"‘l(nl)[o> (3.5)



Relations between the hyperspherical. . . 299

with
I/
2

Ny, =(-1) " [4m/@2n)11(2n + 20 +D)11] (3.6)
1

1
These functions describe an oscillator with a number 21 + 11 of quanta of
excitation energy, and an angular momentum 11(11 t1) with a component m
along the Z axis. By vectorcoupling the state (3.5) with a similar state in
the relative vector r,, we obtain two-oscillator states

. ’31 . '.lz
|n111n212LM>=N11"1N12”2(77,- )@yt Ly ) Yy ) o>

(3.7)
which, from the nature of the operators that they diagonalize, ars seen to
possess a classification according to the chain of groups

(1) (1)

v (3 0 0 (3) 0
U@6) > ) 2 0L3) 3. 0(2) =
(2) (2)
0 v (3) 0 0 (3)
(3.8)
The generators of some of the groups in this chain, are
(%) .
u {3 T’:’sé:js ¥ bl xgr ; s=l1,2 (3.9a)
(s) (s) _ .
(B Ly =<ilgeaxE),; f=xp2; 8=12 (3.9)
(1) (2) 5
0(3): Li=L; *L," ; j=%y,z2 (3.9¢)

and therefore, the six operatars which are diagonal with respect to the states
(3.7) are

N, =5 H, 6, § 8=1.3 (3-10)
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5] (1) (2) (2)
(L <L) AL ET) L) 5 L - (3.11)

Our goal in this paper is the discussion of hyperspherical functions
which. as we saw in Section 2, are assocliated with a group O(6). With this
goal in mind we shall study now two-oscillator states with a classification scheme

(13 (2)
in which we introduce a group O(6) instead of a group U (3)@U  (3) of the
chain of groups (3.8).
The group O(6) has as generators the operators

r - 1 .'— . ! —_
Ajs,j"s' =-—t(‘7’}jsf’.151-7}j151§j Yau fylr s w2y s =12
(3.12)
and its quadratic Casimir operator A, defined by
2 1 N
A = 2 z X Ajs,j's’Aj's’,js i (3.13)
jj ' ss’

has eigenvalues K(K + 4), with K being a non-ﬂezgative integer. Using the
commutation rules of £ and 77, we can rewrite A" in an equivalent form, which
will turn out to be useful later, namely

2 ~ A
A =N@N*&)-m 7 *+n, 90E € *E, L) (3.14)
where N is the number operator
&:n1.§1+n2.§2 . (3-15)

Notice that the eigenvalues N of the operator N give the number of quanta of
excitation energy of the two-oscillator system.

The new two-oscillator states classified by 0(6) will be denoted by
HH(I1 12 LM > and they are eigenfunctions of the operators N, A and the four
operators (3.11). In order to find the explicit expression for these states,
we shall start by obtaining first the particular state

INKI 2, 0 40,0 41, > =P ,m)]0> . (3.16)
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(1 2
This state has highest weight in the groups O )(3) and O{ )(3), therefore
P| 0 > satisfies the equations
NPlo>=NP|o>,
(3.17a,b)
My 4y €6+ € E)Pl 0> = (N-K)(N+K + 4P| o>

L, 'Plo> =0, LyPlo> =0, L’Plo> =1 Plo>, ' “’Plo> =1Plo>.

(3.17¢,d, e, f)
But if we write P as

5(N-K)
Pmmy) = m+n,m,) Pirg, (M5 ,) » (3.18)

it is easily verified that Pe; ’0> satisfies the equations
172
NP 0> = KpP . : ! .
K1112] K111210> ) (ef1 §1+ §2 g‘z)PK,lz2 lo> =0 (3.19a,b)

(1 (2)
L, PK1112|0> =0, L, Pml;z’O) =0 (3.19¢,d)

