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AZIMUTHAL QUANTIZATION OF ANGULAR MOMENTUM"
Jean-Marc Lévy-Leblond®*
Instituto de Fisica, Universidad Nacional de México

(Recibido: marzo 7, 1973)

ABSTRACT: Angular momentum in quantum mechanics is usually studied by
diagonalizing its zenithal projection [ . An alternate scheme
is developed here by defining an operator T corresponding to
the orientation of the azimuthal plane around the polar axis.
In the (2j + 1)-dimensional eigenspaces of Jz , the eigenvalues
of the azimuthal direction are regularly distributed with a
spacing 27/(2j+1). The corresponding eigenstates of s
when expanded upon those of -’0 , show a great analogy with

the coherent states of the quantum hammonic oscillator.

[. INTRODUCTION

The angular momentum operator in quantum mechanics has noncom-
muting components. Its properties are usually investigated by diagonal-
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izing one component J, » along with the squared norm J?. The wellknown
result that J? has eigenvalues j(j +1) (2] integer) and ] eigenvalues m
ranging by integers from -j to +;, is referred to as a spaual quantization”
of the angular momentum; this therminology, sometimes given a(dangerously
misleading) pictorial illustration, corresponds to the idea of considering a
polar parametrization of the angular momentum vector:

I

]0 “I cos e”

(1)

J; = %] sin® exp(+id)”,

where @ and ® would be the azimuthal and zenithal angle respectively. One
then speaks of the “quantization of the zenithal angle”, cos @ being supposed
to take on the discrete values m,/\]j (j +1). Of course, this is a very loose
way of speaking, metaphorical at best, since neither ®, nor @ above, have
been given a precise mathematical definition as operators -which in particu-
lar would certainly not commute. This is why (1) has been written with
quotation marks. Now these considerations may suggest an alternative scheme
to the ordinary one: instead of emphasizing the zenital properties of J |, thar
is, diagonalizing J or “cos @”, why not consider its azimuthal properties,
that is, the “®” of (1)? "I will show that such a program is feasible by giving
first a precise meaning to “exp(i ®)” and then diagonalizing the corresponding
operator. The rather elegant and natural results which emerge may find
some useful applications.

II. DEFINITION AND PROPERTIES OF THE AZIMUTHAL OPERATOR

If an operator such as & in (1) exists as a bona fide hermitian oper-
ator, the corresponding exponential Y = exp(i ®) is a unitary operator. From
now on, we will focus on this unitary operator Y and refer to it as the “azi-
muthal operator”. Insofar as aoe deals essentially with finite-dimensional
vector spaces (eagenspaces of J* for instance), there is complete equivalence
between the study of ¥ = exp (i (])) and § = -4 Log Y (defined by the con-

W

verging series -i % _ (Y- “ )
n=0n
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It is the, here appropriately called, “polar decomposition” of any
operator as a product of a hermitian operator by a unitary one, which gives
the key to the polar decomposition in the geometrical sense, needed here.
We thus define

Jo =lr T, (2a)

with Y unitary and J,. hermitian, where the notation is supposed to empha-
size the meaning of [ as a “transverse” part of J . Taking the adjoint of
this equation, we obrtain

=YY% (2b)

By multiplying (2a) and (2b), we see that the transverse operator Jy must
fulfill the condition

EF=LL - (3)

Usu-lg standard properties of the_ operators -’t and I (derived directly from
their commutation relations), this may be written

E=1-+],. (4)

. 2 2 2 : £
Since ]T F ]0 #J°, we see how dangerous such expressions as ]T =] sin@”
and dy = “] cos B”, based on classical analogy, can be.

