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POINT TRANSFORMATIONS IN QUANTUM MECHANICS
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C. 1. M. A.S., Universidad Nacicnal de México
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We present first a review of the definition and properties of
classical and quantum canonical transformations, from the point
of view of a current program on the role of canonical transfor-
mations in Quantum Mechanics. The groups and the corre-
sponding infinitesimal algebras are explored. The subgroupof
point transformations (i. e. canonical transformations between
pairs of conjugate observables, where one of a pair is function
only of one of the other pair) is of special interest since it is a
group of transformations for which classical and quantum me-
chanics follow each other. Only the group of inhomogeneous
symplectic transformations has similar characteristics. Point
transformations are treated in detail and a principal series of

unitary representations is constructed.

1. INTRODUCTION

The role of canonical transformations in Quantum Mechanics has
recently been a subject of active research at this university'"®. There is
a two-fold purpose in this program: on one hand one would like to develop
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techniques to implement mappings of arbitrary physical problems onto simple
and well known systems, such as the harmonic oscillator, the hydrogen atom,
the point rotor or the free particle, and use the knowledge one has about the
spectra and wave-functions, the symmetry and dynamical algebras and groups,
transition operators and selection rules of the latter, and translate them to
the former?'3'7 . On the other —and farther- hand, one would like to have a
clear and unambiguous answer on a number of fundamental questions which
can be posed on the connections between Classical and Quantum Mechanics:
What is a quantization scheme? When is itunique? What is the relation
between Poisson brackets and commutators? What is the relation between
canonical transformations in Classical and Quantum Mechanics? When do
they follow each other? If they don’t, what is the crigin, natwre and conse-
quences of the disagreement?

For the time being, one can give answers to a fair part of these
questions on the level of Schrodinger Quantum Mechanics (i.e. no spin, no
relativity and not too much else), through the rather elegant method of em-
bedding the problem in a group-theoretical context by introducing the Weyl
ring of all quantum-mechanical operators built from the universal enveloping
algebra of the fundamental Heisenberg-Weyl algebra* . Out of this work
has come a statement on which we intend to elaborate, namely, that among
all canonical transformations, Classical and Quantum Mechanics follow each
other under inhomogeneous symplectic and point transformations.

Homogeneous symplectic transformations have been studied in Ref. 1,
and the purpose of this article is to present some results on point transfor-
mations, i. €. canonical transformations between pairs of conjugate observa-
bles, where one of a pair is function only of one of the other pair. Point
transformations form a function group, where the number of parameters is
infinite and one has to deal with a non-locally-compact group. Although
these groups are not quite Lie groups®, one can in this case define infinitesimal
generators, there being an infinity of them spanning a function algebra, and
find a class of representations with the characteristics of a principal series.
A supplementary series-like class of representations is being investigated’
in connection with the program set out in Ref. 6.

Classically, the problem -if there ever was one- seems to be es-
sentially solved. Quantum-mechanically, however, several restrictions must
be made at this stage on the type of systems we want to work with: First,
the domain of the position and momentum operators will be the space of
infinitely-differentiable functions of compact support on the full line (extenda-
ble to the space of continuous linear functionals on the full line). The
important part of this statement is to ask the full real line to be at our
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disposal. Only in this way will the Schrodinger representation of the quantum
operators of position and momentum be well-defined, and close onto a Heisenberg-
Weyl algebra. Problems related to the phase and time “operators” ¥ -es-
sentially Quantum Mechanics on a compact space~ are thus avoided
by, for the moment, not looking at them. Likewise, the point transfor-
mations considered will be those which map the full line on the full line.
Second, we want to consider invertible one-to-one point transformations.
This has to be so, if we want to find the unitary representation of the group
which will leave the spectrum of a given operator invariant. This is a rather
serious limitation on the general freedom we would like to enjoy, since n-to-1
canonical mappings of phase space have been successfully considered? for
the anisotropic and sector harmonic oscillators. The fine print shows,
however, that the canonical commutation relations preserved there have been
preserved weakly, i.e. only when taking subsets of the matrix elements of
the operators involved, in some particular basis, and extracting n nonequiva-
lent operators and eigenfunctions sets. Classically, this corresponds to
viewing phase space through a set of projection operators which act as a
grid''.  Third, we will not consider mappings which exhibit singular points
such as those encountered by balls bouncing off walls or similar interface
phenomena. Sometimes one can circumvent this restriction by choosing the
domains of the operators to be restricted to a class of antisymmetric, periodic
or periodic-antisymmetric functions. These domains, however, are not always
left invariant by the operators of an algebra.

In conclusion, we ask our point transformations to be one-to-one,
invertible, infinitely differentiable mappings of the whole of phase space
onto itself.

