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ABSTRACT: The relation between the Hilbert space H of quantum mechanics
and the Hilbert space F of entire analytic functions introduced
by Bargmann is used to derive unitary projective representations
of the group SL(2, R) of linear canonical transformations. These
representations are applied to an analysis of various nuclear

models.

1. INTRODUCTION

The first part of this paper deals with linear canonical transformations
in a Hilbert space F_ of entire analytic functions introduced by Bargmann'
Properties of this space, its relation to the Hilbert space H_ of quantum
mechanics and to coherent states are summarized in sections 2 and 3. Uni-
tary projective representations of linear canonical transformations in H  have
been derived by Moshinsky and Quesne®. Insection 4 we construct these
representations for the group SI.(2, R) of linear canonical transformations
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in the spaces F, and F, - The results are used in section 5 to derive gener-
ating functions for these representations in an oscillator basis.

In the second part we sketch some models of nuclear structure with
a view on applications of canonical transformations. In sections 6 and 7
we derive a unified viewpoint on the two-center and the oscillator cluster
model and discuss the ground state of °Li along these lines. In section 8
we generalize these models and derive the corresponding exchange integrals
in terms of complex canonical transformations. These considerations may
be regarded as a first step towards an investigation of the cluster model
in Bargmann Hilbert space.

2. BARGMANN HILBERT SPACE Fm

On the complex Euclidean space C,, with points z =(z  Egiin s zm)and
the scalar product
m
a-b= X a.b., (2.1}
j:l 7 ]
we consider entire analytic functions
2l =z =, ...5,) . (2.2)

Bargmann' introduced the Hermitean scalar product of two such functions

fi+ £ by
U1 = J13) [,(2) du(z) (2.3)

where the measure is defined by

du(z) =du(z) =7 exp{-zz} I“ dRe(z )dlm(z) = (2.4)
;u]

The integration extends over C,, and the bar always denotes complex conju-
gation. The Bargmann Hilbert space F_ consists of the entire analytic
functions fulfilling (f'j) <o . The elemems of the Hilbert space H_ of
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quantum mechanics are the complex functions Yi(x) defined on the real Fu-

clidean space R with points x = (x x -x_), and the Hermitean scalar

_
product
<¢1|¢2 > = [ (), (x)dx, (2.5)
de = Il dx, | (2.6)
fi=i

which fulfill < \ '][J >< oo . Bargmann Vdefined a mapping between the Hilbert
spaces Fm and Hm by the integral transform

f(z) = [A(z,x) P(x) dx , (2.7)

Yix) = [Alz, x) f(2) du(z) , (2.8)

Alz,x) = A (2, =7 4™ exp {- % (xx)= % (z2) +VZ(x2)} . (2.9)
The mapping is isometric,

< > = 1), (2.10)

which may be summarized by the equations

[A(z', x) A(z,x) dx:exp{z";}:(z’|z) . (2.11)

g ooy m

JA(z, x") Az, 0) di(2) = 8(x' - x) = I B(x/-x.) . (2.12)
f =1

I:q. (2.11) defines the reproducing kernel of F, with the property

fcxp{a'Az-}j(z)dp(z):f(a). (2.13)
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Eq. (2.12) is valid only on taking an appropriate limit'.

3. HARMONIC OSCILLATOR AND COHERENT STATE

The kernel A(z, x) of the integral transform eqs. (2.7), (2.8) is an
element of Hm because of eq. (2.11). Moreover it is an eigenstate of the
annihilation operator

£ =(n) = V% (x +ip,) (3.1)
] J ] )

since
& Alz, x) = A(x,x)z-i (3.2)

and hence is a coherent state®. It is easy to expand the states A(z,x)
in terms of oscillator states |N >. Form =1 one obrains

) —N o0 a N
Al(z,x)= 3 <x|N>_%2 = 3 (27 |o>
N =0 /N1 N=0 N!
- = T -
-exp{z'r);i()) - (3.3)
Form = 3, we find in an angular momentum basis for the coefficients
in the expansion
Alz,x)= 3 <x|NLM> A(z,NLM) , (3.4)
NILM

the recursion relation

JSNLM Igr. IN‘L'M'> A(z,N'L'M'") = z, A(z,NLM).
(3.5)

|fzt
N'L'M
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On complex conjugation this becomes precisely the recursion relation for
the homogeneous polynomials P(7)) which create the state |NLM > from the
ground state. The solution of this recursion relation as given by Brody and
Moshinsky* yields

; — %(N-L)
AGENLM) = Py (D) = Ag (2 7)Yy (D) (3.6)

Y% (N-L) L
Ay = ] 4m 1. (3.7)
- (N¥LTI(N=-)

That the result is correctly normalized may be checked by use of the re-
lation

, =N

N N (x )
BB ('Y B = (3.8)
I M .M LM N!

