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ABSTRACT: The different selections of fluxes and the corresponding thermo-
dynamic forces in the linear theory of-irreversible thermodynamics
are written. In this paper we present a method for calcu-
lating explicitly these forces by means of the equation
of state of our gas mixture. Also, we will obtain the phenome-
nological coefficients of the linear laws in the standard form,,
as a function of some coefficients easily obtainable by ex-
perimental methods, using again the equation of state of the

gas mixture, This last point will be treated for a binary mixture
only.

INTRODUCTION

Irreversible thermodynamics is a branch of physical chemistry which
extends the phenomenological treatment of thermodynamics to non-equilibrium
PI'OCC."ES(‘H.

Thermodynamics of irreversible processes takes into account many
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phenomenae, as mass transport, momentum and epergy. It uses the hydro-
dynamic equations on a fundamental form, and its principal objectives are
the viscosity effects, heat conduction, diffusive phenomenae and alse cross
effects as thermodiffusion.

In the same way as equilibrium thermodynamics, thermodynamics of
irreversible processes is built upon two laws. The first law that defines
internal energy and postulates energy conservation. can be written in
the following form!

”n

dU/dt = =V div Jq-P(dV/dl)-VH: grad v +th Jh' Fe >
=i

(1)

where U is the specific internal energy, V the specific volume, P the pressure,
Jq the hear flux, v the hydrodynamic velocity of the mixture’s center of mass,

I =P vy = v) is the diffusion flux of the & component, Flc is the external
force per unit mass exerted on the & component and Il is the viscosity tensor
(pressure tensor without the hydrostatic part P).

The second law is built using the Gibbs relation on a mass element
of our system. (That is, thermodynamical equilibriumiis supposed to
cxist inleach mass element which composes the system). In this way,

the entropy production (which is zero for equilibrium processes) is obtained

El.‘il

nel

To = - Jq * (grad 'Il"/T)-hE1 5. {T grad ((,u.k/th)- (',un/mnT))— FotF r=-

. o r
-II: (grad v) * = 77 div ve X -’,r'Aj (2)
1=1

where & is the entropy produced per unit time and unit volume, T is the temper-
ature, (1, the chemical potential per particle of the & component, m, is the

mass of a particle of this component, I[=II -('/3 [1: U) U where U is the three-
dimensional uni i ad v)® i
menstonal unit matrix, (grad v )” is the symmetric part of the tensor

?

£ ; ! - . " 2
grad v = grad v = (% divv) U, ]]- is the chemical reaction rate of reaction /
n

Aj. = k};lph.()uh /my ) is the chemical affinity of chemical reaction j, whee

the quantity Uk divided by the molecular mass is the stoichiometric ¢ef-
ficient with which the & component appears in the chemical reaction © 1 d
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n
finally 77 = %II: U. On deducing (2) we have used the fact that hi Jh =0
=1

and that Il is a symmetric tensor,

This last equation can be rewritten in the following matricial form

Ta=XJ (3)

where the tilde indicates the transposed vector and the vectors X and J are

defined by

. . . . . . &

T I 11

q’ 17" *Jpals

217 22sn23,H31,H32,Hn, 7Ty Jyreees )
(4)

6 S e [ e . 7.

X = (= (grad T/T), = {T grad [(#l/mlT)-(,u,n/m”T)] -F+E},....-

=T grad (e, /m,\ T) = (1, /m, T)) - F, +F},

s

. . K3 . . s . s
- (grad v)f1 »=(grad v) , = (grad v ) g0 = (grad v ), = (grad v Joo

s
232

s

- (grad v) _, - (grad v ):1,- (grad v ), , = (grad V):s,- div v ,-AI,...,-Ar)

(5)

The X vector will be called the thermodynamic forces vector and the
J vector will be the ‘fluxes vector.

It is an experimental fact that the fluxes are linear functions of the
thermodynamic forces when the system is not so far from equilibrium. That
is

J=LX (6)

The L matrix is known as the phenomenological coefficients ténsor
and it is of such form that for an isotropic medium, it only relates the fluxes
and forces of the same tensorial character. This fact is often referred to
as the Curie symmetry principle.

The linear relations (6) for an isotropic medium can then, be written,
for the fluxes and forces of vectorial characrer, in the following way
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n-1

Jq =-L,,(grad T/T)= k% 1[‘9* [T grad ((,U-h/th)—-(/.L”/mﬂT)) ~E ot F ]

(7)

n=1
J;=-L;, (grad T/T)= 3 Ly [T grad ((ep/my 1) =y /m, T) = Fy + F
£ k=1
i=1,...,n-1 (8)

It has been shown that the coefficients of the linear laws fulfill certain
symmetry properties known as the Onsager reciprocal relations. For example
qu = qu in equations (7) and (8). In other words, the matrix which relates

the fluxes and forces of vectorial character is a symmetrical matrix.

