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ABSTRACT: The concept of a non-invariance group is presented by con-
structing a Lie algebra representation of the non=compact
group O(f, 2) on the f-dimensional spherical harmonics. Ap-
plications of the analysis are made on the bound state Kepler
problem in f-1 dimensions, and by constructing the angular
portion of the dipole operator with the generators of the O(f, 2)
algebra, Uses of non-invariance groups in chemistry are dis-

cussed.

INTRODUCTION

The use of group theory in quantum chemistry has been limited for
the most part to invariance groups, in which all of the group elements commute
with the hamiltonian of the system of interest. Thus, most chemists are
familiar with the uses of the three-dimensional rotation group for quantizing
orbital angular momentum, SU(2) for describing spin properties, and of course,
the finite point groups which characterize most molecular systems. Perhaps
less familiar is the concept of a dynamical, non-invariance group for a
hamiltonian H . Such a group contains =lements which do not commute with
H, and thus necessarily connect states of different energies. Irreducible
representations of a non-invariance group may contain all or part of the
spectrum of H, and are useful for classification of the states. (For an early
discussion of examples of dynamical groups that are applicable to molecular
spectra see ref.(1)). In addition, quantities of physical interest such as
the dipole operator may possibly be represented as a simple function of the
group elements, or as a tensor operator, leading to a simplification in the
evaluation of matrix elements and the appearance of selection rules. We
have included several references'"® in which the uses of dynamical groups
have been discussed with regard to problems of chemical interest, although
this list is by no means complete. Reference (4) Presents a very elegant
and fundamental treatment of the higher groups in quantum as well as classical
mechanics.

The concept of a non-invariance group in atomic physics is well
understood for simple systems. For instance, it was shown by Fock? that
the four-dimensional rotation group was the invariance group of the bound
state hydrogen atom which explains the degeneracy of states having the
same principal quantum number. Yet more recently it has been shown'?: 1!
that a non-invariance group O(4,2) contains operators which can generate the
entire bound state spectrum, and may be used to construct a group theoretical
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representation of the dipole operator as well.

In the present paper we shall use the spherical harmonics in f-di-
mensions to show that there is a representation of a group locally isomorphic
to O(f, 2) which is a non-invariance group for the usual O(f) rotation group.
We confine our analysis not to the full group representation, but rather to
the more useful Lie algebra representation. It has been known for some
time 2"V that the representation of Lie algebras on spaces of orthogonal
functions is related to the ladder operators in the factorization method of
Infeld and Hull’®. As such, the present analysis could be regarded as an
application of this relationship. It is hoped that our simple application may
serve as a useful introduction to non-invariance groups, and in the case of
0(f, 2) to the representation of non-compact groups of infinite dimensional
vector spaces.

In section I we review briefly the properties of the spherical harmonics,
which are bases for irreducible representations of the angular momentum
group O(f). In section Il we use ladder operators, known from the factori-
zation method, to show that the spherical harmonics in an f-dimensional
space are a basis for a representation of a Lie algebra locally isomorphic
to O(f,2), if f> 3. This algebra will be denoted as the “angular” O(f, 2).
The two dimensional space is considered separately in section III, and it is
shown to be related to the 0(2,1) algebra. In section IV we review the
relationship of the (f t 1) dimensional spherical harmonics to the non-rela-
tivistic Kepler problem in f dimensions, and show that the bound state eigen-
functions are a basis for a representation of O(f+1,2), a result which we
have noted for f = 3. In section V the angular portion of the f-dimensional
dipole operator is constructed with the generators of the “angular” O(f, 2)
generators.

Our interest in the angular O(f, 2) stems from our investigations of the
bound state hydrogen atom radial functions, which were shown to be a basis
for a Lie algebra representation isomorphic .to 0(3,2). The results of the
present work indicate that the Lie algebra description of the full wave functions
is contained in the product representation 0(3'2)Radial ® 0(3, Z)Angular of
radial and angular wavefunctions.

I. THE SPHERICAL HARMONICS IN f DIMENSIONS

The properties of angular momentum on / dimensions are too familiar
to warrant a derailed discussion?®, but for notational convenience we shall
revicw the more important aspects briefly. The Lie algebra of the f-dimensional
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rotation group is generated by the f(/-1)/2 operators

sd lasnyitse 949
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-1 -
func tions A[, 1 to be the solutions of the equatmn
t-1
(L% -1, +1- 2)}A, =0, (4)
i |
The f-dimensional spherical harmonics. denoted by 1"1' / or simply
| s LT
(f) : 2

Ylb, may then be defined in terms of the (f-1) ~dimensional spherical
/

harmonics by the formula

TANNs (f =1)
Yy ‘Alfzf_l”!f_l : (5)

The solutions of (4) for { > 2 are

(f)
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with
%
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The indices l/ and tf—l in (4) have been replaced by k and / for convenience.
1

