SOME APPLICATIONS OF CANONICAL TRANSFORMATIONS IN BARGMANN HILBERT SPACE

P. Kramer and D. Schenzle
Institut für Theoretische Physik
Universität Tübingen, F, R, Germany

(Recibido: marzo 28, 1973)

Abstract

The relation between the Hilbert space H of quantum mechanics and the Hilbert space F of entire analytic functions introduced by Bargmann is used to derive unitary projective representations of the group $S L(2, R)$ of linear canonical transformations. These representations are applied to an analysis of various nuclear models.

1. INTRODUCTION

The first part of this paper deals with linear canonical transformations in a Hilbert space F_{m} of entire analytic functions introduced by Bargmann ${ }^{1}$. Properties of this space, its relation to the Hilbert space H_{m} of quantum mechanics and to coherent states are summarized in sections 2 and 3 . Unitary projective representations of linear canonical transformations in H_{m} have been derived by Moshinsky and Quesne ${ }^{2}$. In section 4 we construct these representations for the group $S L(2, R)$ of linear canonicaltransformations
in the spaces F_{1} and F_{3}. The results are used in section 5 to derive generating functions for these representations in an oscillator basis.

In the second part we sketch some models of nuclear structure with a view on applications of canonical transformations. In sections 6 and 7 we derive a unified viewpoint on the two-center and the oscillator cluster model and discuss the ground state of ${ }^{6} \mathrm{Li}$ along these lines. In section 8 we generalize these models and derive the corresponding exchange integrals in terms of complex canonical transformations. These considerations may be regarded as a first step towards an investigation of the cluster model in Bargmann Hilbert space.

2. BARGMANN HILBERT SPACE F_{m}

On the complex Euclidean space C_{m} with points $z=\left(z_{1} z_{2} \ldots z_{m}\right)$ and the scalar product

$$
\begin{equation*}
a \cdot b=\sum_{j=1}^{m} a_{j} b_{j} \tag{2.1}
\end{equation*}
$$

we consider entire analytic functions

$$
\begin{equation*}
f(\mathbf{z})=f\left(z_{1} z_{2} \ldots z_{m}\right) \tag{2.2}
\end{equation*}
$$

Bargmann ${ }^{1}$ introduced the Hermitean scalar product of two such functions f_{1}, f_{2} by

$$
\begin{equation*}
\left(f_{1} \mid f_{2}\right)=\int \overline{f_{1}(\mathbf{z})} f_{2}(\mathbf{z}) d \mu(\mathbf{z}) \tag{2.3}
\end{equation*}
$$

where the measure is defined by

$$
\begin{equation*}
d \mu(\mathbf{z})=d \mu(\mathbf{z})=\pi^{-m} \exp \{-\overline{\mathbf{z}} \mathbf{z}\} \prod_{j=1}^{m} d \operatorname{Re}\left(\boldsymbol{z}_{j}\right) d \operatorname{Im}\left(\mathbf{z}_{j}\right) \tag{2.4}
\end{equation*}
$$

The integration extends over C_{m} and the bar always denotes complex conjugation. The Bargmann Hilbert space F_{m} consists of the entire analytic functions fulfilling $(f \mid f)<\infty$. The elements of the Hilbert space H_{m} of
quantum mechanics are the complex functions $\psi(x)$ defined on the real Euclidean space R_{m} with points $x=\left(x_{1} x_{2} \ldots x_{m}\right)$, and the Hermitean scalar product

$$
\begin{align*}
& \left\langle\psi_{1} \mid \psi_{2}\right\rangle=\int \overline{\psi_{1}(\mathbf{x})} \psi_{2}(\mathbf{x}) d x \tag{2.5}\\
& d x=\prod_{j=1}^{m} d x_{j} \tag{2.6}
\end{align*}
$$

which fulfill $\langle\psi \mid \psi\rangle<\infty$. Bargmann ${ }^{1}$ defined a mapping between the Hilbert spaces F_{m} and H_{m} by the integral transform

$$
\begin{align*}
& f(\mathbf{z})=\int A(\mathbf{z}, \mathbf{x}) \psi(\mathbf{x}) d x \tag{2.7}\\
& \psi(\mathbf{x})=\int \overline{A(\mathbf{z}, \mathbf{x})} f(\mathbf{z}) d \mu(\mathbf{z}), \tag{2.8}\\
& A(\mathbf{z}, \mathbf{x})=A_{m}(\mathbf{z}, \mathbf{x})=\pi^{-\frac{1}{4} m} \exp \left\{-\frac{1}{2}(\mathbf{x} \mathbf{x})-\frac{1}{2}(\mathbf{z z})+\sqrt{2}(\mathbf{x} \mathbf{z})\right\} . \tag{2.9}
\end{align*}
$$

The mapping is isometric,

$$
\begin{equation*}
\left\langle\psi_{1} \mid \psi_{2}\right\rangle=\left(f_{1} \mid f_{2}\right) \tag{2.10}
\end{equation*}
$$

which may be summarized by the equations

$$
\begin{align*}
& \int A\left(\mathbf{z}^{\prime}, \mathbf{x}\right) \overline{A(\mathbf{z}, \mathbf{x})} d x=\exp \left\{\mathbf{z}^{\prime} \cdot \overline{\mathbf{z}}\right\}=\left(\mathbf{z}^{\prime} \mid \mathbf{z}\right), \tag{2.11}\\
& \int \overline{A\left(\mathbf{z}, \mathbf{x}^{\prime}\right)} A(\mathbf{z}, \mathbf{x}) d \mu(\mathbf{z})=\delta\left(\mathbf{x}^{\prime}-\mathbf{x}\right)=\prod_{j=1}^{m} \delta\left(x_{j}^{\prime}-x_{j}\right) . \tag{2.12}
\end{align*}
$$

Eq. (2.11) defines the reproducing kernel of F_{m} with the property

$$
\begin{equation*}
\int \exp \{a \cdot \overline{\mathbf{z}}\} f(\mathbf{z}) d \mu(\mathbf{z})=f(\boldsymbol{a}) . \tag{2.13}
\end{equation*}
$$

Eq. (2.12) is valid only on taking an appropriate limit ${ }^{1}$.