MEIXNER TRANSFORMATIONS

It is possible to put the entropy production (2) in equivalent forms with
different selections of fluxes and forces. This is generally done for the entro-
py production due to fluxes and forces of vectorial character (the first two
terms of the right hand in (2)), but it can be made for all terms in (2) .2 Such
transformations are called Meixner transformations.

Let J and X be the vectors that consist of the first n components of
(4) and (5); that is, the fluxes and forces of vectorial character only. Then

J=LX (9

where L is a symmetric matrix. If we consider now a new set of fluxes and
forces, linear functions of the previous two:

¢
4" =
(10)
[
X'=0CX
where C is a non-singular matrix; then, it is seen that there exists a new re-

lation between the new fluxes and forces in analogy to (9), with a new matrix
of phenomenological coefficients:



Diffusion forces and. .. 325

Jo=L K
5 (11)

If we also ask that the Onsager reciprocal relations are still valid for
the new matrix:

L =L , (12)

Ta=% J (13)

'\4’ [a¥)
where X and J ' are the vectors (4) and (5) with its first components changed
by the Meixner transformation (10). Then, it can be shown that

C=B . (14)
On using a matrix B defined by??

1 -(H fm)-H, V.o = (H /m, )=, /m )

0 I T 0
B=
0 0 1
(15)
where Hk is the partial enthalpy per particle:
HkE (BH/BN,‘) (16)

TR )
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and I is the three-dimensional unit matrix, the entropy production (2) can be

written in the equivalent form

n-1

Tor = -J;-(grad T/T)- 2 J -[{grad ((ph/mh)-(p”/m"))}_r -F,+tF]-

r
-II: (grad v)° -7 divv - 3 JA, » (17)
where
n l
J‘IEJ‘I-).EI(H"/M")J" (18)
and

(grad u, )T = grad p, - (B#A/BT)P,{N’S} grad T , (19)
On obtaining (17), we used the fact that
(grad w1, )T =T grad (u /T) +(H, /T) grad T (20)

which can be seen from the definition (19) , from the equation
Hh = TSk+,uk (21)

where §, is defined in the same way as definition (16), and also from the
Maxwell relation:

S, =-(9u,/3T) (22)
k
k P’{Mj’s}

Another form of the entropy production can be obtained by means of
the following matrix?'3
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To=

where

is the

forces

/D1 =g /m D) =G, /m IV =, S T =, /m TV
0 I - % s 0
0 0 I
(23)

So, the entropy production is rewritten instead of (2), as

n-1

~ L * giad = kg‘,'lh-[grad ((#}./’”h)'(“n/mn))—Fk+Fn] =

1 4

_[:[:(grad v) -mdivv- 3 ]fAf 3 (24)
=4

b=/l - 2 Gu/m) ) (25)

entropy flux.

EXPLICIT CALCULATION OF THE DIFFUSION FORCES

From equations (2), (17) and (24), three expressions for the diffusion
can be written® 2.3 :

X, = - [T grad ((u /mT)~(u, /m,T) - F,_+F,] (26)
X, = - [{grad ((uy /my) = (s, /m_ ))}T- F+F.] (27)

>
|

x = - Lgrad ((#1./"'1.)‘(#” /m")) -F + Fn] . (28)
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As we can see from these expressions, for computing the diffusion
forces, we have to calculate the gradients of the chemical potential. This
is made with the aid of the equation of state of our gas mixture.? 3

Let us suppose that we have the virial equation of state:

P:%Thﬁ (N /V)+&T }. B (TY(N,/VY(N./V) +
=4

kj=1

n

+&T X Brji (TY(N, /VI(N/VYIN/V) .

) (29)
k,j,l=

where the B’s are functions of T and are symmetric under the interchange of
any two index.

Next we will calculate the virial expansion of the chemical potential
from the last equation and the relation? *

(T, VN ) = i (T,V NG ) +j ((dp/aN,)

ideal

' - (RT/V')) dV'
¥ N]"S *k

(30)

where

,U-k(T,V,.Ni)S)

ideal

T T
=J;_cv,de'—TfT(cV’ dT'/T") + RT - RT In(V/Nywy) +uy = T's,
0 0

(31)
In this last equation, Cy.k is the specific heat per particle at constant
volume of the & component in the ideal gas limit (low densities) and is a function

of temperature only; 1 o, A is the internal energy per particle of the & component
in the same limit when T = T , the standard state temperature; So,k is the
entropy per particle correspondmg to this state and v, is the vqume per parti-
cle of the same state.