N
which can be proved for example by interpreting the polynomials By as
matrix clements of irreducible representations of the group U(3). In Dirac

notation, ¢qs. (3.3) and (3.6) may be interpreted as

N
In® =N =2, (3.9)
Inpu(® = (z|NLM) = PI',N'M(’) , (3.10)

A

4. LINEAR CANONICAL TRANSFORMATIONS IN R,

Moshinsky and Quesne? have construcred the unitary operators which
correspond to linear canonical transformations. We shall in particular con-
sider the linear canonical transformations form = 1 and m = 3 related to the

group $1.02,R). 1If g is an element of this group, the corresponding operators
U in the x-representation are given by

g Uig) (4.1)
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g = da-bc =1 (4.2)

<x"|Ug)| x> = Clg) exp { - (i/26)(a(x'x") + d(xx) - 2(x'x))}
(4.3)

and form a projective unitary representation of SL(2, R), that is,
Ulg,)U(g,) = Flg ,g,,8,8,)Ulge,) - (4.4)
We now construct these operators in F, by defining
z'|U@)| 2 = [Taz', x")<x"|U(@) | x> A(z, x) dx'dx  (4.5)

The result of the integration may be formally described as follows. If
A(z',x") and A(z, x) are regarded as complex canonical transformations, the

corresponding matrix g, 's given in both cases by

V(1/2)  -iV(1/2)
= iV (172} V(1/2)

g = (4.6)

according to eqs. (4.2), (4.3) and (2.9). Applying formally eq. (4.4) to
eq. (4.5) one finds

5ld-a)ti(b+c)] -i%[(atd)ti(c-b)

Il

-is [(@a+d)-i(c-b)] -%[(d-a)-i(b+c)]

ss - ' =1. (4.7)

The explicit integration yields in agreement with this formal manipulation
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(z'|u(g)|z) = E(g) exp { 31_ (P (2'2")-r(ZZ) +2(2' 7))}, (4.8)
S

a result that has been given already by Bargmann'. We calculate the product
of two operators U(gl), U(gz) and find

Ja' vz E" v, | 2) duz")
=E(g VB (g, ) F' g8, ,gIgZ)E'l(glgz)(z’ iU(glgz) | z) (4.9)
The quantities rr* ss* characterizing U(g1 gz) are obtained by writing

-2
gl )& = U g, Vg \B08s)

r =is r —isl .0 1 r, =is,
o * . % * i sl W
-is -r =5 =T ¢ 0 5, =7,
- 2 *
rls.z‘i'sl T, t(r1r2+slsz)
= (4.10)
s L] * * ' ® % *
milsy s, trin) ~lsjr,trs,)
and the factor F' has the form
| m/2
~ I 4 le}l‘sZi . m Y
Py g Bl 1=t n ] wpl-dP 4.2 )] (4.11)
152
[s| 2 518y

where @(#) is the phase of the complex number ¢ and - 7w <@(z)<7 . Eq.
(4.9) is valid if

*
) s i O R

Re{ 5 )= Re( 22 _12)30p (4.12)
5152 5152
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1

The factor eq. (4.11) suggests the choice

-m/
Egy=|s|" exp{-i ™ (s)) (4.13)

which leads to the relations

(z"U(e) l z) = (z' I z) =exp{z'z} (identity element) (4.14)
(z'JU(g)lz)=(zJU(g'l)|z') (unitarity) (4.15)

Ule,)Ulgy) = exp{i Z(p(s)- 9(s,)- 9(s,) ¥ g (SSS )} Ugg,)
12

Il

iU(g]gz) (real phase factor) (4.16)

These relations are valid for real numbers abcd and hence for =S T
In this case the inequality (4.12) is always fulfilled. For complex numbers
abcd with da - be = 1, that is to say for complex canonical transformations
corresponding to elements of SL(2, C), the operator eq. (4.8) with the numbers
ss* rr* defined by eq. (4.7) may still be meaningful in F_. The unitarity eq.
(4.15) is of course no longer valid and the multiplication of two such oper-
ators is possible only if eq. (4.12) is fulfilled.