3. HARMONIC OSCILLATOR AND COHERENT STATE

The kernel $\overline{A(\mathbf{z}, \mathbf{x})}$ of the integral transform eqs. (2.7), (2.8) is an element of H_{m} because of eq. (2.11). Moreover it is an eigenstate of the annihilation operator

$$
\begin{equation*}
\xi_{j}=\left(\eta_{j}\right)^{+}=\sqrt{1 / 2}\left(x_{j}+i p_{j}\right) \tag{3.1}
\end{equation*}
$$

since

$$
\begin{equation*}
\xi_{j} \overline{A(\mathbf{z}, \mathbf{x})}=\overline{A(\mathbf{z}, \mathbf{x})} \overline{\boldsymbol{z}_{j}} \tag{3.2}
\end{equation*}
$$

and hence is a coherent state ${ }^{3}$. It is easy to expand the states $\overline{A(z, x)}$ in terms of oscillator states $|N\rangle$. For $m=1$ one obtains

$$
\begin{align*}
\overline{A(z, x)} & =\sum_{N=0}^{\infty}\langle x \mid N\rangle \frac{\bar{z}^{N}}{\sqrt{N!}}=\sum_{N=0}^{\infty} \frac{(\bar{z} \eta)^{N}}{N!}|O\rangle \\
& =\exp \{\bar{z} \eta\}|O\rangle . \tag{3.3}
\end{align*}
$$

For $m=3$, we find in an angular momentum basis for the coefficients in the expansion

$$
\begin{equation*}
\overline{A(\mathbf{z}, \mathbf{x})}=\sum_{N L M}\langle\boldsymbol{x} \mid N L M\rangle \overline{A(\mathbf{z}, N L M)} \tag{3.4}
\end{equation*}
$$

the recursion relation

$$
\begin{equation*}
\left.\sum_{N^{\prime} L^{\prime} M^{\prime}}<N L M\left|\xi_{j}\right| N^{\prime} L^{\prime} M^{\prime}\right\rangle \overline{A\left(\mathbf{z}, N^{\prime} L^{\prime} M^{\prime}\right)}=\bar{z}_{j} \overline{A(\mathbf{z}, N L M)} . \tag{3.5}
\end{equation*}
$$

On complex conjugation this becomes precisely the recursion relation for the homogeneous polynomials $P(\eta)$ which create the state $\mid N L M>$ from the ground state. The solution of this recursion relation as given by Brody and Moshinsky ${ }^{4}$ yields

$$
\begin{align*}
& A(\mathbf{z}, N L M)=P_{L M}^{N}(\mathbf{z})=A_{N L}(\mathbf{z} \cdot \overline{\mathbf{z}})^{\frac{1}{2}(N-L)} y_{L M}(\mathbf{z}), \tag{3.6}\\
& A_{N L}=(-)^{1 / 2(N-L)}\left[\frac{4 \pi}{(N+L+1)!!(N-L)!!}\right]^{1 / 2} . \tag{3.7}
\end{align*}
$$

That the result is correctly normalized may be checked by use of the relation

$$
\begin{equation*}
\sum_{L M} P_{L M}^{N}\left(\mathbf{z}^{\prime}\right) \overline{P_{L M}^{N}(\mathbf{z})}=\frac{\left(\mathbf{z}^{\prime} \overline{\mathbf{z}}\right)^{N}}{N!} \tag{3.8}
\end{equation*}
$$

which can be proved for example by interpreting the polynomials $P_{L M}^{N}$ as matrix elements of irreducible representations of the group $U(3)$. In Dirac notation, eqs. (3.3) and (3.6) may be interpreted as

$$
\begin{align*}
& f_{N}(z)=(z \mid N)=\frac{z^{N}}{N!}, \tag{3.9}\\
& f_{N L M}(\mathbf{z})=(\mathbf{z} \mid N L M)=P_{L M}^{N}(\mathbf{z}) . \tag{3.10}
\end{align*}
$$

4. LINEAR CANONICAL TRANSFORMATIONS IN F_{m}

Moshinsky and Quesne ${ }^{2}$ have constructed the unitary operators which correspond to linear canonical transformations. We shall in particular consider the linear canonical transformations for $m=1$ and $m=3$ related to the group $S I(2, R)$. If g is an element of this group, the corresponding operators U in the x-representation are given by

$$
\begin{equation*}
g \rightarrow U(g) \tag{4.1}
\end{equation*}
$$

$$
\begin{align*}
& g=\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \quad d a-b c=1 \tag{4.2}\\
& <\mathbf{x}^{\prime}|U(g)| \mathbf{x}>=C(g) \exp \left\{-(i / 2 b)\left(a\left(\mathbf{x}^{\prime} \mathbf{x}^{\prime}\right)+d(\mathbf{x} \mathbf{x})-2\left(\mathbf{x}^{\prime} \mathbf{x}\right)\right)\right\} \tag{4.3}
\end{align*}
$$

and form a projective unitary representation of $\operatorname{SL}(2, R)$, that is,

$$
\begin{equation*}
U\left(g_{1}\right) U\left(g_{2}\right)=F\left(g_{1}, g_{2}, g_{1} g_{2}\right) U\left(g_{1} g_{2}\right) \tag{4.4}
\end{equation*}
$$

We now construct these operators in F_{m} by defining

$$
\begin{equation*}
\left(\mathbf{z}^{\prime}|U(g)| \mathbf{z}\right)=\iint A\left(\mathbf{z}^{\prime}, \mathbf{x}^{\prime}\right)<x^{\prime}|U(g)| \mathbf{x}>\overline{A(\mathbf{z}, \mathbf{x})} d x^{\prime} d x \tag{4.5}
\end{equation*}
$$