(1) (2) |
Ly Prg 10> =4Pgy [0>, L By [0> =0 P, [0> . (319e,6)
12 12 12 12

If we remember the correspondence é’s.s-' a/a'r}z-s of Eq. (3.4), we
realize thar rhe set of equations (3.19) is identical to the set of equations
(2.7) of the last section which determine the harmonic polynomial
PKillz(ri’rz ) of that section. Therefore, from Eqgs. (3.18), (2.14) and (2.15)

we have

I1 12
x
nll Tiu

o

NK -
|NK1112, g +12>=A1112 [2,12,1]

(=D (5K + L+ +2)+ )t BiN-T. =1 )~
x T (s 1 2 ) ("11"?1’”72"'?2)2 iz

v ui(4(K=1 -1 )2 T(L +3 +1)
1 2 2

(m, ) 0>
(3.20)
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K . ;
The normalizacion coefficient AI;’ ; is found by taking the scalar product of

1 2
the state on the right hand side of (3.20) with itself ; after a somewhat lengthy
calculation and making a suitable phase choice, we obtain

% (N-K)
A =D T K-+ 3)
12

e (%5 (K=1 =1 )12L+ 1) (5 (K= +1)!

x

N-K
2 (5(N-K) (5 (N+K+4) 112!('/2(K+Il+12+2))!(K-11+12+1)!

%
[T +3
¢ r) (3.21)

C(5(K+1 -1+ 3)

As is shown in section 2, the oscillator state with arbitrary values of
L,M,i.e., [NKI I LM> is obrained from (3.20) by replacing

|
=%

L
[11 1 1] 771117)122 with the vector coupled praduct of solid spherical harmonics

“4
42 +1D1 20 +1)1] [u,l(nl) ulz(qz)]m : (3.22)

Since we shall uot need this gencral state, we do not discuss it further.

The determination of the matrix elements of interaction potentials
with respect to harmonic oscillator states has been systematized for the
case® when the states are expressed in the form of Eq. (3.7), i.e., the
states Inl .(l n I LM >. Since we wantto use oscillator states of the type

lNKll IQLM >, it would be desirable to express the latter states in terms of

the former. This can be done, provided we have an explicit algebraic formula
for the scalar product

<n/l'n )L L'M'|NKI L LM> (3.23)

From general group theoretical properties it is known® that this sca lar
product is diagonal in 11 12 LM, and independent of the values .M. Therefore,
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for its explicit evaluation we can take L = M = i+ l'2 , and thus we need only
the states given in Eqs. (3.7) and (3.20). In Appendix B we give the details
of the explicit calculation of the scalar product, which leads (denoting n; by
ng, s =1,2)tothis result

<n I m 1 LM|NKI I LM>=<nn |NK ¥

nl5 K-”l-ll-nz-lz
=igel) N,2n +1 +2n_+1 2 .
1 2 2

(% (N-K))!nl ln, (20 +21 +1)!(2n,+ 212-1-1)!('/2(1(-11-12))! §

(% (N+K+4)1m +1 ) @, 1 )VK=1 + 1+ 1)1 (K+] =1 +1)!
X

2
x (K+2) 5K+ +1,+ D) 15 (k=1 +L ) 1(5(K+ ], -12))1] x

s
S=0 s1(4N-K)-s) !(nl—-s)!(%(K—2n1-11-12)+s)!

Cls&=1+ 1+ 3)D(5(K+1 =1, +3)

(3.24)
(%K~ 2n -l +1 +3)+ s)Iﬁ(an1 +3/ -s)

The Kronecker delta, obviously is the expression of the conservation of energy.
In the particular case when K = N, (which is in fact the only case we
shall need) , the transformation coefficient given above reduces identically

to a coefficient formerly determined by Raynal and Revai’, which as is easily
seen, contains no summations:

I

s
| = 2 1 -
g 5(K Il+12+1) /2(K+Il 12+1)
<mn [KK>, =(-1)! x
ks 12 n n,
-%
K+1
% 3.K 2n_ +1 +2n_+1
% nl 1 2 2 (325)
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4. THREE BODY HY PERSPHERICAL HARMONICS WITH
DEFINITE PERMUTATION AL SYMMETRY