Cy; is an arbitrary phase factor. In this paper we shall use Cy; :(-)/2(“”[)

so that for f = 3 our results are consistent with the usual Condon-Shortley

phase convention®. The normalization constant Nk[f is chosen so that

> gt N =2
fOAk, Apry(sin@,) dB =8 4o . (8)

The spherical harmonics in two dimensions will be discussed in section III.
For a fixed value of f the different Ay, are related to each other by
means of the following ladder operators:

3 d =

Gy =+ £ -cob)(G J_rfz_%, (9a)
B S2vapn d ((NELT

N, = [cosQI(NiiT)i51n9f 767][_7”_] . (9b)

with the operators G and N defined by

(f)

G-1-123ya,, =0, (10a)
2
2 ()
i O Y e T g B (10b)
The operators .1 (9) satisfy

(/) AP
Ay =losp@tet D) ALy, (11a)



6 Herrick and Sinanoglu

Y
(f) 2
NoApy = [mzb)ntotl]) A, ., (11b)
with
=i+1=3 p=g-4,
q > q
(11c)
n=k+[=2 pon-y4
2
Note that
)
s Ay =0, (12)
and
)
W g (13)

but that N, can increase the value of £ without bound. In addirtion, functions
Akfi with f < 0 may be generated with repeated use of G.

In order to establish the connecrion of the ladder operators with a
Lie algebra we cbtain from (10) and (11) the following commutation relations
on the A(EI) :

l6,6,] =16, (14a)

[6,,6_] =26 (14b)
and

[N.N,] =2N, (152}

[N,,N_]==-2N. (15b)
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The relations in (14) and (15) are isomorphic to those of the Lie algebras
of 0(3) and O(2,1) respectively.

Additional ladder operators may be obtained from the commutation
relations of the generators {G,Gt N N__t}, and it is easily seen (cf. the
results of section Il for f = 3) that the A, are a basis for a representation
of a Lie algebra locally isomorphic to 0(3,2). The product space of functions

(f) )y (f=1) (3)
7 = A is s (16)
kfif k‘f—llf-l k3

is then a basis for a representation of

(f)
S/ = 0(3,2)20(3,2)® ... (f=2 times}), (17)

and the generators of O(f) on the f-dimensional s?h)erical harmonics are ac-
cordingly elements of the enveloping algebra of § / , restricted to the Y;

subspace of ZV".
We turn now from these general considerations of the fdimensional

spherical harmonics to the construction of the generators of the “angular”
o(f, 2).

II. THE ANGULAR 0({, 2)

(k) (f
We define the 2f operators N, acting on the ¥, by

L

(k) x

. k ; : /] +

Ny = [ Bla,siteep) i JINZ] (20)

T *N

with &= 1.2 o ind

Gy = i J'_)- ‘ (21)
) (&) . _ (f
The A arc s generalhizarion of the N, in (9b), with N, = N, in hyperspherical

coordinotes,
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(k)
The operators N and N, together with the ij of (1) are a sert of

(f +1)(f + 2)/2 operators with the following commutation relations:

[L}.k,Lkm} =il (22a)
(k) ()
(L. N, ] = —iNg (22b)
[N,ij] = ) (22¢)
(k) (k)
[N.N, ] = £N, (22d)
(7) (k)
[N, ,N, J=0 (22e)
(7) (k) _
[Ny N ] =-2L, s 2N, . (22f)
If we define the generators Mab = 'Mba such that
Lig=My, Gik=1,2...,/) (23a)
N = M g (23b)
(k) ‘
Ny =My n 2iM 0y (23c)

then the corresponding commutation relations ‘are

(Mo My = 308 M 81 Mar = 81 M = B M) (24a)
with

B = W, ifa=b

B, = %1, Waxj] ? (24b)

==1, ifa</.

Laa
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Eq. (24) is sufficient to establish that the M generate a Lie algebra locally
isomorphic to the O(f,2) algebra. Note that our development has implicity
included an O(f,1) description of the spherical hamonics since Of, 2)Do(f,1).
If instead of the spherical harmonics we consider functions of the
type R{r)Yl;f), then the full significance of the term “angular” O(f,2) beecomes

apparent since

N N
Mok [R(rw,: ] = R(r){M’.leff

1s

lI. THE CASE f =2

The “sphericgl harmonics” in the two-dimensional space are the
functions A, = (27)7% ™% defined on the interval 0< @ €27, with

m=0,+1,%2.... Theyare orthonomal,
27
-
_{; A”‘Am.rd¢ = Sﬂlm' y (25)
and are the cigenfunctions of the angular momentum operator L , = - £ -

We define the additional operators

o

J =Lyth,  (-%<bg

) (26a)
Jo=e®™P(tYtis), ser (26b)
which have commutation relarions isomorphic to those of 0(2,1):
..l =+, (27a)

[1,.0.1==25. (27b)

The Casimir invariant Q = f(J - 1) =JiJ. has the value w(w + 1), with
w==-4%=~is . Inspection of the generators show thart the representations

are unitary. The irreducible representations?! obtained are the principal
seeies ,S'P{Q,b) except when b = 4 and s = 0. In this case the represen-
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+
tation splits into a positive discrete series D (- %) withm >0, and a nega-
tive discrete series §7(- %) withm< - 1.

