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ABSTRACT: In this review we approach the theory of chemical reactions
emphasizing the N-body character of the process. The pres-

ent status of the description of chemical kinetics as a trans-

port phenomenoa is critically assesed. This point of view

should account for the irreversibility and non-linearity exhib-
ited by the system. We review briefly the reduction from the
many-body dynamics to fundamental two-body interactions by
studying the reactive cross sections. Existing theories for
unimolecular reactions are analyzed to emphasize how their
vicissitudes have prevented a parallel development of this

point of view. Several suggestions are given in different direc-
tions as to how to venture into a more fundamental de-
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scription of the problem. Extensions and corrections to the

well known macroscopic equations are also indicated.

1. INTRODUCTION

The 1dea behind the claboration of thisreview isto present chemi-
cal reactions as a many-body problem. Itisnot common to encounter this phi-
losophy concerning reactive kinetics. We intend to establish a point of view
which may be attractive to theoretical physicists interested in other N-body
phenomena, as well as refreshing to specialists that all too often are faced
with half-hearted and partial attempts at genuine statistical mechanical
trecatments of chemical reactions. This approach calls for a biased selection
and evaluation of the enormous amountof material in the field. The orthodox
theories have been the subject of many excellent books and reviews, some
of which are included in the Bibliography at the end of the paper' ™%,

Thermodynamics deals with chemical reactions by introducing the
concept of chemical equilibrium, defined in terms of a minimal free energy.
A partial description is thus achieved by computing the equilibrium constant.

The evolution of the system entails however, rate equations which
in general are nonlinear as:

—dA/dt =kAB-R'CD , (1.1)

: . . L. '
where 4, B, C,D represent the chemical species densities, and k, k& are the
rate constants for the following reaction:

R
A+ B CxD {12
kl

In order to write (1.1), the law of mass actions for ideal systems is invoked.
The rate constants are considered to depend only on the tempera-
ture through the expression:

R(T) — a exp (=E /kyT) (1.3)

2 ¢ = S 4 E .
known as Arrhenius’ law. Here E  is the activation energy and a is called
the pre-exponential factor, which might also depend on T.
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A rationale of Eq. (1.1) is given in Irreversible Thermodynamics
Indeed we can describe the reaction in terms of the affinity (. The rate of
depletion J is, in the linear approximation:

J =-L0/1), f1.4)

where L is a phenomenological coefficient. However, in contrast to other

processes studied by Thermodynamics,the linear relationship is inadequate.
. - . 1 .

In fact, a more general expression for J is given' by:

= k' CD [exp (-O/kpT) -1]. (1.5)

Hence, the equations describing the reaction's evolution are also non-linear
in ( and (1.4) is just a linear approximation valid only when G<<EBT

Most treatments of chemical kinetics are focused at the expla:
nation of Eq. (1.3). Amomg these, the best known is perhaps Eyring's theo-
ry, which is indeea covered in many books, ranging from the 1930 ‘s to
date’™V> VI This model relates E to the enthalphy, while the pre-expo-
nential factor @ in Eq. (1.3) is considered to contain quantum information
such as wnneling effects. Thus a mixture of microscopic and macroscopic
concepts results, whithout really analyzing the statistical N-body prob lem.
It is for this reason that we shall not discuss this important aspect of re-
actions. Yet we shall give a brief description of the use of potential energy
surfaces in Section 3

A historical viewpoint closer to ours is that of the early develop-
ments of collision theory®! Indeed in 1916, Trautz and later Mc Lewis?
gave a kinetic explanation of the factor & in (1.3) assuming hard sphere
collisions. Similar treatments have been advanced directly from the reactive
cross sections, mostly for bimolecular reactions. Ttey are well summarized
in Ref. 3,

A way to circumvent the many-body problem is by means of a
stochastic description. This method has been applied to reactions, X! -XIII
which in this context are looked upon as death-birth processes *, Starting
from master equations, the empirical rates are reproduced, without involving
the detailed dynamics.