As shown first by Dragt in Ref. 1, (cf. also Ref. 11), for the purpose
of analyzing the permutational symmetry of the 6-dimensional spherical
harmonics of the three body problem, the most convenient classification
scheme is one mvolving a group chain 0(2)>s503). Dragt introduced a
classification according to the chain

06)>0@)x su3) (4.1)

the groups 0(2) and SU(3) being “complementary” within the IR (KOO) of
0(6), in the sense that the IR (1) of 0(2), 4 = K, K=2,...,1 or 0 determines
two conjugate IR of SU(3), namely [K, 4(K tu)] . (Welabel an IR of SU(3)
by a partition[p,q] , 22 ¢>0). Rotational symmetry then drive us to intro-
duce the rotation groups §0(3) D SO(2) as subgroups of SU(3) in the chain of
groups (4.1). But at this point a trouble appears, consisting in the fact that
the chain of groups

SU(3) DS0(3) DSO(2) (4.2)

does not uniquely define the states of an IR of SU(3). We shall mention
two possible ways out of this difficulty. One is to work with a complete
but non-orthogonal set of basis states which, when necessary, are disting uished
among themselves by means of an arbitrary index ¢. From this non-ortho-
normal basis we can pass to an orthonormal one by using the standard Schmidt
procedure as proposed by Efros®. The second alternative is to diagonalize
an additional operator, let us call it (), independent of, and commuting with
the Casimir operators of the groups in the chain (4.2); this alternative leads
to orthonormal basis states, though it implies in general the numerical diago-
nalization of matrices. The two alternatives have been discussed in detail
in Ref. 14. Other methods leading to non-orthogonal sets of permuationally
adapted 0(6) spherical harmonics have been proposed in Ref. 8.

In the present paper we have preferred to introduce the group 0 (2) in
our basis by numerically diagonalizing its Casimir operator M?, whose matrix
is constructed with respect to an orthonormal set of O(6) spherical harmonics
with good angular momentum, namely the states of Eq. (2.16). Faced with
the unavoidable® fact of numerical diagonalization of matrices in order to ob-

At any rate, it seems so at the present time.



Relations between the byperspherical. .. 305

tain an orthonormal basis, we think is far more convenient to diagonalize
M? rather than @ . For convenience we shall do our analvsis in terms of
harmonic oscillator states and creation operators and then translate the
results to hyperspherical harmonics,

The oscillator states we need were obtained in the last section;
they are denoted IKKI‘1 IzLM > and given by Eq. (3.20) with the substiturion
indicated before Eq. (3.22).

Let us introduce at this point an operator Il defined as

m:-,z'(nl-gz—'ng'é:l) (4.3)

Mis a generator of O(6) and, being a scalar, commutes with the total orbiral
angular momentum L . From the theory of angular momentum® the matrix
elements of M with respect tothe states KKl I LM > are given by

<KKP'U'L'M'|W|KKL I LM> =
12 1 2

111
L+l +1, L1 i
5L Sy’ (=1) , <k ki >, (4.4)
12 12 L

The last term is essemially a reduced matrix element and can be determined
by evaluating directly the left hand side of the previous formula for
=L = 11 o+ 12 and using Eq. (3.20) as well as hermitian conjugation. We
find in Appendix B that there are four nonvanishing reduced matrix elements
whose values are

%

<K -1, +1| M|k 2> =i [+ 1K +1+1 -1 ) (K+3=1 +1 )]

(4.5a)

i
2

=i (@A) L (K+3+ 1 =1 XK+1-1 +1)]",

<K, +1,0,-1]m) ke 2>

(4-5)

)
%
)

<K, -1, -1 M| ke8> = -0 [0 2k +241 1) K+2-1 -1 )]

(4.5¢)
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|
%

<K,ll+1,12+1”m”1(1112> = i[( + DU, FI(K+4+1 +1 ) (K= 1= 1)]

(4.5d)

These results agice with formulas obtained in references 8 and 10.