IV. THE NONRELATIVISTIC KEPLER PROBLEM IN f-DIMENSIONS

Consider the Hamiltonian
H=p2-2 (28)
r
where

/ /
=3, r=(% 5) . (29)

The bound state eigenfunctions of H in momentum space are related to the

22.23 and in the Schrﬂdinger represen-

(f+1)-dimensional spherical harmonics
tation the generators of the O(f + 1) algebra which commute with H are the

orbital angular momentum operators Lfk and the Runge-Lenz operators

x O IT / - %
Ay = |E2-Cip + 3 Lyp | [-20] (30)
T 2 j=1
with ek =1,2,..., f. The O(f+1) Casimir invariant (cf. eq. (2)) is given by
2 2 1 *
L+ A = (_. 2H)’ _(L;) (313)
=k(kt+f-1), (31b)

and thus the energy eigenvalues are given by

E.o=—-+I-1y7 k=0,1,... . (32)
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The results of section II indicate that a more complete group de-
scription is given by O(f + 1, 2). In order to give a representation of the
generators, we note from (22) that it is sufficient to represent the operators
N4 on the space of radial functions Ry, instead of the functions Ay, ~ asin
(9). The corresponding representation of N, is

_ d r -1 N
Nt"DN/(Nil)(i r;l-r“_ N_+N iT)(N_il (33)

The dilatation operator is D, Daf(r) = f(ar). The matrix elements are

NR,; =nRy,; (34a)

Y

NyRy = [0t D] "Ry, (34b)

with n = & +f;_1and b =1 +¥_. The normalization is such that

{Rk,Rk,,rf",frzakk, ; (35)

As noted in the introduction, the use of 0(4, 2) as a dynamical group
for the Kepler problem in three dimensions is well documented. The point
of interest in the present paper is that this result may be obtainel from our
general considerations of the spherical harmoilic)s in f dimensions.

The similarity of the Rkl and the Akfl ! Sl.lgl ests that the Rkl are a
basis for a representation of 0O(3, 2) just as thé Akl were seen to be in
section I. We have investigated this “radial” O(3, 2) algebra for the case
f =3 in a previous study® of the hydrogenic radial functions. The interesting
feature of it 1s that the irreducible representations of the “radial” O(3) sub-
algebra are characterized by half-integer eigenvalues, in contrast to the

present work in which we are concerned with orbital angular momentum only.
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V. THE DIPOLE OPERATOR IN 0(/,2)

The coordinates x,(j = 1,2,..., f) are the components of a vector
operator in the f-dimensional space, and the angular matrix elements of the
x; are simplified with the use of the Wigner-Eckart theorem for O(f). The
Ny
rangement gives

in (20) are also components of vector operators, and a simple rear-

(k) - %
+N_ [NIN-1)] } . (36)

e

(k) -
5= 5 AN v )

Thus the familiar angular matrix elements of the dipole operator may be ob-
tained directly from the “angular” O(f, 2) algebra. In addition, since

f oy @
2 UM =1, (37)
k=1 T

substitution of (36) into (37) gives an interesting representation of the

‘ P : k
identity operator in terms of the operators Ng ) and N.

VI. DISCUSSION

The application of the concept of a non-invariance group to problems
of chemical interest represents a challenge to the theoretical chemist sinee
precise techmiques of useful application have been virtually unexplored.
While the spherical harmonics in f-dimension are of interest in their own
right, we have used them t0 indicate the useTulness of the non-invariance
group for an exactly solubie problem. Such investigations are useful since
they can be instructive when determining the exact or approximate invariance
groups which are relevant to such diverse areas as rotation-vibration spectra,
Rydberg series and configurational mixing in atoms and molecules, and the
interaction of discrete states with continuum states.

One interesting area of possible application is the use of multidi-
mensional rotation groups in the description of many-body collisions?® . In
particular we note the work of Macek® who demonstrated the approximate
separability of the ‘Hclium atom wavefunctions in the hyperspherical coordi-

4
nates R = (rf '#'ri)2 , @ =arctan (r, /r:z),‘I 9, ’92’¢1’¢2' Thus, investigation
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of the relevant angular properties of the wavefunctions should lead to an ap-
proximate group theoretical classification of atomic states.

The difficulty of finding useful methods of application should not be
underestimated, however. In fact the determination of a useful non-invariance
group for a simple molecular system such as H; is still an unsolved problem.
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RESUMEN

Se presenta el concepto de un grupo no-invariante, construyendo una
representacion del algebra de Lie del grupo no-compacto O(f,2) en los armé-
nicos esféricos de f-dimensiones. Se hacen aplicaciones de este andlisis
al problema de Kepler de estados ligados en f-1 dimensiones, construyendo
la parte angular del operador dipolar con los generadores del algebra O(f, 2).

Se discuten los usos en quimica de grupos no-invariantes.