If we introduce (29) into (30) we obtain
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pplEmp ) = Togp ) ¥ Z&T?Bu mytART X By My,

ideal

+tyLRT 2 Btma M My, t oo (32)

I,mn

where the 77’s are the particle densities of the different components. From
this equation we can obtain the virial expansion of the chemical potential
gradient:

grad 1 = {(Opy g, /0T * 2%? (TByy+ Byhm, +

77"’5}

+s/2&Z>: (TBY;,, * Bupm) M7, -+ ) grad T +

¥ ?Gafuhidcal/an[)-r % grad 7, + 2&'1"?.8“ grad m, +

i's#l

+3kT S B, m, gradm ... (33)
I,m /i m

In the case of expression (26) we have to calculate

T grad (1 /m,T) = grad (up, /mp) =1y, /m T) grad T . (34)

On using (31), (32) and (33), the diffusion force X, is obtained in
the following form

X, = - [arad ((uy /my) -, /m)) ~((y /m) = (1, /m,)) (grad T/T)- F, +F,]

(35a)

also
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Xe = O/ g1 /M) =g igea /™) + Z&T?((Bil/mk)—(ﬂ':,/mu )7, +
+3 %TE,.((B’:’"/'"") By /m Ny ..} grad T+RT ((grad 7, /me7, ) -
~(grad 7 _/m,7m ) + 2%7"?((3“/»;*)—(3",/% ) grad 7, +

+ 3&Tll;n((8“m/mh)-(B"lm/m”)) n geadon =-..FtE] | (35b)

]

where u . is the internal energy per particle of the & component in the
kideal - )
ideal gas limit and it is a function of temperature only.

For computing the diffusion force in the form (27), we will use the
definition (19) for (grad p, )T . In expression (32) we don’t have 1 (T, P, No )

but w, (T, V, Nf’s) ,s0 we will use thic chain rule for calculating ('ay,k/aT)P

{Nj's}
(I, /OT) = (Ou,, /3T) ,F (O, /9V) (0V/9T) :
; N}"s} V(N b T, {N;"s} P’{N;"s}
(36)
which can be rewritten as
(Opry /9T) = (O, /9T) +
Pa{‘vj's} Vv{Nj’s}
+[(dP/3T) (3P/ON, ) 1/(3P/3V) » (37)
[ N!.,S} T,V.ANo o gat T,{N!..S}

where use has been made of the cyclic relation and the Maxwell relation

(a,u.,./awr{ = - (3P/3N,) (38)

, NI..S T V,{N’.,S#k}
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Introducing (37) into (19) yields

n
(grad (/12 ))T = ,E', (1/m, )(a,uk/an], )T,{Trps o grad 7, -
-{p/3T)  (3P/3N,) }my(3P/3V) ] grad T .
{17].,5} T,V, N]’S#k} T,{les}

(39)

So, if a substitution of equations (29), (31), and (32) is made into
(39) the diffusion force (27) to second order in the density reads

X, = &T {(grad Mp/m,M,,) = (grad 1, /my m, )} +

- 2%.1'"’.2((8'”- /m")-(ka/mh ) grad n; +

+3RT 3 ((B,;/m,) =By /my ) 0y grad m; + ...+ & [(1/m,) = (1/my) +
2

+ zlz‘((aﬂ,/mn)-m“/m,,)) n, + (U1 /m) =(1/m,) ?“ZI(TB’.’, -B)mm, +

+ 1/ /m,) - (1/m, ’),- S (- 2By, + B )n.nm +

t2/m (s, /m,)=(By./my) n, X(= By, + TBI )77 -
i i

2 1] o
- (2/n )((1/”.")-(1/:::,.))5(131.,-sj,)nf_nl f;q By, Myt ---)grad T +

+F~F (40)

n
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Finally, the 3th form of the diffusion forces (28) is obtained directly

from equations (33) and (31), leaving the following expression

ideal

X, = {(%T((cv’k/mk)-(cv’ﬂ/mn N@r' /T = k(1 /m)=(1/m) -

= k(/m) =1 /m, ) In vy = (a7, )= (0, /m ) + (G5, o/m) =(s, , /m, )=
—2&%[T((B;I/mk)-(B,:‘,/’mn))+((5H/mh)—(8"1/m”))}771-