What is the operator Il useful for? It was shown inreference 11 that
M’ is the Casimir operator of a group 0 (2) which contains as a subgroup the
symmetric group of permutations of 3 objects, §(3), in the form of its two-

21
dimensional IR D{ } Let usdenote by i = 0,1,2... the IR label of O(2),

i.e. we are denoting with 2 the eigenvalues of M?. The standard technique
of characters® says to us that

For t=1,2 mod 3: IRu of Q(2) DRep. {21} of §(3)
(4.6)

For u=0mod 3: IRu of O(2) DRep. {3}@{13} of 5(3)

When 11 = 0 only one symmetric or one antisymmetric state occurs; the way
to tell which of these two symmetries a state has when 1= 0 mod 3 will be
explained below, cf. Eqs. (4.11), (4.13).

The method we want to propose for cbtaining hyperspherical harmonics
with good permutational symmetry, consists in the computer diagonalization
of the matrix of the operator ' in the basis of the oscillator states
|KK11 12LM >, i.e. the matrix

l<kkr/t;om|m? | kKi Lu>] (4.7)

where KLLM are fixed and I, /,are restricted by |1 = lzl SL<! +1 <K with
K- 11-1 = even. It is seen from Eqs. (4.5) that fﬂ does not connect values
of !, with the same parity; thus by an adequate ordering of the rows and

columns the matrix of N takes a shape like

ll even ll odd
P, —
0 -iM } I even
Im]l =

- (4.8)
iMT 0 } 11 odd
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T
where M is areal, in general rectangular, mawrix and M is the transpose of

M. The matrix of M? is thus seen to have the form
1'1 even 11 odd
e —P
T ,
MM 0 } ! even
1
Im? | =

: (4.9)
0 MM } I odd

T T . :
where MM~ and MM are square real symmetric matrices.

: .. . T . ;
Diagonalizing the submatrix MM~ in (4.9) we obtain a set of ortho-
. 2 .
normal eigenstates of M°, which we shall denote as

1,1
| KKpwLM > = P Bﬂ;f(xulxml LLM> (4.10)
12

where w is an arbitrary index to distinguish among a set eigenfunctions
having the same quantum numbers K, i, L ,M ; and the index + makes reference
to the fact that in the sum on the right hand 51de only even values of l occur.

I,
For fixed K, L, 11, w, the set of coeff1c1ems B _(KL) for the compatible,

Il szorms an eigenvector of MM charactenzed by the eigenvalue u?
and the index w.

The [ransposltlon (1,2) acting on a state [KKI l LM > multi-
plies it by (- 1) ; then since 11 is even in Eq. (4.10) we deduce that
(1,2)] KKuwLM > = | KKpwLM b (4.11)

i.e. the functions (4.10) are symmetric in the first two particles.

By a reasoning similar to that of the last paragraph, if we diagonalize

the submartrix MTM in (4.9) we obtain eigenfunctions

1.1
_ 12 5
| KKpwLM > = IEI B~ (KL)|KKI 1 LM> ; I odd (4.12)
1:2
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which are antisymmetric in the first two particles:

(1,2)| KKuwLM > = - | KKpwLM > . (4.13)

L. 1
5, 5 172 . 172
The set of coefficients B#w__ (KL)has the same meaning as B'u'w+ (KL) but

now associated with MTM rather than MMT We have a computer program for

the calculation of the coefficients B’ljwzt (KL), with which we have made
tables of these coefficients up to K = 12.

Using the results given in Eqs. (4.9), (4.11) and (4.13), we can now
see that when =0 mod 3 the states | KKuwLM >, have permutational symmetry
{3}, (111), and the states |KKp'.wLM > have symmetry {1}, (321), where
(s3 s, 51) denotes the Yamanouchi symbol 1 On the other hand, when =1, 2
mod 3, each state |KK,u,wLM >, can be considered as belonging to the row
(211) of the IR {21} of 5(3), and its corresponding partmer function in the IR

is“

| KuwLM(121) > = V37 [(23) + ) | KKpwLM >, (4.14)