5. GENERATING FUNCTIONS FOR MATRIX ELEMENTS

We shall demonstrate some uses of the results of section 4 by de-
riving the matrix elements for U (g) between oscillator states. Form = 1 we

write

(v|U(g)|w) = > (v |NYN UG | N (w]| N)
N'N
\ NOO =N
= 2 P iNveln T, (5.1)
N'N 7

>

—
VNI
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This is a generating function for the elements (N’ |U(g) ]N). By expanding
the exponential of eq. (4.8) in the form

exp { % (r* (v)-r(ww)+ 2(vw))}

= 3 [(ﬁ)‘(w)‘( ¥ _E)qz(%)q(@q]

9,9 9,'9,' q!

(5.2)
and noting that N'- g = 29, even - ¢ = 2q, even, we obtain the only non-
vanishing contributions for N +N even,

N’ [N
-k L LIN'+N)
= |s‘ 2<=_'xp{—1i'/;_,r\()(s)}[N'Z’NI]z(l)2 x
s
. -1, %% (N"-q) %(N-q)

« 3 [N -5 - g)ig]  (2) (-2)

qg>0 2 7

N-g even (5.3)

in complete agreement with Moshinsky and Quesne?. Form = 3 we find in
the same way the generating function

(viu(g)|w
= 5 . ¥ ,(v)(N L's" U | NLu) B (w). (5.4)
N LM NLM

To evaluate the matrix element we use eq. (5.2) for m = 3, eq. (3.8) in the
form

%(vi)" = X Bl () B (w) (5.5)

and relations of the type
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9, 4 -l 29, +q
(vv) PLM (v) = A2q1+qL AqL PLM (v) (5.6)

to obtain the restriction N'+ N even and the final result

(N'L'M" |U(g)|NLM)

% (N"+N)
SL L M M|$l exp{—:5(p(s)}ANL NL( )

5(N"-q) % (N-q)

S (5N =g 5N=-gN] A (2)

g 50

(-2)
N'- -g even

(5.7)

We believe that the use of F, may lead to other useful generating functions

for linear canonical transformations.

6. TWO-CENTER AND CLUSTER MODEL STATES

We shall show in the next three sections that linear canonical transfor-
mations provide a very helpful tool for the discussion and analysis of nuclear
models. A simple two-center ansatz t,L'A for states of a nucleus like °Li is
obtained by using 1s-oscillator orbits P, and Py centered at a given distance.
The state |/, may be written as

n, nytn,
= n ; H i
Ya j=1cpa(;)P:naH<p,,(p) : (6.1)
Fi -% 0 ] nb I/z 2
Peli)=m*exp{-5(x-[_L] q)}, (6.2)
a
55 i n oG 2
Py (2) =7 Cexp{- 40P+ [4] q)) . (6.3)

b
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The distance vector between the two centers is

%
d= [ "] q (6.4)
n,my,

and all distances are measuvred in units of the oscillator parameter

%
b= [f_] ) (6.5)
méd

Alternatively we consider the cluster model ansatz

Ve = U, Xa, expi-%R%) (6.6)

In eq. (6.6) the internal states ), and i/ of the two clusters a, b may be
assumed in the simplest form as

'%(”a'l) s i 1 a2
Y, =7 exp{-% = (¥-1R T ¥ (6.7)
i=1 n,
n_+n
- (g~ 1) a B b2
gbb:ﬂ "b exp{-% 2% (xp-_l_R )} (6.8)
p=na+l ny,

while X ,, describes the relative motion. The vectors R” ; Rb , x, R are de-
fined by

» Ry . % ﬂa+”b
R=34x,  R= 3 xf, (6.9)
=1 p:na‘i-l
'/2 a b
n . n
w =] *®#| (lg_Lg), (6.10)
n Ha ﬂb

',2 a b
R = [l] (R +R) . (6.11)
i3
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In the cluster model ansatz one would set up a variational principle for X, .
If X, 1s expanded in terms of harmonic oscillator states we obtain the oscil-
lator cluster model studied elsewhere®. We shall make here a special choice

of X, and show that it leads to a simple relation of the models A and B.
Consider the state

Z

Xgp (M) = X< (@) = Az, x) =7 “exp{-4x?-%2?4+V2xz}

a

----A2 —_—
=7 "% exp{- 45 (x-v27) +45z?%}.