As mentioned earlier, all of these theories attempt to reproduce
either Arrhenius law or the empirical rate equation (1.1) . This shall not
concern us here as a primary aim. Our purpose instead is to reduce the many:-
body problem, with its intrinsical irreversibility into the reversible few-body
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dynamics. Both the macroscopic rate equations and the phenomenological
coefficients should appear as a natural consequence of the averaging process.

The plan of the article is as follows: in the next section we pre-
sent the attempts to describe chemical reactions as a transport phenomenon,
providing the searched link from the many-body description to few-body dy-
namics. The status of direct computations of two-particle interactions is
analyzed in Section 3. The very special case of unimoleculardecompositions
is reviewed critically in Section 4, showing that the N-body approach is
practically non-existent for these reactions. Finally a very personal appraisal
of promising new developments is established in the Outlook, corresponding
to Section 5.

2. THE TRANSPORT EQUATIONS

The most fundamental approach to chemical reactions implies the
study of dynamical interactions among a very large number of molecules,
where changes in their intemal structures are involved. Furthermore, the
large number of degrees of freedom is responsible for the irreversible charac-
ter of the event. Typical irreversible processes are treated as transport
phenomena, with linear causal relationships sufficing for their description,
at least within a wide range of experimental conditions. As already pointed
out, chemical reactions are in fact exceptional in this sense, since nonlinearity
is here a primary feature.

The first attempt to explain rate theory starting from non-equilibri-
um statistical mechanics was made by Curtiss®, and Prigogine et a/®. Us-
ing an ad hoc Boltzmann-type of kinetic equation, they obtained a modified
distribution function from which the rate constant was computed. Improvements
of this version were made by Mahan” and Present®. The molecular internal
degrees of freedom®, as well as the chemical species labels® '” have been
included in this type of description. This in turn implies that the distribution
function must contain this information besides the usual position and velocity

1. A=

variables. In a series of papers !4 Ross has developed further this

approach based on a modified Boltzmann equation of the form:
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B(nA jA)
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-n, ng ./A.fB.) dQdp, +inel. coll. T elast. coll. (2:1)
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where 7, j, [, m refer to the internal quantum numbers and v, g, pyp,are the
relative velocity and momentum. Its solution yields the distribution function
/4 for species A. An integration over the momentum p, and a summation of
th‘e internal quantum numbers 7 is then carried out, thus eliminating the
elastic and inelastic (nonreactive) collision terms, from symmetry arguments ' .
We can hence identify the rate constant as a function of the reactive cross

; i s 3
section and the relative concentrations' Xy =0y ,/714 and Xg
A, R i

MTY= 2 = n v go '“C( UABQ)fA/B dp, dpp dQ. (2.2)

1;!m

We have thus obtained an expression linking an empirical quantity
- the rate constant- with a microscopical parameter -the reactive cross
section - which in principle is computable directly from the intermolecular
potential. As a by product, Artheniuslaw can also be reproduced® !? using
primitive models for this cross section, such as rigid spheres of radius d/2
with a minimal activation energy E*:

0 . E<E*

UrCﬂC(E) = 2'
md?(1-E*/E), E>E*. ¥}

This is evidently a gross oversimplification since rigid spheres
cannot possibly give rise to reactive collisions. On the other hand, the
introduction of an €nergy parameter as in (2.3) is foreign to the kinetic
approach.

To obtain the rate constant from (2.3), the distribution function
in (2.2) is approximated by a simple Maxwell-Boltzmann di stribution. This,
however, is not so restrictive as it seems. It has been proven that non-
equtllbrlum effects change the rate constant only sllghtly5 e N3 by solving
Boltzmann's equation to first order in the gradients.

The first sound and serious attempt to calculate the transport
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cocfficient relating the chemical affinity with the chemical rate was performed
by Yamamoto in 1960.'® Instead of postulating a Boltzmann equation, he

starts from linear response theory, as developed by the Japanese school of

Kubol7 and Mori?8, The rate constant is expressed in terms of a time corre=
lation function for the progress variable &:

_, At B "
KT) =Q[B<n> <ng> 17" [ e [dN<E EG+iEN>, 2.4)
0

where < >0 refers to the equilibrium values, and () is the volume.