But (23) = (12)(123), and by the usual conventions® we must apply the oper-
ation (321)(12) onthe vectors Mo Since the state |KK/J.wLM >+ is sym-
metric .in the parvicles 1 and 2, this amounts to the application on the state
of

exp (1% 7)= cos % 77 + i M (sin % 77 /M) (4-15)

and as cos % 7 and sin % 77N /M are functions of m, they can be replaced
by cos % 7y and sin % /i , respectively. Therefore, since we are .in the
case of 1= 1,2 mod 3, we have cos ¥+ % = 0, sin %M = i\/—}:, and the
final result is

| KuwLM (121)> = +(i/p) | KKpwLM >

1.1
=tG/u) 3 |KKEULM><KKU'U'LM|M|KKL I LM> B! 2 (KL) ,
glaidn 3 12 12 1 2 e
121 2

(4.16)
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where the matrix element is given by (4.4), (4.5).
In conclusion we have obtained harmonic oscillator states charac-
terized by the chain of groups

(1)
o (3) 0

U(G) DO(6) D DO0(3) DO(2) (4.17)
(2}

0 0 (3)

N K I / L M

where the integers below each group characterizes its irreducible repre-
sentation (IR) in the state (3.16). Furthermore in the present section we
have determined linear combinations of these states that are characterized
by IR of §(3).

We now turn to the problem of obraining hyperspherical harmonics of
definite permutational symmetry. For this purpose we first note that
1 KKII I2 .M > can be written as

‘KKlllzLM> =V2/(K+2)! pKYKI v a0 01 eep (-%0°) . (4.18)
12

This can be seen from the fact that the harmonic oscillator hamiltonian when
expressed in terms of hyperspherical variables becomes

H_ = 45[-0°(3/3p)(0°3/3p) + P2 N + 021 , (4.19)

OsC

where A2 is the Casimir operator of O(6) given by (3.13). The state (4.18)
corresponds to the eigenvalue K+ 3 of H, . and thus if we apply (4.19) to
(4.18) we immediately obtain that

A’ YKIIIZLM(Q) = K(K* 4) YKlllzL‘M ) , (4.20)

which implies that it is an hyperspherical harmonic. Nate that the operators
(1) (1) (2) (2) : .

Az, L =L i =L 5 Lz, L, of section 3 are all given in terms of

A;‘s §'s! of (3.12) and that the latter, from the definition (3.1) of creation

and annihilation operators, can also be written as
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Mg gror = =d (r].SE/arjvsr = Bfarjs) i ol =Ry 8 =12,
(4.21)

where 7. _are the components of the two Jacobi vectors. Clearly the gener-

ators A;’s,;"s' of 0(6) are only functions of the angles in ) and their deriva-

tives and thus the hyperspherical harmonics are also eigenfunction of
L(l) . L(”, L(Z) . L(z) . L » L, . which is the reason for the indices that
characterize them. The factor [2/(K + 2)1] ’ is put in so as to guarantee

the normalization of the YKllizLM (£X)..

From the developments (4.10), (4.13) we now see that the hyper-
spherical harmonic with definite permutational symmetry is given by

* . phh ‘ )
YK,quM Q) = 3 Bﬂwi(Kl‘) YKlllzLM Q) . (4.22)

hh

This was the state that we designated as Y, (2) in the introduction in which
@ stands now for u,w, *, [ M.

In the next section we shall discuss the matrix element of the two
body interaction with respect to the hyperspherical harmonics (4.22)

5. MATRIX ELEMENTS OF A TWO BODY INTERACTION POTENTIAL
WITH RESPECT TO THE HYPERSPHERICAL HARMONICS OF THE
THREE BODY PROBLEM

We are interested in the matrix elements of the two body interaction
Vil ) =v(V2r) = V20, @) (5.1)

with respect to the hyperspherical harmonics (4.22). For simplicity we

shall only consider central forces as the extension to other types is trivial.
In (5.1) we designate by rl‘, r2' the coordinates of the first two particles, by
r . the first Jacobi coordinate (2.1) and by script U the central potential in
terms of hyperspherical coordinates. From(4.22) it is clear that our matrix
element will be a linear combination of expressions of the form
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f )

F (0)= [y QV20, Q) Y Q) 49 |
II'IZ'L,lllsz IK'LI'IZ'LM a Kil, LM

(5.2)

where, because of the central nature of the forces, the matrix element does
not depend on M and is diagonal in L.