(6.12)

Upon inserting X— (x) into eq. (6.6) for l,!}b one may rearrange the quadratic
expressions acco%ding to

ng, ; ” +nb .
2 2 e B

> (x’-LR) i+ > (xp—iR) +R + (x-vV2z) + z2
3 =1 n, p=n_=+1 n,

n I/2 n_+n L

a . 2n _2 a b 2 , 2_ 2
=3 (-2 )+ s (P Ze] T) 4T . (6.13)
;=1 nn_, p=mn, +1 nmny

We conclude that with the replacement of eq. (6.12) the state l,bB reduces to

¢IB = l,bA exp{% i } , (6.14)

where V27 = g is now a complex vector. Its interpretation is obtained from
the expectation values?

Xgln o> =VEE ) < xg >, (6.15)

<xzlopIxg > =% L= 5<xgxg>, (6-16)

<X;|(xx)|x;> =[5 e+ )z 420ty JH—| >, (B19
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<xglepxo>=[-5G@-2E-0+)<xZ|xz>.  (6.18)

In physical terms X describes a minimal Gaussian wave packet with the
average position and momentum given by the real and imaginary part of z
respectively. The choice of a real vector z implies zero average momentum
and minimal kinetic energy.

The coherent state eq. (6.12) and hence the two-center state L/)A
contain states of different parity and angular momentum. We make use of the
results given in section 3 to develop it in terms of oscillator states,

N
X—(x)=A,(z,%) = NEM<x|NLM> P, () . (6.19)

It is now very easy to project from the two-center model states of angular
momentum L for the relative motion. The application of a corresponding
Young operator gives

L ; N
= = P .
CMKX;(X) NEL x| NLM PLK(z) - (6.20)

7. ENERGY CALCULATIONS AND COMP ARISON OF MODELS

In this section we shall discuss the ground state of 5Li as a very
simple example for the comparison of the models mentioned before. 1In all
cases we shall choose the orbital partition f = {42} and an interaction due
to Brink and Boeker®. Except in case (A) we choose n = A ny, = 2.
(A) Two-center model: For ®Li this model has been used by Deenen’. He
calculated the energy E, (z) with a superposition of two states of the type
given in eqs. (6.1 -06.3) as a function of the distance d = |d| . His results
are shown in Fig. 1 and may be interpreted as follows: The normalized version

of eq. (6.12) is

e N e
X—(x)exp{-%zz}= I <x|NLM>P, (2)exp{-%zz}.
¥ 4 M LM

i

(7.1)
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Fig. 1. Comparison of two-center and cluster model for the ground state of °Li
with partition f = {42} and the interaction of Brink and Boeker® . E,,
EB and E p are energies for the unprojected two-center model according
to Deenen’, the oscillator cluster model and the two-center model with
angular momentum L = 0 respecrively. E4 and EA“are given as functions
of z = l z‘ which is related to the distance d” of the centers by d' =\/372 zb,

b = 1.6 fm is the oscillator parameter. Included is the squared overlap of

the states XAB and XB'
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For \z| << 1 only the lowest values of N give a significant contribution.
In the limit z|H 0 we therefore approach the lowest oscillator shell model
state with / = {42}, that is, the s*»? configuration,

|2]=0  Eg®) = E o) model - (7.2)

For large values of ! zl and a real vector z = z the states | and k‘[}b con-
tribute the intemal energies E, and E, while the state X—z—(x) gives only
kinetic energy. From eq. (6.18) we obtain

|2]>>1 T =2 E(2)=E,+E, +%bw. (7.3)

The function E, (z) in Fig. 1 shows a behaviour in agreement with egs.
(7.2) and (7.3). A minimum is reached at | z| = 0.72.

(B) Oscillator cluster model: This model has been discussed elsewhere®
in great detail. The ansatz for ®Li with L = 0,

No

Xp(x) = X <x|N0OD> cy (7.4)

yields for N, = 6 the value Ey in Fig. 1 independent of Iz ‘ .
(AB) Two-center model with angular momentum and cut-off: If the two-center

model is projected with respect to L = 0 we obtain
O ox—(x) =¥ <x|N00> P\ (2)
OO z X) = . X 00 z
% . %N
=% <x|NOO>[(N+1)] (zz) . (7.5)
N

The corresponding normalized state is forz =z
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1/
2 2
0 | z]
Xap = SooXz*) | ——0y
sinh'zl
% N T
=3 <x|N0o0>[(N+1)] °|z] _[LT . (7.6)
N sinh|2|

If the sum over N is cut off at NO = 6 we obtain the energy EAB(z) in Fig. 1.
Clearly the two-center model is improved by this procedure and we approach
the value E; at a distance corresponding to |z| = 1.6. In Fig. 1 we have

also shown the square of the overlap between the nomalized states Xp, Xap

of the models B and AB. At ’ z , = 2.0 this squared overlap has the value

0.75. We have discussed a very simple system of six nucleons, but it is
clear that all the concepts used have a generalization to more complex
systems like more-center systems. Besides we have shown that there is a
simple relation between the oscillator shell model, the oscillator cluster
model and the two-center model, which allows us to obtain the projection on

states of fixed angular momentum and parity.