To define microscopically the species’ densities, Yamamoto used
a projection operator which singles out the scattering channel containing the
reaction products. By substituting this into the correlation function (2.4), he
obtains a linear version of Eq. (2.1), where the rate constant is expressed as
in Eq. (2.2).

There are two criticisms to be made at Yamamoto's approach:
Firstly the introduction of a channel projector, which is a two-body operator,
enters in conflict with linear response theory. This unduly incorporates the
low—density limit in the definition of the progress variable itself. Secondly
linear response theory is too restrictive since linearisation of the rate e-
quations does not yield a realistic picture of chemical reactions as emphasized
above.

Amongst the kinetic processes, chemical relaxation is distinctive
in the sense that the linearized equation suffices. The method of relaxation
was introduced by Eigen'? to measure fast reaction rates (with relaxation
times of ~107% sec). The experimental device consists in perturbing chemical
equilibrium and then allowing the system to relax into a (new) state of equi-
librium. Once the relaxation time is measured, we can compute the rate constants
with the aid of the equilibrium constant. As just mentioned, for this case the
linear response method is fully justified.

The corresponding theoretical analysis has been worked out by
Berrondo??, by computing the relaxation time from the density-density spectral
function. The density operator refers there to the progress variable, and this
is indeed a one-body operator in contrast to Yamamoto's. The low density
limit is introduced explicitly as an approximation, by considering only two
body collisions. The resulting transport equation corresponds to a linear
Boltzmann equation including reaction. The inverse relaxation time is given
as:



The many-body approach... 357

2
k=2775é|<0~|1’|§>| [<nytng> falp *
+ <ng +mp> fo fp) HE,~Ep) (2.5)

summed over the initial and final reactive channels a and £, and where the
delta function assures energy conservation. From it, the rate constant is
obtained in terms of the reactive 7 -matrix as:

k(T) = zfrsé|<m|fr]§>|2 falg ME,-Ep). (2.6)

In this way we have achieved a description of chemical kinetics
as a transport process. Cross-effects with other transport phenomena are
expected to arise. In order to include them, we set aside the strictly micro-
scopic viewpoint and start instead from the hydrodynamical equations for the
chemical species. The link with linear response theory was given by Kadanoff
and Martin?', exploiting only general properties of the correlation functions,
such as dispersion relations and sum rules.

A full account of this approach for the case of chemical reactions
is found in Ref. 22. The behaviour of the various correlation functions in
a binary reactive system is studied. All the hydrodynamical modes are taken
into account, but the validity of the linearized hydrodynamical equations
is assumed.

We have described above several attempts to reduce the original
many-body problem into a few-body problem, albeit valid only for bimolecular
reactions in the low density limit. A remarkable feature here is that two-body
properties appear to be sufficient to describe the phenomena. In this sense,
we can assert that additivity of intermolecular forces may be assumed for
bimolecular chemical reactions. Thus we are justified in studying in detail
the bare molecular interactions.

3. THE CROSS SECTIONS

Once the statistical problem has been presented, we shall review
some aspects of dynamical interactions between two reacting molecules. The
obtention of the reactive cross section is here the ultimate goal, thus serving

as a bridge towards the many-body description through its use in the transport
equation.
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The two=body collisions related to these cross section are indeed
reversible, in the sense that the transition probabilities w from initial to final
states and back, are related through:

w(i—f) = w(f~1), (3.1)

where l?) is the initial state in the time-reversed system, and corresponds
to the final state 1[> in the original system. Provided there is no degeneracy,
|f-> coincides with |f>

It is clear that cross sections must be computed quantum=mechani-
cally. So, in principle, we have to solve the time-dependent Schrodinger
equation to determine whether the collision is reactive or not. In order to
describe the collisions between molecules however, it is convenient to intro-
duce an “intermolecular potential”. This is defined as the average effect
between the composite particles, stemming from the complex interplay of
Coulomb forces acting among nuclei and electrons.