We shall now proceed to evaluate (5.2) with the help of harmonic
oscillator functions in the chain (4.17). For this purpose we take & = m = 1
as previously, but leave the frequency @ in the wave function. In that case
the harmonic oscillator state we will be interested in, 1s

. g enera AT 5 I .
| KK 1, LM>=VI/KT D)1 YKIII‘LM (@) exp (- 5wp’) ,

(5:3)
where o, Q have the same meaning as before, and we put the frequency @ in

the ket as an index.  The expression (5.3) follows immediately from (4.18).
We shall now consider the following matrix element

K’K [ t I

/ (w)= <K'K'T'L'IM|VV2r )| KKL LLM> =
'['l’l“llzL (73] 1 2 1 1.2 @
L2 1

56 -5 s+ LK+K )’ r K'k
J do* exp(- |k +) 1K' +2)1] o 0 gt KK R g
0 R METS

(5.4)

A ! : : 2
which clearly is the Laplace transform with respect to the variable £ of the
expression in the square bracket. Using then the inverse of this transform
we obtain

K'K c4ioe % -3-%(K+K' ’
E, (0) =(1/2mi}[ [(K+2):(K‘+2)[];"w!i 2 )p-(KH( +4),
Vs BT E e
L2 1%
K'K 5
e e (w) exp(wp )dw . (559
N (i o 1
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We have thus derived the matrix elements with respect to hyperspherical
harmonics of a two body interaction as an inverse Laplace transform of corre-
sponding matrix elements associated with the harmonic oscillator states in
the chain (4.17). Using the coefficients (3.25) of section 3 in the case

N = K, which were originally obtained by Raynal and Revai’, we can write

K'K

- E <K|Kr (S g5, /2 » >
[nl" " ﬂlnzllwnIIIHV( rl)”nlll“’ n1n2|KKll ]81111 9"
Z 1 12 12

(5.6)

where the matrix element of V(\/Erl ) with respect to the states in the

(1)

(1)
U (3) 0 o (3) 0

U6) > . D0(3) 20(2)

(2)
0 U (3) 0 0 (3

(5.1

chain reduces to the one body matrix element

<l [ vz m > =j0 Rnlrll(w, V(Y21 R";G(w’ r) ridr

= };, B(nlJfl, m 1 ,p)'[ZwP+3/z /T (p+ 3/2)]fwr21’+2 V(vY2r) exp (-wr?) dr
0

(5.8)
where B (rz; [ ,nl ,p)are coefficients tabulated by Brody and Moshinsky!? .

Introducing (5.8) into (5.6) , and the latter into (5.5), and mterchanging
the order of integration one obtains
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. v
, (p)=2 Z [K+DUK'+2D1] " <KK'|n'n >, <nn |KK>  x
1 “p L,11L ”1”1,"2 2%, 1 L,

. p—(KH\’ +4) s B(n'l ,nl.,p)

PT(p+3,) N (5(K+K'+3)-p)

P 2 LIK+K'+1)=p
xj- r2p+2(}j‘.-—r2)2
0

V/2r) dr . (5.9)

i It is obvious but nevertheless important to note that the polynomial
£ Ygp 1y @) is homogeneous of degree K, and thus under reflection
12

e T (5.10)

K
the polynomial suffers a change of sigs:‘\f -1) . Thus the parity of the hyper-
spherical harmonic YKI ! LM(Q) is (=1) . Asthe central potential is invari-
12

ant under reflection we conclude that the martrix element (5.15) will vanish
unless K+ K' is even.