To emphasize this point, clearly linked to the non-commutativity of
Y and J,., we may define another transverse component of J according to

=TT . (5)

Corresponding to (2a,b), we now have

]+ Y]L ir(i'rl)

L =nT", (6b)
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so that

I =Tt 7)
or

i SO i (8)

Iri the usual basis {l]m >} where both .fz and f, o= diagonalized, 1'12 and

Jt aiso are, with matrix elements [j(; + 1) =m" + ] and [j(G+ 1)=m® =m]
respectively. We will take the square roots with a conventional choice of
phases such that the matrix elements of J- and J; now read:

<jm|pplin> =8 NG+mG-m+ 1), (9)

and

<jm|Jpljm> =8, NG-m)G+m+ D). (10)

b
Observe that the two transverse operators have the same spectrum (just change

m into ~m), which is necessary after (5), but they are nof equal, and do not
commute with Y.

Another interesting property comes from considering the commutation
relation of | and Y. Starting from the standard commutation rule

[J,Gyft]:t.’t y (11)

using cxpressions (5) and (6), and remembering that, after (4) and (8) (or (9)
and (10)),

[y dpd = 11,01 =0, (12)
we obtain the following relationships:
ir (L], Y1=-1) =0, (13a)

(lJ,,xl-1vyj .= 0. (13b)
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However, it is not true that

[J,» X1 =Y (false) (14)

since this would lead (o

e M B (Halse) (15)

implying that the spectra of J, and of I'-ljn T, which must be the same, are
shifted by one unit; this is impossible within a finite space (the eigenspaces
of J° ). Yet, (14) would have been a desirable property, corresponding to a
canonical commutation rule between J, (the gencrator of rotation around the
axis) and @ (the operator of angular localization)

[, @] = -ir. (false) (16)

The difficulty here is similar to the one of defining a “canonical” phase
operator for the harmonic oscillator quantum problem, and is due to the
spectrum boundedness (one-sided for the oscillator, two-sided here) of the
relevant operators.
In fact /. and J] are Stngular operators, without inverse, as (9) and

(10) show clearly since they both have one nul! eigenvalue (m = - for -’T .
m = *.j for [, ), so that one cannot go from (13) to (14). 1t is clear however
that [ = [J , Y] - Y, being annihilated from the left by J and from the
right by J, , is of rank one for a given j, with all matrix elements zero in the
{|jm >} basis except for the <j=i|I"|j+j>one. In a sense, then, (14)
is “almost true”.

III. MATRIX ELEMENTS AND DIAGONALIZATION OF THE AZIMUTHAL
OPERATOR

i . : 2 .
We operate within a given eigenspace of J°, characterized by the
total angular momentum number J - In the srandard basis of the elgenvecors
- - g2 . . *
im> of J° and J,» we know the mauix clements

L]
For non-hermitian operators, the Dirac notation is ambiguous. The convention, which
I prefer to make explicit, is thar <y _‘A |t > is the scalar product of |u> with A [r>
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<jm|J,|jin> =8 G-mG+ntD) , (17a)

m1n+1

<jm|L|jn>=8_ NG . -mtD . (17b)

,m-l

Taking now the matrix element of both sides of the defining re lation (2a)
and using the expressions (9) and (17a), we obtain =t once

JG +tm)(j-m+1) [<jm|‘fljn>-6m,”+]}:0‘ (18)
so that <jm | il |jn > = 3m a4 €xcept form = —j. Further, the same calcu-
lation starting from (6a) gives

\j(f'n)(f+’l+1) [<jmirifn>-8m,n+l]:0 . (19)
Finally

<jm|Y|im>=8_ .., form ¥ -j and n + +j . (20)

The matrix representing Y in the basis {I;m >} thus has only one unknown
element. The condition that the matrix be unitary requires it to be of modulus
unity. We finally have

4 1, D = oD 0, 0. - -0 )
] 00 1'. 0 i 1.0' ¥
try=f- -7 L) O{T"}=9.f"'.

6w e oy

Leicpf), 1 Lé 0. . .10

21
] (21)

0
where the notation {Y} emphasizes that this is the matrix representative
of T in the basis where ]0 is diagonal. The parameter ¢ is completely arbi-
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trary as is easily seen from the fact that it enters through the dyadic
I7'= 13<7% j{'which is annihilated from the left by I in (2a) (see (9) with
m = =j}and from the right by J; in (6a) (see (10) with m = + ).