The result of the integration may be formally described as follows. If $A\left(\mathbf{z}^{\prime}, \mathbf{x}^{\prime}\right)$ and $\overline{A(\mathbf{z}, \mathbf{x})}$ are regarded as complex canonical transformations, the corresponding matrix g_{0} is given in both cases by

$$
g_{0}=\left(\begin{array}{rr}
\sqrt{(1 / 2)} & -i \sqrt{(1 / 2)} \tag{4.6}\\
-i \sqrt{(1 / 2)} & \sqrt{(1 / 2)}
\end{array}\right)
$$

according to eqs. (4.2), (4.3) and (2.9). Applying formally eq. (4.4) to eq. (4.5) one finds

$$
\begin{align*}
& \begin{aligned}
& g_{0}\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right) g_{0}=\left(\begin{array}{rr}
r & -i s \\
-i s^{*} & -r^{*}
\end{array}\right) \\
&=\left(\begin{array}{rr}
\frac{1}{2}[(d-a)+i(b+c)] & -i \frac{1}{2}[(a+d)+i(c-b)] \\
-i \frac{1}{2}[(a+d)-i(c-b)] & -1 / 2[(d-a)-i(b+c)]
\end{array}\right) \\
& s s^{*}-r r^{*}=1 .
\end{aligned}
\end{align*}
$$

The explicit integration yields in agreement with this formal manipulation

$$
\begin{equation*}
\left(z^{\prime}|U(g)| \mathbf{z}\right)=E(g) \exp \left\{\frac{1}{2 s}\left(r^{*}\left(z^{\prime} z^{\prime}\right)-r(\bar{z} \bar{z})+2\left(z^{\prime} \bar{z}\right)\right)\right\}, \tag{4.8}
\end{equation*}
$$

a result that has been given already by Bargmann ${ }^{1}$. We calculate the product of two operators $U\left(g_{1}\right), U\left(g_{2}\right)$ and find

$$
\begin{align*}
& \int\left(\mathbf{z}^{\prime}\left|U\left(g_{1}\right)\right| \mathbf{z}^{\prime \prime}\right)\left(\mathbf{z}^{\prime \prime}\left|U\left(g_{2}\right)\right| \mathbf{z}\right) d \mu\left(\mathbf{z}^{\prime \prime}\right) \\
& =E\left(g_{1}\right) E\left(g_{2}\right) F^{\prime}\left(g_{1}, g_{2}, g_{1} g_{2}\right) E^{-1}\left(g_{1} g_{2}\right)\left(\mathbf{z}^{\prime}\left|U\left(g_{1} g_{2}\right)\right| \mathbf{z}\right) \tag{4.9}
\end{align*}
$$

The quantities $r r^{*} s s^{*}$ characterizing $U\left(g_{1} g_{2}\right)$ are obtained by writing

$$
\begin{align*}
g_{0}\left(g_{1} g_{2}\right) g_{0} & =\left(g_{0} g_{1} g_{0}\right) g_{0}^{-2}\left(g_{0} g_{2} g_{0}\right) \\
\left(\begin{array}{cc}
r & -i s \\
-i s^{*}-r^{*}
\end{array}\right) & =\left(\begin{array}{cc}
r_{1} & -i s_{1} \\
-i s_{1}^{*}-r_{1}^{*}
\end{array}\right)\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)\left(\begin{array}{c}
r_{2} \\
-i s_{2} \\
-i s_{2}^{*}-r_{2}^{*}
\end{array}\right) \\
& =\left(\begin{array}{cc}
r_{1} s_{2}^{*}+s_{1} r_{2} & -i\left(r_{1} r_{2}^{*}+s_{1} s_{2}\right) \\
-i\left(s_{1}^{*} s_{2}^{*}+r_{1}^{*} r_{2}\right) & -\left(s_{1}^{*} r_{2}^{*}+r_{1}^{*} s_{2}\right)
\end{array}\right) \tag{4.10}
\end{align*}
$$

and the factor F^{\prime} has the form

$$
\begin{equation*}
F^{\prime}\left(g_{1}, g_{2}, g_{1} g_{2}\right)=\left[\frac{\left|s_{1}\right|\left|s_{2}\right|}{|s|}\right]^{m / 2} \exp \left\{-i \frac{m}{2} \varphi\left(\frac{s}{s_{1} s_{2}}\right)\right\} \tag{4.11}
\end{equation*}
$$

where $\varphi(t)$ is the phase of the complex number t and $-\pi<\varphi(t) \leqslant \pi$. Eq. (4.9) is valid if

$$
\begin{equation*}
\operatorname{Re}\left(\frac{s}{s_{1} s_{2}}\right)=\operatorname{Re}\left(\frac{r_{1} r_{2}^{*}+s_{1} s_{2}}{s_{1} s_{2}}\right) \geqslant 0 \tag{4.12}
\end{equation*}
$$

The factor eq. (4.11) suggests the choice

$$
\begin{equation*}
E(g)=|s|^{-m / 2} \exp \left\{-i \frac{m}{2} \varphi(s)\right\} \tag{4.13}
\end{equation*}
$$

which leads to the relations

$$
\begin{equation*}
\left(z^{\prime}|U(e)| z\right)=\left(z^{\prime} \mid \mathbf{z}\right)=\exp \left\{\mathbf{z}^{\prime} \overline{\mathbf{z}}\right\} \text { (identity element) } \tag{4.14}
\end{equation*}
$$

$$
\begin{align*}
\overline{\left(\mathbf{z}^{\prime}|U(g)| \mathbf{z}\right)} & =\left(\mathbf{z}\left|U\left(g^{-1}\right)\right| \mathbf{z}^{\prime}\right) \tag{4.15}\\
U\left(g_{1}\right) U\left(g_{2}\right) & =\exp \left\{i \frac{m}{2}\left(\varphi(s)-\varphi\left(s_{1}\right)-\varphi\left(s_{2}\right)+\varphi\left(\frac{s}{s_{1} s_{2}}\right)\right\} U\left(g_{1} g_{2}\right)\right. \\
& = \pm U\left(g_{1} g_{2}\right) \quad \text { (real phase factor) } \tag{4.16}
\end{align*}
$$