6. CONCLUSION

We have presented a systematic and explicit procedure for deriving
the matrix elements of a two body potential with respect to the hyperspherical
hamonics of the three body problem with given permutational symmetry. Thus
now we can write out explicitly the system of coupled differential cquation
(1.3) in which a is replaced by p,w,*,L /M as indicated in section 4.

These sets of equations could be solved both in relation to the bound
state of a three body problem such as tritium, as well as for a scattering
state that would appear for example in the collisions of neutrons and deuterons.
Calculations of these types have been done by several authors® and we plan
to carry them out also with the procedure outlined in this paper.
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APPENDIX A
In section 2 we saw that the polynomial (2.14), namely

i 1 K-l -1_-2v
lxzzcvp 1 2 ’_21/

= A.l)
Klllz(rﬂ rz) 11 %12 P 9 (

P

satisfies all equations (2.7) with the single exception of the Eq.(2.7b); i.e.

PKII 1 given above is not as yet a solution of
V+V,
(y + 2)PK1112_0 : (A.2)

We shall prove in this appendix that enforcing condition (A.2) on the poly-
nomial (A.1) gives a recursion formula for C,, whose solution we shall ob-

tain.
By straightforward application of the operator

-1

(V49 )= 3 (-1 ((3/3x,,3x,,)+(3/3x,,9x,,) (A.3)

m=1

on the polynomial (A.1) we obtain

2 2
(vl +v2)‘01'(1l 12

1 K-l -1,-2v-2
- 1752 2v
- %%, {%CV(K-II-12-21/)(K+ll+12+4+2v),0 r #
) K-1-1-2v" , 1.
+3 G ()N, +1+w)p P2 ) (A.4)
v

If in the second sum we introduce as new dummy index v = v' -1, the curly

bracket in (A.4) becomes
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>5[cv(1i<-11 S WKL L HA40) 4 G QU A2)(Q2L+3420)]
K-L-I-2v-2
xp 1 2 ?‘221) (AS)

and the condition that this be equal to zero, leads to the recursion formula

Coar = -G L5 (K- -1 )= 1] iR+ i+ L+ 421w + 1)L+ 3 +u)

(A.6)

for the coefficients C,- The solution of this formula, found by induction, is
given in Eq. (2.15) of section 2.

APPENDIX B

The purpose of this appendix is to obtain the expansion of the harmonic
oscillator state (3.20), which is classified by 0(6)

» in terms of oscillator
: e (1) (2)
states of the type (3.5) which are classified by U (3)eU (3).
Let us write again the O(6) state of Eq. (3.20):

NK % b1
= ! 1
INK:I Lok td 0 41> ,411!2[11!12 ] P

S(N-1-1,)-v

V "
*2C(n 4 m, ) (m,* m) 0>, (B.1)

NK . . . .
where A-’I"z Is gwven in Eq. (3.21) and CV m Eq. (2.15) :

Expanding the binomial in (B.1) and grouping terms we obtain

NK i BN-I-1) - v
NK1112,11+12,11+12>=A,1,2[1l!zzr] Xc, ( )x
v A A
’1( )'/E(N-zl-iz)-u-K 12( v+7\|0>
o U ) N\, 1L : (B.2)
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The product of creation operators on 10> which appears in Eq. (B.2) is, up

to a normalization factor, the oscillator state

| S(N=1 1) =y =N v N+ 2 (B.3)

of Eq.(3.5). Supplying the appropriate normalization factor, we have from

(B.2),

o
INKE 1,0 4,4t

<k YiN=L-1,) -1 Y(N-L-1)-
_A [I'I'] Ey T P 4y 2 ¢, | T 2 T
12 wh T
: &

|
]

x [(N-1 -1 -2v=22)!1(2v +2?\)”(N+11-12+1-2v-2?\)!3(212+1+2V +20)11] x

[}
xS N= L =) =N L vt N b, L+ > (B.4)

Introduc ing the explicit value of Cv , given in Eq. (2.15), we obtain

from (B.4)