Towards this end, we first separate the nuclear and electronic
motions??, by expanding the exact stationary wave function ¥ (r, R) in terms
of a basis ®_ (r l R) with respect to the electronic coordinates r, and de-

pending parametrlcally on the nuclear coordinates R:
W, R) =5 X, (R) @, ([R). (3.2)

The coefficients Xpm(R) turn out to be the nuclear wave functions, satisfying

a set of coupled equations:

[E TR -V, (R)] X, (R) :n}#;m o ¢ (3.3)

where V_(R) is the intermolecular potential, E and Tp are the total and
nuclear kmeuc energies, and C_  represent the coupling terms, arising from
the momentum transition values.

In the stationary case, as for molecular vibrations and rotations,
the adiabatic approximation is usually quite adequate. This approximation
consists in neglecting the coupling terms C_ 23 The functions V_ (R)
hence act as potential energy surfaces over which the nuclei move. It has
been a common practice to apply this restrictive treatment also to the case
of reactive collisions between molecules. Furthermore, a semiclassical
approximation for the nuclear rearrangements during the reactions is ussually
assumed. In fact, classical equations for the nuclei’s trajectories are
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derived and solved '*.

Within these approximations, the reaction is pictured as the motion
of a representative mass point on the potential hypersurface ™. This surface
presents a number of minima, corresponding to stable and metastable states.
The two essential minima correspond to the reactants’ and products’ stages
of the reaction. The optimal energy trajectory connecting these two minima
defines the so-called reaction coordinate !'. The representative mass point
not only vibrates as for the case of stable molecules, but also undergoes a
translation along this reaction coordinate. In fact, there is ofteri an intercon-
version of relative kinetic energy to intramolecular excitations, and vice

versa’*™?3. This is depicted in Fig. 1.

Rab

ab + ¢

— il

Rbc

Fig. 1. Tra]ector):r of the mass point on the potential surface as it traverses th
saddle point separating the reacta nts' and roducts’ valleys, The tsra -
lational energy is converted into vibrationalpcnergy in the p]:ot;lucts vallns-
due to the encrgy-momentum conservation law. Notice the dis lacementeyf
the saddle point towards the reactants’ valley. In the reverse l:r’eacticm, t:e

most C“lCHICI tla]e{'tﬂly starts Wldl an EXCltEd Vlblatlo!l 'Oll W B the Same
owin
tlalectmy n (he OPPOSIIE sense.
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Once the reactive trajectory is determined, the differential cross
section is obtained from the classical expression in terms of the impact pa-
rameter. A practical way to integrate these equations is by means of the
well-known Monte Carlo Technique¥ ™.

This is very far indeed from solving the time-dependent quantum
equations. Instead one solves the stationary Schrodinger equation only for
the electronic motion, while for the nuclei, classical equations are used.
Besides it is difficult to believe that the reaction proceeds adiabatically in
all instances. Energy transfer from nuclear to electronic states is expected
to play a role, except in the low velocity limit.

An evident breakdown of the adiabatic approximation appears when
two potential energy surfaces lie close to each other. The transition proba-
bility from one surface to the other is enhanced near the avoided crossing
point (see Fig. 2). It is for this reason that the diabatic picture was de-
veloped?®. In this representation, we select a different set of basis functions
(D;, (r|R) in Eq. (3.2). This new set is chosen’’ in such a way that it diago-

nalizes the radial momentum matrix*:

P (RY= [®!(r|R)#/i) Vg ®) (¢|R)dr. (3.4)

m

Contrary to the adiabatic case, the coupling terms C,., in Eq.
(3.3) cannot be neglected. Thus a non-diagonal potential matrix an(R) re-
sults. The non-crossing rule?® does not apply in this case, so the surfaces
are degenerate at a certain point R, as depicted in Fig. 2.

The transition probability from one surface to the other is given by

. 29-30
the well-known Landau-Zener expression :

2
— - A 5
P, =expl-27|V,,(R) | /BvOF) (3.5)
where v is the mass point velocity and AF measures the difference between
the slopes of the adiabatic surfaces, both evaluated at the crossing point
Rn (see Fig. 2). The cross section corresponding to this case is relevant to
several types of reactions such as charge-transfer®!, electronic recombi-

nation®?, and predis:sociarion33 2

*
The diabatic representation is not unique as defined. We further require (Ref. 27)
that, asymptotically, the potential surfaces coincide with the adiabatic ones.
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E(R)

R

Fig. 2. Adiabartic ( ) and diabatic ( -===) potential curves at the crossing point.