These relations are valid for real numbers $a b c d$ and hence for $s^{*}=\bar{s}, r^{*}=\bar{r}$. In this case the inequality (4.12) is always fulfilled. For complex numbers $a b c d$ with $d a-b c=1$, that is to say for complex canonical transformations corresponding to elements of $S L(2, C)$, the operator eq. (4.8) with the numbers $s s^{*} r r^{*}$ defined by eq. (4.7) may still be meaningful in F_{m}. The unitarity eq. (4.15) is of course no longer valid and the multiplication of two such operators is possible only if eq. (4.12) is fulfilled.

5. GENERA TING FUNCTIONS FOR MATRIX ELEMENTS

We shall demonstrate some uses of the results of section 4 by deriving the matrix elements for $U(g)$ between oscillator states. For $m=1$ we write

$$
\begin{align*}
(v|U(g)| w) & =\sum_{N^{\prime} N}\left(v \mid N^{\prime}\right)\left(N^{\prime}|U(g)| N\right) \overline{(w \mid N)} \\
& =\sum_{N^{\prime} N} \frac{v^{\prime}}{\sqrt{N^{\prime}!}}\left(N^{\prime}|U(g)| N\right) \frac{\bar{w} N}{\sqrt{N!}} . \tag{5.1}
\end{align*}
$$

This is a generating function for the elements $\left(N^{\prime}|U(g)| N\right)$. By expanding the exponential of eq. (4.8) in the form

$$
\begin{align*}
& \exp \left\{\frac{1}{2 s}\left(r^{*}(v v)-r(\bar{w} \bar{w})+2(v \bar{w})\right)\right\} \\
& =\sum_{q_{1} q_{2} q} \frac{1}{q_{1}!q_{2}!q!}\left[\left(\frac{r^{*}}{2 s}\right)^{q_{1}}(v v)^{q_{1}}\left(-\frac{r}{2 s}\right)^{q_{2}}(\bar{w} \bar{w})^{q_{2}}\left(\frac{1}{s}\right)^{q}(v \bar{w})^{q}\right] \tag{5.2}
\end{align*}
$$

and noting that $N^{\prime}-q=2 q_{1}$ even, $N-q=2 q_{2}$ even, we obtain the only nonvanishing contributions for $N^{\prime}+N$ even,

$$
\begin{align*}
& \left(N^{\prime}|U(g)| N\right) \\
& =|s|^{-\frac{1}{2}} \exp \left\{-i \frac{1}{2} \varphi(s)\right\}\left[N^{\prime}!N!\right]^{\frac{1}{2}}\left(\frac{1}{s}\right)^{\frac{1}{2}\left(N^{\prime}+N\right)} \times \\
& \times \sum_{\substack{q \geqslant 0}}\left[\left(\frac{1}{2}\left(N^{\prime}-q\right)\right)!\left(\frac{1}{2}(N-q)\right)!q!\right]^{-1}\left(\frac{r^{*}}{2}\right)^{\frac{1}{2}\left(N^{\prime}-q\right)}\left(-\frac{r}{2}\right)^{1 / 2(N-q)} \\
& N-q \text { even } \tag{5.3}
\end{align*}
$$

in complete agreement with Moshinsky and Quesne ${ }^{2}$. For $m=3$ we find in the same way the generating function

$$
\begin{align*}
& (v|U(g)| w) \\
& =N_{N^{\prime}} \sum_{L^{\prime} M^{\prime}} \sum_{N L M} P_{L^{\prime} M^{\prime}}^{N^{\prime}}(v)\left(N^{\prime} L^{\prime} M^{\prime}|U(g)| N L M\right) \overline{P_{L M}^{N}(w)} \tag{5.4}
\end{align*}
$$

To evaluate the matrix element we use eq. (5.2) for $m=3$, eq. (3.8) in the form

$$
\begin{equation*}
\frac{1}{q!}(\bar{v} \bar{w})^{q}=\sum_{L M} P_{L M}^{q}(v) \overline{p_{L M}^{q}(w)} \tag{5.5}
\end{equation*}
$$

and relations of the type

$$
\begin{equation*}
(v v)^{q_{1}} P_{L M}^{q}(v)=A_{2 q_{1}+q L}^{-1} A_{q L} P_{L M}^{2 q_{1}+q}(v) \tag{5.6}
\end{equation*}
$$

to obtain the restriction $N^{\prime}+N$ even and the final result

$$
\begin{align*}
& \left(N^{\prime} L^{\prime} M^{\prime}|U(g)| N L M\right) \\
& =\delta_{L^{\prime} L^{\prime} \delta_{M^{\prime} M}|s|^{-3 / 2} \exp \left\{-i \frac{3}{2} \varphi(s)\right\} A_{N^{\prime} L^{-1}} A_{N L}^{-1}\left(\frac{1}{s}\right)^{\frac{1}{2}\left(N^{\prime}+N\right)}}^{\sum_{q \geqslant 0}\left[\left(\frac{1}{2}\left(N^{\prime}-q\right)\right)!\left(\frac{1}{2}(N-q)\right)!\right]^{-1} A_{q L}^{2}\left(\frac{r^{*}}{2}\right)^{\frac{1}{2}\left(N^{\prime}-q\right)}\left(-\frac{r}{2}\right)^{\frac{1}{2}(N-q)}} \begin{array}{l}
N^{\prime}-q \text { even }
\end{array}
\end{align*}
$$

We believe that the use of F_{m} may lead to other useful generating functions for linear canonical transformations.