8. THE CLUSTER MODEL IN BARGMANN HILBERT SPACE

A straight-forward generalization of the ansatz eq. (6.12) is the

superposition

Xap (0 = JA (2, %) [(2) du(z) . (8.1)

From section 3 we know that this equation implies going from H, to F, with
respect to the state Xab{x). The ansatz eq. (6.12) in connection with the
states l,bA of eq. (6.1) has been studied in detail by Brink and Weigunya. In
this section we shall not develop the dynamical equations for f(z) in F, in
greater detail but concentrate on the adaptation to orbital symmetry. [t has
been shown elsewhere? that this adaptation presupposes the calculation of
basic exchange integrals, that is, of the matrix elements for the double
coset generators Z, . For two different two-center configurations with

occupation numbers n_ ;1,4 ,n,n, the permutations Zy are characterized
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by the DC-symbol

d
11 12
pelz) = (8.2)

21 22

where the integers dt.]. denote the number of nucleons exchanged and are
subject to the restrictions

nge =d_+d_, ng=d td,
(8.3)

Bt =dy,Yd, ny, =dgtd,

The main point in calculating the matrix elements of Zy between the states
eq. (6.1) is the fact that these states are products of nonorthogonal single-
particle states. Therefore it suffices to calculate the single-particle overlaps

1, % n-/2 2
2= 1. b 2 b
Edra_"fq}a.r({’adx“'expg-i_(__ Zr— iy Z) { "
n n n
a a
St ]
i1 & 7 %
o iy d _ n 2
Eaubz_ffparcpbdx:expi—i( & z'+ F_a z) .
n n,t n
L Xl
[ ]5% i I
2 3 2
_. [ 1 B! = 7y f
Eh'a—f%'cpadx:cxp%-(—“k =+ 1.2 2} ),
2n n, ot
|—rz :- I/z rn- I/Q 2
Eblb:: f}pbf (pbdx:exp %"ZL i ;'* .__a Zz E
n my ny,
s 2 [ 2]

(8.4)

It is easy to prove and has been shown by Seligman % that the exchange inte-
gral corresponding to Z;. between srates l,bA . and I‘L’A is given by
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d d d d
=(€51,) (€, 1,) gy ,) Mg ) P (8.5)
If we now use eq. (6.14) and the explicit expressions eq. (8.4) we find

<y x| Zg [y x5 >

Yelzg g >exp {527+ 527%)

= exp { . (z'z)} (8.6)
s(K)
with
) ) ’ 5
1 _1 CACH TP G BT LN R L]
s (K) n n in, 1 n,rny &% nytn, 2t ny 1y, 42
(8.7)

Comparing eq. (8.6) with eq. (4.8) we see that the exchange integral corre-
sponds to a complex canonical transformation with

r=1r"=0, 5=("" = s(K) . (8.9)

This complex canonical transformation does not change the degree of a
homogeneous polynomial in F, in agreement with the fact that a permutation
cannot change the overall oscillator excitation of the system. From eq. (5.7)
we obrain for the oscillator cluster model

(N‘LM|Z, |NLM) = &, (-1
] K’ N N(S(K))
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Comparing with the entirely different derivation given in ref.(S) we conclude
that s (K) is a special 9f-symbol,

[T RS E

s-l(K): {nar} dll du

_{"b' } dn d22_,

We have given a simple example for the use of complex canonical transfor-
mations in nuclear physics. These considerations could be extended to the
interaction kemels of the cluster model ansatz. Recent work by Sunkel and
Wildermuth 1! using integral transforms similar to eq. (8.1) shows thart reactions
involving many nucleons may be calculated by an extension of the methods
discussed in the last sections.
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RESUMEN

La relacion entre el espacio de Hilbert H de la mecanica cuantica y
el espacio de Hilbert F de las funciones analiticas enteras propuesta por
Bargmann, se usa para obtener representaciones proyectivas unitarias del
grupo SL(2,R) de las transformaciones canonicas lineales. Estas represen-
taciones se aplican a un analisis de varios modelos nucleares.