-3 &1,2,. [T((Byy,/m) =B, /m )+ ((Byy /mi) =B, i, My =}

x grad T - &T((gmdT]k,/mknk)-(grad”r]n /mn“q" B =

- Z&T?'."‘((Bk;’/mk )-(B”I./mn ) grad T)I_ -

- 3'?1'1'12 ((Bklm/mk)-(Bnlm/mn )) ur 1.7,rao:i7’)”l -...t Fk- F’j (41)
,m

BINARY MIXTURE

In case we have a mixture of two components only, the matrix (15)

which transforms the fluxes is then given by

I =HI
B= : (42)
10 ’
where
H :(H1/m|)-(H;'/m2) ’ (43)

The new vectorial fluxes are then
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J, J, - HJ,
1= = , (44)
J J,

and the corresponding thermodynamical forces, when there are no external
forces present, are given by

- (grad T/T)
X' = i (45)
- (grad 'u')T

where we have defined the chemical potential of the mixture as
po=(p,/m ) =, /my) . (46)

The new matrix of phenomenological coefficients (11) transforms into

2
(qu-zH qu +H Lu)l (qu-HL“).'

!

L = , (47)

(qu-HL”)I L“l

If we use (21), (22) and the fact that the chemical potential is an
intensive quantity, we have

H=u-T(3u/oT) =pn- T(ap,/aT)p (48)

» 17 2 c

where ¢ is the concentration of the component (¢, :ph/,o; k=1,2).

Now we will define® D, &T and « by means of the following equations

l,“ :pD/(a,u./a()T . (49)

¥

L =oD{[{;u - T (a,u/aT)P,C)/’(a,u/Bc)T,P] th,} (50)
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Fut, 21 -~ I
Ly, =«T+[pD {u- T(a,-;_/ar)P f %,T(a,u./ac)np} 1 /(3/ ac)T ,

? L]

(s1)
An introduction of (48),(49),(50) and (51) into (47) leaves the new

matrix of phenomenological coefficients as

1

Pt [KT+&%pD(ag/adtP]l (oD ] 1

[pD& 11 [,oD/(B,u/'ac)T’P]I’

(52)

then the new linear relations (11) can be written as

(- r(ap,/ar)p’ )J,

C

)(grad gl i

]

= -(«T + k7.pD Qu/Aay - R PPT (3u/3T)
= PD%LT grad (53)

J = -pp [k - T(B,LL/BT)P,C/(B,&/Bc)T,p] (grad T/T) -
- [pD/(3./3 du . (54)
[pD/(du/ C)T,P] grad p

It is convenient to eliminate grad 4 from the expression for the heat
flux, replacing it by Jl and grad T. Then we have

dq = lu-T@Ru/AT) C+&T(a#/ac)_r,P]Jl- kgrad T . (59)

’

The other independent equation shall be obtained from (54) using the
fact that u = u(T,P,c).
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J = -pD[gradc“"&T(grad T/T)‘i'#tp(grad p/pP] , (56)

where we have made

kp =P (a,u/ap)c T/(a,u/ac)p, ; (57)

T

’

The coefficient D is called the diffusion coefficient or mass transfer
coefficient; it gives the diffusion flux when only a concentration gradient is
present. The diffusion flux due to the temperature gradient is given by the
thermal diffusion coefficient ‘FtTD; the dimensionless quantity F{T is called
the thermal diffusion ratio.

The last term in (56) has to be taken into account only when there is
a considerable pressure gradient in the fluid. The coefficient %'.pD may be
called the barodiffusion coefficient. It should be noticed that, by formula
(57), the dimensionless quantity &P is entirely determined by thermodynamic
properties alone. Moreover, for j: = 0 in equation (55), we have

Jq ==-xkgrad T (58)

so that x is just the thermal conductivity.

Having in mind that D, %‘,TD and « are the coefficients most easily
obtained by experimental methods, we can get from them the tensor of phe-
nomenological coefficients that relates fluxes and forces of vectorial charac-
ter in the standard form'. The equations that we will use are then (49),(50)
and (51).

Now, we shall obtain the expressions s, (a#/ar)P . and (3;1,/ac),r’p

that appear in formulae (49)(50) and (51). Again, we will suppose that in
the equation of state, it is easier to have the pressure as a function of temper-
ature and the particle densities. As an example, we will take the virial equation
of state (29) and the chemical potential (32), which, expressed as a function of

the temperature, specific volume and concentration of the components 1 and
2, gives us

i B 3
P = (&T/v)é (G /m)+ RT/V Vo 3 By (G/m)e; /mp) +

2
3 -
+(RT/V )”,}7:IBkj,(c,./mk)(cj/m}.)(c,/m,) . (59)
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T i i
iy = [L_ ey k41"~ TfT (cv’kd‘T'/T')].d +RT+ AT In (y,/m V) +
G " ideal