Notice that adiabatic curves repel each other because of the non=crossing
rule.

A way to go beyond the classical trajectory description is to invoke
the WKB approximation. The S-matrix may be computed by using action=angle
variables3*™3% or alternatively, via the path integral method3®. An advantage
here is that it is no longer necessary to calculate the complicated potential
energy surfaces for the process. The computations are usually limited however,
by the introduction of oversimplifying models®*.

Instead of producing particular models, we can also calculate the
cross sections by introducing statistical assumptions’’ with respect to the
two-body reactive collisions. This involves the use of microscopic reversi-
bility, Eq. (3-1), and the assumption of the existence of a collision complex,
This in turn implies a two-stage process which consists in the formation of
the complex and its subsequent decay. The transition rate is hence factorized
into the probability of formation times the decay rate®®. Furthermore it is
usually assumed®® that the probability of appearence of the intermediate state is
independent of the corresponding incoming channel.

A more fundamental justification

39 for this statistical rate theory

follows from the introduction of an optical potential*®. As is well known, an

average of the § matrix is made over an energy interval A E:
E+AE

<§,> = -2mi L (AE)™ F A /(E* = A) dE’

(3.6)
E
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where A;‘- is the transition amplitude associated to the resonance A_. This
theory is specially adequate for multichannel collision processes, where a
great number of resonances play a role, so that a statistical average over
them yields a good description*? in terms of < ISﬁ |2 2.

Quite aside from the above-mentioned theories, some experimental
techniques have been developed during the last few years. The most popular
one consists in direct measurements of the cross sections using crossed

XV, XVI

molecular beams Although the most interesting information evidently

comes from reactive collisions, it has proven instructive to analyze also

41

elastic scattering of reactive systems Rather detailed information about

the dependence of the cross section on the energy and the angular distribution
has been achieved through velocity selectors and angle scanning devices*?.
For simple compounds involving alkali and halogen atoms, for
instance, a rather neat image of the molecular rearrangements during reactive
collisions has evolved. This permits a discrimination between complex
formation and direct reactions. For the former case, we fall under the as-
sumptions of the statistical rate theory, while for direct processes, a further

subdivision into two limiting cases known as stripping and rebound reactions
-XVI

’

is made*?. The reader is referred to the excellent available reviews®V
for further information.

In any event, it should be remarked that no matter how refined these
techniques might become, a beam collision is not a chemical reaction as those
the chemist faces in the laboratory. We already pointed out in Section 2 that
essential features such as irreversibility and nonlinearity, stem directly from
the many-body character of the chemical processes.

Before closing this section, we want to forward an enticing possi-
bility, namely the description of reaction kinetics in entirely microscopic
terms. If we are able to determine the intermolecular potential, we can study
the evolution of the N-body reacting system via Liouville’s equation. This
is far from being trivial indeed. In the last section we shall present some
possible pathways to implement this program.

4. UNIMOLECULAR REACTIONS

Hitherto we have described reactive processes in which several
molecular species act as reactants. A different situation arises in the case

of molecular decompositions such as dissociative breakdowns or in

XVII

isomerizations . This case can be represented schematically as:
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A — Products. (4.1)

This looks like a fundamental decay and one would be tempted to describe it
as an isolated (microscopic) process. However, this simple image is contra-
dicted by experiment since an important pressure dependence is observed.
While the high=-pressure behaviour is formally described by (4.1), in the
low-pressure limit unimolecular reactions behave in such a way as if there
were two reactants involved**. In fact, this pressure dependence is the
essential characteristic of unimolecular processes.

This behaviour is usually explained via Hinshelwood-L indemann's

(LH) two-step mechanism*®:
kl :
A+M?A*+M (4.2a)
%
k
A*.-_S"'___ Products. (4.2 b)

The molecule M (whether from species A or not) excites A into an unstable
state A which decomposes subsequently. The inverse process of deexcitiltion
through collisions with M and recombination of the products to form A are
also considered. It is evident that this scheme is more realistic than (4.1)
for the simple reason that A represents in principle a stable molecular state.