6. TWO-CENTER AND CLUSTER MODEL STATES

We shall show in the next three sections that linear canonical transformations provide a very helpful tool for the discussion and analysis of nuclear models. A simple two-center ansatz ψ_{A} for states of a nucleus like ${ }^{6} \mathrm{Li}$ is obtained by using $1 s$-oscillator orbits φ_{a} and φ_{b} centered at a given distance. The state ψ_{A} may be written as

$$
\begin{align*}
& \psi_{A}=\prod_{j=1}^{n_{a}} \varphi_{a}(j)_{p=n_{a}+1}^{n_{a}^{+n_{b}}} \varphi_{b}(p), \tag{6.1}\\
& \varphi_{a}(j)=\pi^{-\frac{3}{4}} \exp \left\{-\frac{1}{2}\left(x^{j}-\left[\frac{n_{b}}{n n_{a}}\right]^{1 / 2} q\right)^{2}\right\}, \tag{6.2}\\
& \varphi_{b}(p)=\pi^{-\frac{3}{4}} \exp \left\{-\frac{1}{2}\left(x^{p}+\left[\frac{n_{a}}{n n_{b}}\right]^{1 / 2} q\right)^{2}\right\} . \tag{6.3}
\end{align*}
$$

The distance vector between the two centers is

$$
\begin{equation*}
d=\left[\frac{n}{n_{a} n_{b}}\right]^{\frac{1}{2}} q \tag{6.4}
\end{equation*}
$$

and all distances are measured in units of the oscillator parameter

$$
\begin{equation*}
b=\left[\frac{\hbar}{m \omega}\right]^{\frac{1}{2}} \tag{6.5}
\end{equation*}
$$

Alternatively we consider the cluster model ansatz

$$
\begin{equation*}
\psi_{B}=\psi_{a} \psi_{b} x_{a b} \quad \exp \left\{-\frac{1}{2} R^{2}\right\} \tag{6.6}
\end{equation*}
$$

In eq. (6.6) the internal states ψ_{a} and ψ_{b} of the two clusters a, b may be assumed in the simplest form as

$$
\begin{align*}
& \psi_{a}=\pi^{-\frac{3}{4}\left(n_{a}^{-1)}\right.} \exp \left\{-\frac{1}{2} \sum_{j=1}^{n_{a}}\left(x^{j}-\frac{1}{n_{a}} R^{a}\right)^{2}\right\} \tag{6.7}\\
& \psi_{b}=\pi^{-\frac{3}{4}\left(n_{b}-1\right)} \exp \left\{-\frac{1}{2} \sum_{p=n_{a}+1}^{n_{a}^{+n} b}\left(x^{p}-\frac{1}{n_{b}} R^{b}\right)^{2}\right\} \tag{6.8}
\end{align*}
$$

while $\chi_{a b}$ describes the relative motion. The vectors $R^{a}, R^{b}, \mathrm{x}, R$ are defined by

$$
\begin{align*}
& R^{a}=\sum_{j=1}^{n_{a}} x^{j}, \quad R^{b}=\sum_{p=n_{a}+1}^{n_{a}^{+n_{b}}} x^{p}, \tag{6.9}\\
& x=\left[\frac{n_{a} n_{b}}{n}\right]^{\frac{1}{2}}\left(\frac{1}{n_{a}} R^{a}-\frac{1}{n_{b}} R^{b}\right), \tag{6.10}\\
& R=\left[\frac{1}{n}\right]^{1 / 2}\left(R^{a}+R^{b}\right) . \tag{6.11}
\end{align*}
$$

In the cluster model ansatz one would set up a variational principle for $\chi_{a b}$. If $\chi_{a b}$ is expanded in terms of harmonic oscillator states we obtain the oscillator cluster model studied elsewhere ${ }^{5}$. We shall make here a special choice of $\chi_{a b}$ and show that it leads to a simple relation of the models A and B. Consider the state

$$
\begin{align*}
\chi_{a b}(x) \rightarrow \chi_{\bar{z}}(x)=\overline{A_{3}(z, x)} & =\pi^{-\frac{3}{4}} \exp \left\{-\frac{1}{2} x^{2}-\frac{1}{2} \bar{z}^{2}+\sqrt{2} \times \bar{z}\right\} \\
& =\pi^{-\frac{3}{4}} \exp \left\{-\frac{1}{2}\left(x-\sqrt{2} \bar{z}^{2}\right)^{2}+\frac{1}{2} \bar{z}^{2}\right\} \tag{6.12}
\end{align*}
$$

Upon inserting $X_{-}(x)$ into eq. (6.6) for ψ_{b} one may rearrange the quadratic expressions according to

$$
\begin{align*}
& \sum_{j=1}^{n_{a}}\left(x^{j}-\frac{1}{n_{a}} R^{a}\right)^{2}+\sum_{p=n_{a}+1}^{n_{a}^{+n_{b}}}\left(x^{p}-\frac{1}{n_{b}} R^{b}\right)^{2}+R^{2}+(x-\sqrt{2} \bar{z})^{2}+\bar{z}^{2} \\
& =\sum_{j=1}^{n_{a}}\left(x^{j}-\left[\frac{2 n_{b}}{n n_{a}}\right]^{1 / 2} \bar{z}\right)^{2}+\sum_{p=n_{a}+1}^{n_{a}+n_{b}}\left(x^{p}+\left[\frac{2 n_{a}}{n n_{b}}\right]^{1 / 2} \bar{z}\right)^{2}+\bar{z}^{2} . \tag{6.13}
\end{align*}
$$