% =
nlnl L+ 12,1l+,‘f2|r~ur<11 bod th,d 4> = <n1n2|NK>1112

1517272 51

NK %(N-1,-b) -4 1
=8y 41 42m +1 N Ay (- (2 1e, 1] "LanlN -4 ~1)-n,)1] ~
%
x [{2n1)5!(2712)11{2n1+211+1)!!(2n2+212+1)!!] 5, (B.S)
where
(-0 (5 K+1 + L+ + o) L5 (N=1 =) -v)!
A . (B.6)

=X
v |
VT(@(K-11_12)-V)g(,,z,y)!r(l +34 +v)
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This formula for § has an unsymmetrical form. By following steps
analogous to those described by Racah 13 in his symmetrization of Wigner
coefficients of SU(2), we can get at an alternative symmetric expression for
S, namely

5(K-4-b)-
§=(-1) (K-h-%) " (SN-K)! nlt(g(x+zl+12+z)):F('/z(x+11-12+3))x

xS (-1) [st(5(N=K) =) L =)t (5(K-1 -1 ) =n +5) 1 X

e

XF('fé(K—-lk+22+3)—n1+s)r(n1+11+3/2—s)] : (B.7)

NK
Introduc ing this § on (B.5) and placing the explicit value of A},
12

we obtain the expression given in section 3, Eq.(3.24). We want to mention
that from the explicit formula (3.24) it is easy to verify that the coefficient
has the symmetry property

< RS ety Tl NK > B.8)
ﬂl ﬂ2 1112 e ) ﬂ2ﬂ1 lzll . ( »

APPENDIX C

In this appendix we shall describe the basic steps that lead to the
determination of the matrix elements of the aperator

M=-im-&=m,"¢) —

with respect to the harmonic oscillator states |KKI I, LM > classified by
0(6). According to the formula (4.4) we only have to determine the reduced
matrix elements, which are independent of LM and therefore, some of them
at least, could be determined if we were able to evaluate the matrix element

—~

1317 s \
<KKE'L' L+ D, 0+ 1 IMIKKE L0400 41> (C.2)
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For the calculation of (C.2) we make use of the correspondence
£ 8/3771.5 of Eq. (3.4) and apply M on the ket as given in .Eq. (3.20?.
Using recoupling techniques, as well as some simple properties of solid
spherical harmonics, we find after an e lem entary but lengthy computation,
that

mJKK1112,11+12,11+12>

2
_ (11+12+ ].}(21l +212+ 3)(1(-11 -12)(K+4+11+12) 5
(21’]+1)(2!l +3)(212+1)(212+ 3)

+
x IKK,11+1,12+1,11+12,11+12>

|
%
x

HilL U DK=1 +1 4 3) (K41 =4+ DA +1)(2 +3)]
P I;ur(,f1 ~LAFLEAL LD =

1
2

—:‘[12(11+1)(K—11 LA 1K+ =L+3)/(2l % D2 +3)]" x

x[KK.11+1,12-1,11+12,11+12> (C.3)

This formula, in combination with Eq. (4.4), permits to us the determi-
nation of all reduced matrix elements, except for the three cases

<x,11-1,12—1HmHK1112>, <K,ll-l,12”m”K1112>, <1'<,1l,12-1HmH"<1112 -

But then, these three cases can be deduced from the previously known cases

by hermitian conjugation. Therefore we have the possibility of evaluating all
the reduced matrix elements. The calculation, once done, gives the four non-
vanishing reduced matrix elements of Eq. (4.5a,b c,d).
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RESUMEN

Se da un procedimiento sistematico y explicito para obtener armoni-
cos hiperesféricos para el problema de tres cuerpos con una simetria permu-
tacional dada. Los elementos de matriz de una interaccion de dos cuerpos
con respecto a estos arménicos hiperesféricos, se determinan en términos de
los elementos de matriz correspondientes para estados del oscilador armoni-
co. Esto nos permite reducir el problema de tres cuerpos a un sistema de

ecuaciones diferenciales ordinarias acopladas para las funciones hiperradia-
les.