Interpreting now Eq. (4.2a) as the excitation of internal states of
molecule A, we have to explain the time lag between the formation of the
exeited state A and irs decomposition, Eq. (4.2). This is achieved in a
phenomenological way considering*® an additional step in the decay of A
Marcus identifies this step as the formation and decay of an activated complex
Al following Eyring's ideas' V. This is the so-called RRKM theory* 47
which describes the above-mentioned delay as the time spent in interconversions
among the internal modes, until the energy is concentrated in a particular
dissociative vibration of the activated complex A'. The overall reaction
constant is thence computed by considering that the reaction constants in
the L= mechanism depend explicitly on the energies and then intergrating
over them.

An alternative to the RRKM formulation, still within the phenomeno-
logical framework, is given by Slater's theory®'* . Here one starts from the
detailed analysis of the molecular vibrations and their normal modes. Thence
an internal coordinate is chosen as a superposition of harmonic modes. The
rate constant is computed in the high=-pressure limit by postulating an ad hoc
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critical value to provide for disruptive vibrations. Next, an average over
these vibration weighted by a Boltzmann distribution is performed. The ob-
tained value is henceforth extended to all pressures.

A stochastic description related to Slater s, was developed by Montroll

and Shuler*®

to account for dissociation. As in all stochastic models, these
is no attempt here to explain the explicit mechanisms of interaction. This
model consists merely in the description of a single vibrational mode approxi-
mated by a truncated harmonic oscillator. Dissociation is viewed as the
transition from the last bound oscillator state into the next one. From the

knowledge of this passage time f,the reaction rate is computed as:

k=(N"1)1 (4.3)
%
where N is the heat bath molecule concentration. When the explicit form of
the equilibrium value of ¢ is substituted, an Arthenius=type of expression is
recovered.

Notice should be made of the difference between the present theory
and other stochastic approaches*? such as those of Refs. XII and XIII
mentioned in the Introduction. In those, the stochastic assumption referred
to the chemical changes of the species, rather than to individual dissociations.
The use of a master equation was also distinctive of these theories. In spite
of these differences, a limitation, common to both approaches for the dissoci-
ative case’?, is the fact that they are Markoffian. We shall come back to this
point later.

In order to introduce the detailed kinetics of the reaction it is neces-
sary to go back to the L-H mechanism. In Levine's theory®! (4.2 b) is in-
terpreted as if it were valid for each molecule. Consequently unimolecular
breakdown is described as the decay of a state prepared at a certain initial
time and whose evolution is given by Schrédinger’s equation. The probability
of finding the molecule in the initial unstable state s at time ¢ is shown to be
given as an exponential decay law:

-3
oS

Pg(t) = exp(-2Tg t/h) (

. . - . = -l
with lifetime proportional 5 [S ’
The excitation stage (4.2 a), on the other hand, is not considered
indi\-‘icluall},'5 !. Levine elaborates on the discussion of rate processes in an
ensemble by introducing a reduced density operator fyy for the pair (A M) in

the binary collision approximation. This is interpreted to imply that £am
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obevs®! a two-body Liouville equation. From it. a reduced one-body density

is defined as o, = Try Pqpy which in turn obeys the following equation:
i#(dp, /dt) = [Hy, pg) + Try LU, 04n] (4.5)

where U represents the interaction between A and M. Eq. (4.5) is the fundamental
equation in Levine's theory of unimolecular reac;ions.

From the tenet established in this review, we must distinguish the
above approach from a genuine N-body treatment. The main drawback comes
from the use of a reversible two-body equation which does not contain many-
body effects whatever. Irreversibility is artificially introduced by merely
taking the trace over the variables of a single molecule M.

In this context, we conclude that there is no bona fide N-body
treatment in the unimolecular case. A description similar to the one found in
Section 2 for bimolecular processes is lacking. Indeed, our programme in both
cases should be the reduction of the statistical many-body problem to few-
body dynamics. In the Outlook we shall discuss this viewpoint for dissoci-
ation.