We conclude that with the replacement of eq. (6.12) the state ψ_{B} reduces to

$$
\begin{equation*}
\psi_{B} \rightarrow \psi_{A} \exp \left\{\frac{1}{2} \bar{z}^{2}\right\} \tag{6.14}
\end{equation*}
$$

where $\sqrt{2} \overline{\mathbf{z}}=q$ is now a complex vector. Its interpretation is obtained from the expectation values ${ }^{3}$

$$
\begin{align*}
& \left\langle\chi_{\bar{z}}\right| x_{j}\left|\chi_{\overline{\mathbf{z}}}\right\rangle=\sqrt{\frac{1}{2}}\left(\bar{z}_{j}+\boldsymbol{z}_{j}\right)\left\langle\chi_{\overline{\mathbf{z}}} \mid \chi_{\overline{\mathbf{z}}}\right\rangle \tag{6.15}\\
& \left\langle\chi_{\bar{z}}\right| p_{j}\left|\chi_{\overline{\mathbf{z}}}\right\rangle=\sqrt{\frac{1}{2}} \frac{1}{i}\left(\bar{z}_{j}-z_{j}\right)\left\langle\chi_{\overline{\mathbf{z}}} \mid \chi_{\overline{\mathbf{z}}}\right\rangle \tag{6.16}\\
& \left\langle\chi_{\overline{\mathbf{z}}}\right|(x x)\left|\chi_{\bar{z}}\right\rangle=\left[\frac{1 / 2}{}(\overline{\mathbf{z}}+\mathbf{z})(\overline{\mathbf{z}}+\mathbf{z})+3 / 2\right]\left\langle\chi_{\bar{z}} \mid \chi_{\bar{z}}\right\rangle \tag{6.17}
\end{align*}
$$

$$
\begin{equation*}
\left\langle\chi_{\bar{z}}\right|(p p)\left|\chi_{\bar{z}}\right\rangle=\left[-\frac{1}{2}(\bar{z}-z)(\bar{z}-z)+3 / 2\right]\left\langle\chi_{\bar{z}} \mid \chi_{\bar{z}}\right\rangle . \tag{6.18}
\end{equation*}
$$

In physical terms $\chi \frac{\bar{z}}{}$ describes a minimal Gaussian wave packet with the average position and momentum given by the real and imaginary part of $\overline{\mathbf{z}}$ respectively. The choice of a real vector \bar{z} implies zero average momentum and minimal kinetic energy.

The coherent state eq. (6.12) and hence the two-center state ψ_{A} contain states of different parity and angular momentum. We make use of the results given in section 3 to develop it in terms of oscillator states,

$$
\begin{equation*}
\chi_{\bar{z}}(\mathbf{x})=\overline{A_{3}(\mathbf{z}, \mathbf{x})}=\sum_{N L M}\langle\mathbf{x} \mid N L M\rangle \overline{P_{L M}^{N}(\mathbf{z})} . \tag{6.19}
\end{equation*}
$$

It is now very easy to project from the two-center model states of angular momentum L for the relative motion. The application of a corresponding Young operator gives

$$
\begin{equation*}
c_{M K}^{L} \chi_{\overline{\mathbf{z}}}(\mathbf{x})=\sum_{N \geqslant L}\langle\mathbf{x}| N L M>\overline{P_{L K}^{N}(\mathbf{z})} . \tag{6.20}
\end{equation*}
$$

7. ENERGY CALCULATIONS AND COMPARISON OF MODELS

In this section we shall discuss the ground state of ${ }^{6} \mathrm{Li}$ as a very simple example for the comparison of the models mentioned before. In all cases we shall choose the orbital partition $f=\{42\}$ and an interaction due to Brink and Boeker ${ }^{6}$. Except in case (A) we choose $n_{a}=4, n_{b}=2$. (A) Two-center model: For ${ }^{6}$ Li this model has been used by Deenen ${ }^{7}$. He calculated the energy $E_{A}(z)$ with a superposition of two states of the type given in eqs. (6.1-6.3) as a function of the distance $d=|\boldsymbol{d}|$. His results are shown in Fig. 1 and may be interpreted as follows: The normalized version of eq. (6.12) is

$$
\begin{equation*}
X_{\bar{z}}(\mathbf{x}) \exp \left\{-\frac{1}{2} \overline{\boldsymbol{z}} \boldsymbol{z}\right\}=\sum_{N L M}\langle\boldsymbol{x} \mid N L M\rangle \overline{P_{L M}^{N}(\boldsymbol{z})} \exp \left\{-\frac{1}{2} \overline{\boldsymbol{z}} \boldsymbol{z}\right\} . \tag{7.1}
\end{equation*}
$$

Fig. 1. Comparison of two-center and cluster model for the ground state of ${ }^{6} \mathrm{Li}$ with partition $f=\{42\}$ and the interaction of Brink and Boeker ${ }^{6}$. E_{A}, E_{B} and $E_{A B}$ are energies for the unprojected two-center model according to Deenen ${ }^{7}$, the oscillator cluster model and the two-center model with angular momentum $L=0$ respectively. E_{A} and $E_{A B}$ are given as functions of $\boldsymbol{z}=|\boldsymbol{z}|$ which is related to the distance d^{\prime} of the centers by $d^{\prime}=\sqrt{3 / 2} z b$, $b=1.6 \mathrm{fm}$ is the oscillator parameter. Included is the squared overlap of the states $X_{A B}$ and X_{B}.

For $|\mathbf{z}| \ll 1$ only the lowest values of N give a significant contribution. In the limit $|\mathbf{z}| \rightarrow 0$ we therefore approach the lowest oscillator shell model state with $f=\{42\}$, that is, the $s^{4} p^{2}$ configuration,

$$
\begin{equation*}
|\mathbf{z}| \rightarrow 0 \quad E_{A}(z) \rightarrow E_{\text {shell model }} . \tag{7.2}
\end{equation*}
$$

For large values of $|\mathbf{z}|$ and a real vector $\bar{z}=\mathbf{z}$ the states ψ_{a} and ψ_{b} contribute the internal energies E_{a} and E_{b} while the state $\chi_{\mathbf{z}}(x)$ gives only kinetic energy. From eq. (6.18) we obtain

$$
\begin{equation*}
|\mathbf{z}| \gg 1 \quad \bar{z}=\mathbf{z} \quad E_{A}(z) \rightarrow E_{a}+E_{b}+3 / 4 \omega \omega . \tag{7.3}
\end{equation*}
$$