In particular we may verify easily that

= s 2 -0 =~ 127410 7% [y 83 - X (22)

as.required by (13) and our subsequent discussion.

It.is'almost trivial to compute the characteristic polvitomial of Y

Det (Y= 7l) == (= 1P (7741 _ 059y (23) -

I'he eigenvalues of Y thus, are the root ‘of the unity of drder (2f+ 1), dis-
placed by an angle /(27 +1). Letus from now on take the arbitrary phase
¢ equal to zero, for the sake of simplicity; ‘however, one should keep in mind
its arbitrariness, which could provide a useful tlexibility in possible ap-
plicarions. We may also mention here that a different choice of phases in
the definition of [, and J, (allowing for some minus signs in (9) and (10))
could only shift the eigenvalues of Y by 77/2. Defining

w=exp [2mi/2j+1)] , (24)

we write the eigenvalues of Y as

He " @ s WFEH] L, o (25)

with a rather nawral ordering. Correspondingly the eigenvalues of the azi-
muthal operator angle ® may be written

&, =2+, fre=ficLiassai)s (26)

In classical geometrical (hence metaphorical) term s, this may be
interpreted as a regular quantization in the orientation of the azimuthal plane
of J. The existence of T being given, such a result was foreseeable; there
are not many ways to distribute (2j + 1) points on the unit circle in a rotation
symmetrical way! '
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The eigenvectors of Y are computed very easily and we choose their
phase so that they write

+
jr>=_L _ 3 &|jm>. (27)
V2j+1 m=71

The analogy is striking with the coherent states of the quantum har-
monic oscillator problem. However, the finite-dimensionality of the eigen-
spaces of e imply that these “angular coherent states” form an ordinary
discrete (finite) complete basis, and not a continuous overcomplete one.
Also these states are eigenstates of T, and not of the lowering or raising
operators [, for neither one of these can be diagonalized, still due to the
finite-dimensionality. It is easy to derive the transformation properties of
these azimuthal states under a rotation by an angle & around the polar axis.
The corresponding unitary operator exp (1']09) has the matrix elements:

i g )
<jrlexp @) |jA> =L 5 w-KIm imb (28)
2j+t1 m=-j
that is
: ; A=k |
st (3 ¢ I {20 % e o8]
<jf<|exp(i]05)|fk>=2_l+1 2l -~ (29)
! sin (M=K 7+ 40)
27 +1

As could have been foreseen, a rotation by an angle u

(,u. integer),
transforms the eigenvector |j x> of Y in'the elgenvector|] Kk tu>. We may

now compute the matrix representative of J itself in our new basis. This can
be done by direct calculation of the matrix elements

+f
<Grlplinc=1_ 5 marm (30)
2it1lm=~j

or by derivation with respect to & from the matrix (29) of a finite rotation. The
result is
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; ( l)f(-?\
1K|]0|1 v . ) (kFA)
27 +1 ) 31)

sin (

<jk |]Q !j K>=0 (diagonal elements)

Further developments of this scheme, including a study of the “orbit-
" eigenstates of Y, that is realizations as functions on the sphere (linear

al
combinations (27) of spherical harmonics), as well as applications to specific

physical problems, are in progress.
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RESUMEN

El momento angular en mecanica cudntica se estudia generalmente

diagonalizando su proyeccién cenital J,- Aqui se desarrolla una forma alter-
nativa definiendo un operador Y que corresponde a la orientacién del plano
En los eigenespacios de (2j + 1) dimensio-

azimutal alrededor del eje polar.
2 ; : o . .

nes de J°, los eigenvalores de la direccién azimutal estan distribuidos regu-
larmente con espaciamientos de 277 /(2j +1). El eigenestado correspondien-
mues-

te de Y, cuando se desarrolla en términos de los eigenestados de

- 0’
tra una gran analogia con los estados coherentes del oscilador arménico cuan-

tico.