2
+hTInc, by =T (2&T/V)Elau(cl/ml)+

2
FURTVE S By (o/m) (G /my) + (60)
ym=1

In the last equation we don’t have ,u,k(T,P, ¢) but p,k(T, V,c), so we
shall use again the chain rule for calculating the partial derivatives of the
chemical potential when the pressure is constant. In this way we obtain

o1/dT
(ow/ )P

»

= (3u/3T) +[(dP/3T) (dP/3c)  /(dP/BV) ]
% Vo T T

C ? ? TC

(61)

i

L]

(Bu/3c) = (du/dc) +[(dP/3c)Y /(3P/3V) 1 . (62)
T.P T, V T,V ‘s

c

’ »

On obtaining these last two expressions, use has been made of the

cyclic relation and the Maxwell relation:

(Ou/9V) = -(3P/dc) : (63)
T T,V

C

bl ?

From (60), we can have the chemical potential of the mixture (40) as
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T , T ,
b= /m) =Gy /m) = [/m)] ey (dT" - (U )] ey ,dT") -
0 0

T s & et
- [(T/ml)fT (ey, dT"/T )'(T/mz)f'r Ve 4T /X ]idea1+
0 0

41 ((1/m ) =(1/m N1+ 1n (g, /V)) = &T ((nm, /m ) ~(am, /m,) +
+RT ((lrz c, /ml)—(ln €, /m2 ) +((u0, 1/mt)‘(“0, 2/”‘2)) -

-T((s, ,/m)=(s, ,/m)) + QRT/V)2 (B, /m ) =B, /m ) (c) /m)) +
: ’ I

+3, (kT/VY) 2 (B, /m ) =By, /m Ve /m)c, /m)+ ... (64)

I,m

If we introduce (59) and (64) into (61) and (62), then we have, to
second order in the density

I : .
@u/ory, =-L] /T Wiey ,/m)=(ey ,/m)dT"] ~ +

idea
c . eal

+R((1/m) = (1/m, ) Iy, = (s, /m) = (s, 5 /m)) + (nny /m) = (a7, /m))) +
3 2‘?{.%((7’8;} /ml)__(TB;l /mz)'r)[ - &. ((l/ml) '(1/m2))lzm(TBl'm - Blm)(nlnm/n)
= 21&%‘,((31,/,5I ) =B, /m)) 7, pzm(ra;m- B,,)(n,m_/n) +
+ - y ’

2k((1/m))=(1/m)) ,.%,-ka(”ﬂ/”);,z,,,‘mlm ~ B 1O, T T
+3 %!’L‘m [((TB},,,~ B, ), )/m, ) - (B}, - B, 1 /m, )] mym -

- k(1 /m)-(/m)) (TBjpy = 2B )M, M /M + ... (65)

<
—
,m,

r
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(3-4‘3‘)“, = RT/V{((1/min ) + (1/m3n ) +

+2(B,, /m})-(2B,, /m m) + (B, /m?) +

F32(B, /m) =By fmym,) + By /2N - L/ = (U, )
= (1 /m) - (1/m,) ;};((BU. /m)~(By; /m)) 7. +

2
2/ /m) - (1 /m,)) ,.X,-ka"’?ﬂ,- 8/ (1/m) -(1/m,)) x

) 2
"I_Z((Bu-/ml) -(B,/m, ’)”ff,zﬂ“m m, = (4/7) [;S((Blf/m, )= (B, /m ) ] -

= 6/ /m)~(1/m,)) ;.E,- (B, /m) - (B, . /m)) T,

+(3n" )((l/ml)—(l/mz))zx 4

2
R thil??z.”,'”z —(4/7}3)((1/m1)—(1/m2 ) x
.

2

X 3
[k‘,-‘j Bh]."r)kn?_] Fioman b - (66)

And, on substituting equations (64), (65) and (66) into (49), (50) and
(51), we can have the coefficients which relate the fluxes and forces of
vectorial character as a function of temperature and particle densities and
also as a function of the experimental quantities D, &T and .
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RESUMEN

Las diferentes selecciones de flujos y las fuerzas termodinamicas
correspondientes se escriben dentro de la teoria lineal de la termodinamica
irreversible. En este articulo se presenta un método para calcular explicita-
mente estas fuerzas por medio de la ecuacion de estado de nuestra mezcla
de gas. También se obtendran los coeficientes fenomenolégicos de las le-
yves lineales en su forma usual, como funcion de algunos coeficientes facil-
mente obtenibles por métodos experimentales, usando de nuevo la ecuacion
de estado de la mezcla de gas. Esto ultimo se analizara sélo para una mez-

cla binaria.