The function $E_{A}(z)$ in Fig. 1 shows a behaviour in agreement with eqs. (7.2) and (7.3). A minimum is reached at $|\mathbf{z}|=0.72$.
(B) Oscillator cluster model: This model has been discussed elsewhere ${ }^{5}$ in great detail. The ansatz for ${ }^{6} \mathrm{Li}$ with $L=0$,

$$
\chi_{B}(\mathbf{x})=\sum_{N}^{N_{0}}<\mathbf{x} \mid N 00>c_{N}
$$

yields for $N_{0}=6$ the value E_{B} in Fig. 1 independent of $|\mathbf{z}|$.
(AB) Two-center model with angular momentum and cut-off: If the two-center model is projected with respect to $L=0$ we obtain

$$
\begin{align*}
c_{00}^{0} \chi_{\bar{z}}(\mathbf{x}) & =\sum_{N}<\mathbf{x} \mid N 00>\overline{P_{00}^{N}(\mathbf{z})} \\
& =\sum_{N}<\mathbf{x} \left\lvert\, N 00>[(N+1)!]^{-\frac{1}{2}}(\overline{\mathbf{z}} \overline{\mathbf{z}})^{1 / 2 N} .\right. \tag{7.5}
\end{align*}
$$

The corresponding normalized state is for $\overline{\mathbf{z}}=\mathbf{z}$

$$
\begin{align*}
& \chi_{A B}=c_{00}^{0} \chi_{-}^{z}(x)\left[\frac{|z|^{2}}{\sinh |z|^{2}}\right]^{1 / 2} \\
& =\sum_{N}\langle\boldsymbol{x} \mid N 00\rangle[(N+1)!]^{-\frac{1}{2}}|\mathbf{z}|^{N}\left[\frac{|\mathbf{z}|^{2}}{\sinh |\mathbf{z}|^{2}}\right]^{\frac{1}{2}} . \tag{7.6}
\end{align*}
$$

If the sum over N is cut off at $N_{0}=6$ we obtain the energy $E_{A B}(z)$ in Fig. 1. Clearly the two-center model is improved by this procedure and we approach the value E_{B} at a distance corresponding to $|z|=1.6$. In Fig. 1 we have also shown the square of the overlap between the normalized states $\chi_{B}, \chi_{A B}$ of the models B and $A B$. At $|\boldsymbol{z}|=2.0$ this squared overlap has the value 0.75 . We have discussed a very simple system of six nucleons, but it is clear that all the concepts used have a generalization to more complex systems like more-center systems. Besides we have shown that there is a simple relation between the oscillator shell model, the oscillator cluster model and the two-center model, which allows us to obtain the projection on states of fixed angular momentum and parity.

8. THE CLUSTER MODEL IN BARGMANN HIL BERT SPACE

A straight-forward generalization of the ansatz eq. (6.12) is the superposition

$$
\begin{equation*}
\chi_{a b}(\mathbf{x})=\sqrt{\overline{A_{3}(\mathbf{z}, \mathbf{x})} f(\mathbf{z}) d \mu(\mathbf{z})} \tag{8.1}
\end{equation*}
$$

From section 3 we know that this equation implies going from H_{3} to F_{3} with respect to the state $\chi_{a b}(x)$. The ansatz eq. (6.12) in connection with the states ψ_{A} of eq. (6.1) has been studied in detail by Brink and Weiguny ${ }^{8}$. In this section we shall not develop the dynamical equations for $f(\boldsymbol{z})$ in F_{3} in greater detail but concentrate on the adaptation to orbital symmetry. It has been shown elsewhere ${ }^{9}$ that this adaptation presupposes the calculation of basic exchange integrals, that is, of the matrix elements for the double coset generators Z_{K}. For two different two-center configurations with occupation numbers $n_{a}, n_{b}, n_{a} n_{b}$, the permutations Z_{K} are characterized
by the $D C$-symbol

$$
D C\left(Z_{K}\right)=\left\{\begin{array}{ll}
d_{11} & d_{12} \tag{8.2}\\
d_{21} & d_{22}
\end{array}\right\}
$$

where the integers $d_{i j}$ denote the number of nucleons exchanged and are subject to the restrictions

$$
\begin{align*}
& n_{a}^{\prime}=d_{11}+d_{12}, \quad n_{a}=d_{11}+d_{21} \\
& n_{b^{\prime}}=d_{21}+d_{22}, \quad n_{b}=d_{12}+d_{22} \tag{8.3}
\end{align*}
$$

The main point in calculating the matrix elements of Z_{K} between the states eq. (6.1) is the fact that the se states are products of nonorthogonal singleparticle states. Therefore it suffices to calculate the single-particle overlaps

$$
\begin{align*}
& \epsilon_{a^{\prime} a}=\int \bar{\varphi}_{a}, \varphi_{a} d x=\exp \left\{-\frac{1}{2 n}\left(\left[\frac{n_{b}^{\prime}}{n_{a}{ }^{\prime}}\right]^{\frac{1}{2}} \bar{z}^{\prime}-\left[\frac{n_{b}}{n_{a}}\right]^{\frac{1}{2}} \mathbf{z}\right)^{2}\right\}, \\
& \epsilon_{a^{\prime} b}=\int \bar{\varphi}_{a}, \varphi_{b} d x=\exp \left\{-\frac{1}{2 n}\left(\left[\frac{n_{b}^{\prime}}{n_{a}{ }^{\prime}}\right]^{\frac{1}{2}} \overline{\mathbf{z}}^{\prime}+\left[\frac{n_{a}}{n_{b}}\right]^{\frac{1}{2}} \mathbf{z}^{2}\right\}\right. \text {, } \\
& \epsilon_{b^{\prime} a}=\int \bar{\varphi}_{b^{\prime}} \varphi_{a} d x=\exp \left\{-\frac{1}{2 n}\left(\left[\frac{n_{a}}{n_{b}^{\prime}}\right]^{\frac{1}{2}} \bar{z}^{\prime}+\left[\frac{n_{b}}{n_{a}}\right]^{\frac{1}{2}} \mathbf{z}\right)^{2}\right\}, \\
& \epsilon_{b^{\prime} b}=\int \bar{\varphi}_{b^{\prime}} \varphi_{b} d x=\exp \left\{-\frac{1}{2 n}\left(\left[\frac{n_{a}^{\prime}}{n_{b}^{\prime}}\right]^{\frac{1}{2}} \frac{\mathbf{z}^{\prime}}{}-\left[\frac{n_{a}}{n_{b}}\right]^{\frac{1}{2}} \mathbf{z}^{2}\right\} .\right. \tag{8.4}
\end{align*}
$$