A word should be added here about unimolecular dynamics: instead
of concentrating on cross sections as in the bimolecular case, we should aim
at the information about lifetimes in this case. This difference arises from
the fact that there appears a new time besides the lapse bet:veen two exciting
collisions, namely the decay time of the excited state A . In the event that
these two times are comparable, we are not allowed to study the two steps
in (4.2) as independent of each other. This situation contrasts with the bimo-
lecular case at low densities, where the two time scales involved — the time
between collisions and the duration of a collision — are well separated.
In fact this is the reason for the strong pressure-dependence mentioned
above. When the frequency of collisions augments, the decompositon 1is
regarded as a first order rate process, contradicting our common sense. This
is only a delusion however, since we are introducing an effective rate constant
k., as an averaged contribution from the medium. The net result of the frequent
collisions is the apparent constancy of the concentration of A Many-body
effects become drastic in this case since they modify the rate constant itself.
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5. OUTLOOK

As a general conclusion from this review we can state that the
present understading of chemical reactions is far from satisfactory. We have
particularly emphasized the N-body aspects of a reaction which arc frequently
overlooked or masked in the orthodox theories. Partly from the misconceptions
about chemical processes introduced by the latter, but also from the intrinsical
difficulties of more fundamental approaches, no complete kinetic or statistical
mechanical theory exists. Thus the corresponding phenomenological or
hydrodynamic description of the system both in the linearized version and
the non-linear case, are lacking. It is not surprising then that some macro-
scopic phenomena such as sound propagation or light scattering sull posc
unanswered questions. We shall now discuss a number of promising ncw ideas
and developments regarding some of these matters.

The kinetic approach to chemical reactions has been centred around the
description of the system via a Boltzmann-like equation. The main objection
to this approach is that it limits us to a classical description of a situation
which is intrinsically a quantum mechanical one. Thus the use of an ¢quation
for either a Wigner distribution function or a reduced density matrix is crucial .
Although there exist many attempts of deriving quantum mechanical kinctic
equations for systems composed of particles having internal degrees of
freedom®?7°% | the inclusion of attractive forces allowing for the formation
of bound states has never been successfully accomplished™ . Morcover a
third limitation is implied in this scheme. namcly the restriction to a low-
density limit, which is common to both the theoretical and phenomenological
descriptions, where it is always assumed that the rate is directly proportional
to the species density. Within the Boltzmann like approach it is difficult to
see how these limitations will be overcome.

As far as the problem of the molecules distinguishability 1s
concerned, let us recall that the basic statistics involved are those of bosons
and fermions. This refers only to the electrons and nuclei composing the
molecules, while the latter do not obey either statistics due to electron
exchange among different species. A method for dealing simultancously with
pure and mixed statistics has been developed by Girardeau®”. This opens
the possibility for implementing it for reactive systems. '

From the statistical mechanical point of view two directions may
be taken to deal with the problem. One is the possibility of deriving kinetic
cquations from the BBGKY hierarchy for reactive systems, provided we allow
for different intermolecular potentials for the various interacting species.

However one may include the contribution of three body collisions which
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could lead to a description for termolecular chemical reactions or bimolecular
rcactions at higher densities. Besides, the density dependence of the macro-
scopic quantities in reactive systems is still to be clarified, but it is unlikely
that it will be described by virial=type expansions. Also the presence of a
third partner during a reactive collision might play a fundamental role as an
encrgy quencher in many instances, stressing the importance of three body
collisions. In this connection an additional question arises: whether this
introduces non=additive corrections whose very existence may alter the whole
picture in a qualitative fashion.

The second possiblity is to circumvent the use of kinetic equations
for the distribution function. This is achieved through the local equilibrium
hypothesis and postulating a functional form for the initial density matrix in
terms of thermodynamical quantities locally dependent on position and time.
To describe a chemical reaction in this picture®! the species densities have
to be included in the initial density matrix. Its time evolution is governed by
Liouville's equation and the relevant physical information about the system
can be extracted through the corresponding averages. In the linear regime
this has been accomplished by linear response thec;ry as described in Section 2.
The generalization to non-linear regimes is now in progressﬁz.

The study of the hydrodynamical stage, both in the low=density or
Boltzmann-like context and in the distribution function method, has not been
thoroughly undertaken. Thus the phenomenological equations for the various
local macroscopic variables have never been derived. In the linear approxi-
mations, as remarked in Section 2, the phenomenological rate equation for
bimolecular reactions may be obtained. However the full rate equations which
are highly non-linear, including those for unimolecular reactions, are still
awaiting a microscopic explantion. Furthermore the cross effects which are
characteristic of chemically reactive systems such as the viscorcactive
coefficient®® have never been studied at all. This coefficient is deeply as-
sociated with the so~called effective bulk viscosity. This term is meant to
account for those dissipative mechanisms responsible for the sound attenuation
in chemically reactive systems associated with the relaxation of various
internal degrees of freedom. Such a picture has been recently questioned®*
but it is impossible to foresee what scheme holds for such phenomenon with-
out resorting to microscopic equations. Indeed if one could calculate the
viscoreactive coefficient from first principles most of the difficulties would
be surpassed®s, Finally, it is important to remark that if the derivation of
the hydrodynamic equations proposed above is achieved including three body
collisions, we would be led to new macroscopic equations beyond the presently
known phenomenological descriptions.
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Unimolecular reactions deserve a separate treatment due to their
very singular nature. As mentioned in Section 4, no satisfactory N -body
treatment has been developed for their understanding. The fact that the
life=time of the excited states must be of the order of a mean free time neces-
sarily introduces an intrinsic memory effect which at present is not clear how
to take into account in a collisional description.

For this problem, at least in the case of equilibrium, there exists
a very attractive fromulation by Blatt which stems from the study of super-
conducting systems®®. Here the molecules are simply viewed as correlated
clusters which are stable for a sufficiently long period of time as compared
with the collision time. Dissociation and recombination correspond to the
breakdown and formation of these persistent clusters. Thus Blatt's theory 1s
not really dynamical but purely descriptive and does not discriminate among
the different types of interactions.

One way to generalize this description to obtain reaction rates is
invoking once more the local equilibrium hypothesis. Indeed, it would seem
most appropriate®” to take into account these linked clusters by expanding
the density expectation values in powers of the _activity®®. Keeping terms
only up to second order in this expansion should be enough for a two com-
ponent recombination since this corresponds to chemical saturation. However,
care must be excercised in separating dynamical from statistical correlations.
These ones should be obviously kept to all orders in the expansion as they
determine the correct equation of state.

We would like to add two concluding remarks to this review. Firstly,
in spite of the tremendous amount of work that has been done in the past in
order to obtain a microscopic description of chemical rate equations, their
main features from the many-body point of view still remain far from being
understood. Efforts have been focused via two-body techniques, which is
only the first approximation to their dynamical aspect. Secondly, chemical
rate equations are nonlinear and our ultimate goal should be to derive them
from a microscopic approach. This cannot be accomplished if the many-body
effects are not taken into account. Nonlinear problems in Science are now in
the frontiers of research. Chemical kinetics should consequently regain its
lure as a field of central interest for the physicist.
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RESUMEN

Este articulo constituye una revision de la teoria de las reacciones
quimicas donde se subraya el caracter de N-cuerpos del proceso. La situa-
cion actual de la descripcion de la cinética quimica como un fenémeno de trans-
porte se analiza criticamente. Este punto de vista deberia justificar la
irreversibilidad y la no-linearidad inherente en el sistema. Revisamos bre-
vemente la reduccion de la dindmica de muchos cuerpos a interacciones fun-
damentales de dos cuerpos al estudiar las secciones de colisién reactiva.
Analizamos las teorias existentes para reacciones unimoleculares para enfa-
tizar como es que sus vicisitudes han evitado un desarrollo paralelo de este
punto de vista. Se hacen varias sugerencias sobre como introducirse a una
descripcion mas fundamental del problema siguiendo varios caminos. También

se indican extensiones y correcciones a las ecuaciones macroscopicas cono-
cidas.