It is easy to prove and has been shown by Seligman ${ }^{10}$ that the exchange integral corresponding to Z_{K} between states ψ_{A}, and ψ_{A} is given by

$$
\begin{align*}
& <\psi_{A},\left|Z_{K}\right| \psi_{A}> \\
& =\left(\epsilon_{a^{\prime} a}\right)^{d 1}\left(\epsilon_{a^{\prime} b}\right)^{d 2}\left(\epsilon_{b^{\prime} a}\right)^{d_{21}}\left(\epsilon_{b^{\prime} b}\right)^{d_{22}} \tag{8.5}
\end{align*}
$$

If we now use eq. (6.14) and the explicit expressions eq. (8.4) we find

$$
\begin{align*}
& \left\langle\psi_{a}, \psi_{b}, \chi_{\bar{z}},\right| Z_{K}\left|\psi_{a} \psi_{b} \chi_{\bar{z}}\right\rangle \\
& =\left\langle\psi_{A},\right| Z_{K}\left|\psi_{A}\right\rangle \exp \left\{\frac{1}{2} z^{\prime 2}+\frac{1}{2} \bar{z}^{2}\right\} \\
& =\exp \left\{\frac{1}{s(K)}\left(z^{\prime} \bar{z}\right)\right\} \tag{8.6}
\end{align*}
$$

with

$$
\begin{equation*}
\frac{1}{s(K)}=\frac{1}{n}\left\{\left[\frac{n_{b}^{\prime} n_{b}}{n_{a}^{\prime} n_{a}}\right]^{\frac{1}{2}} d_{11}-\left[\frac{n_{b} n_{a}}{n_{a}^{\prime} n_{b}}\right]^{\frac{1}{2}} d_{12}-\left[\frac{n_{a} n_{b}}{n_{b} n_{a} n_{a}}\right]^{\frac{1}{2}} d_{21}+\left[\frac{n_{a}^{\prime} n_{a}}{n_{b} n_{b}}\right]^{\frac{1}{2}} d_{22}\right\} . \tag{8.7}
\end{equation*}
$$

Comparing eq. (8.6) with eq. (4.8) we see that the exchange integral corresponds to a complex canonical transformation with

$$
\begin{equation*}
r=r^{*}=0, \quad s=\left(s^{*}\right)^{-1}=s(K) \tag{8.9}
\end{equation*}
$$

This complex canonical transformation does not change the degree of a homogeneous polynomial in F_{3} in agreement with the fact that a permutation cannot change the overall oscillator excitation of the system. From eq. (5.7) we obtain for the oscillator cluster model

$$
\left(N^{\prime} L M\left|Z_{K}\right| N L M\right)=\delta_{N^{\prime} N}\left(\frac{1}{s(K)}\right)^{N}
$$

Comparing with the entirely different derivation given in ref.(5) we conclude that $s^{-1}(K)$ is a special $9 f$-symbol,

$$
s^{-1}(K)=\left[\begin{array}{ccc}
\{n-11\} & \left\{n_{a}\right\} & \left\{n_{b}\right\} \\
\left\{n_{a^{\prime}}\right\} & d_{11} & d_{12} \\
\left\{n_{b^{\prime}}\right\} & d_{21} & d_{22}
\end{array}\right]
$$

We have given a simple example for the use of complex canonical transformations in nuclear physics. These considerations could be extended to the interaction kemels of the cluster model ansatz. Recent work by Sünkel and Wildermuth ${ }^{11}$ using integral transforms similar to eq. (8.1) shows that reactions involving many nucleons may be calculated by an extension of the methods discussed in the last sections.

REFERENCES

1. V. Bargmann, Conmun. Pure Appl. Math. 14 (1961) 187
V. Bargmann, Commun. Pure Appl. Math. 20 (1967) 1.
2. M. Moshinsky and C. Quesne, J. Math. Phys. 12 (1971) 1772
3. J. Glauber, Phys. Rev. 131 (1963) 2766
A.O. Barut and L. Girardello, Commun. Math. Phys. 21 (1971) 41
4. T. A. Brody and M. Moshinsky, Rev. Mex. Fís. 9 (1960) 181
5. P. Kramer and D. Schenzle, Nuclear Physics, in press
6. D. M. Brink and E. Boeker, Nuclear Physics A91 (1967) 1
7. J. Deenen, Nuclear Physics A189 (1972) 73
8. D. M. Brink and A. Weiguny, Nuclear Physics A120 (1968) 59
9. P. Kramer and T.H. Seligman, Nuclear Physics A136 (1969) 545
10. T.H. Seligman, Forschungsbericht K 69-42, ZAED, Leopoldshafen 1969
11. W. Sünkel and K. Wildermuth, Physics Letters 41B (1972) 439.

RESUMEN

La relación entre el espacio de Hilbert H de la mecánica cuántica y el espacio de Hilbert F de las funciones analíticas enteras propuesta por Bargmann, se usa para obtener representaciones proyectivas unitarias del grupo $S L(2, R)$ de las transformaciones canónicas lineales. Estas representaciones se aplican a un análisis de varios modelos nucleares.