In this approach we are emphasizing the importance of the Heisenberg-
Weyl algebra as the basic building unit for Quantum Mechanics, since we
generate all operators out of its universal enveloping algebra. There is an
“inverse” approach which starts with the symmetry or dynamical algebra'?
and then looks for operators within the enveloping algebra which form canoni-
cally conjugate pairs and which transform under the generated group in the
proper way to qualify them as position and momentum operators . These two
approaches are certainly not equivalent, since not all representations of the
higher groups can be realized on a homogeneous space restricted by the
dimensionality of physical space, although all can be realized on a gener-
alized space-restricted to spheres and the like- of sufficiently high dimension
and both local and non-local measures, while in some representations of the
higher algebras, position and momentum operators are not to be found'*. The
first approach has a classical limit built in, but poses the problem of quanti-
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zation, while the latter has no quantization problems, but a classical limit
is not always defined. This is no problem for quantum characteristics with
no classical analog (i.e. spin), in fact, it may seem as a welcome feature of
the theory, but when dealing with canonical transformations of the system,
it may not be clear how to implement them without recourse to the classical
correspondence.

In Sections 2 and 3 we shall define the concepts which were handled
informally in this Introduction, namely, the definitions of canonical and
point transformations in Classical and Quantum Mechanics. In Section 4
we build a principal series of unitary representations of the group of quantum
point transformations.

2. THE GROUP OF CLASSICAL POINT TRANSFORMATIONS
2.1 Classical Canonical Transformations
In Classical Mechanics, let g and p be a pair of canonically conjugate

observables (i.e. such that their Poisson bracket {g,p} = 1), and consider
a mapping

g—q' = lq,p), (2.1a)

p=p =0, G2, 1h)

such that the functions @(q, p) and Y (q, p) are differentiable everywhere
and the Poisson bracket is preserved,

{p(g,0), Y (g, p)} =1 . (2.1¢)

The transformation (2.1) is then said to be canonical'® . Equivalent defi-
nitions can be given in terms of Lagrange brackets, Pfaffians and conservation
of measure in phase space® '5:1% [t is proven that if f'(g",p")=[(q,p)
and g'(q',p") = g(q, p) are elements of &, the space of infinitely differenti-
able functions on phase space,

(.6 g V= {1 Yig.p)= {[.e¥lq.p) - (2.2)
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Clearly, the set K of invertible classical canonical transformations
(2.1) forms a group, the unit element being the identity trasnformation, and
the space @ itsell can be taken as a homogeneous space for K

2.2 The Classical Group and its Generators

One can define a correspondence between & and K, in the manner of
Lie, introducing” for every z(q,p) € é‘), a first-degree operator

= - =-Z=° (2.3a)

which has the property, that for every f (g, p) €2

zopf = {z,f} . (2.3b)

The functions z€@ can then be used to define a one- parameter
group of transformations of & on itself as

= exp(Tz, ) f=f+7{z, [} + (/20 {2z {z,/}} +... (2.4)

The linearity of the operator (2.3) allows us to write (2.4) as
['(4,0) = exp(72.)[ (9,0) = [ (q",p")

=f (exp(Tzop) q, exp('r‘zﬂp)-p) ; (2.5)

In this way, every (up to an additive constant) z€28 generates a one-parame -
ter subgroup, the set of which is to be identified with K. We can thus build
the (pseudo)-Lie algebra of infinitesimal operators s themselves with the

Lie bracket

(o, .8 1=d{z

- % (2.6)
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We call it “pseudo-Lie” algebra because it has an infinite number of
elements, in fact, those of B/c,i. e. functions which differ by an additive

constant are identified.

One can define another correspondence between d/c and the elements
of K by the use of the generating function 14,15 This “paramertrization” of K
is not convenient for our purposes, however, since we have no true way of
building one-parameter subgroups. The correspondence between both ap-
proaches has been studied but is not, in general, simplem.

2.3 The Inhomogeneous Symplectic Subgroup

One subgroup of K is the set of inhomogeneous symplectic transfor-

mations

7= of agthpte (2.7a)

cgtdptf, (2.7b)

o=y
a,b,...,f€R, the real field,

which is canonical if ad -bc = 1, and can be identified with a group
ISL(2,R) = ISp(2,R). The subset of B/c generating 1Sp (2, R) can be seen
to be all up-to-second order polynomials in g and p, of which we can choose

the linearly independent set

2

=AWt -4) = spe. iy= 4*te?), qp . (2.8)

2.4 Classical Point Transformations and their Generators
The subgroup of K transformations of the form
q' = (g (2.9a)
p' =Yg, p) (2.9b)

is the group P of point transformations.
We can generate a one-dimensional subgroup (b_,_ of K depending on
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the parameter 7 and entirely in P if we propose a generator function

z(q,p) = pf(q) tg(q), (2.10)

so that, from (2.4)

2 3
= T d i -1T" 1ig) i) L fgr+ .
P (9)=q-7f(q) 5 /(q) dqf(q) 5 /(q) = q) ps f(q)

(2:11)
which satisfies
dep_(q) de. (q)
a"T = V= < f 1) L (2.12a)

g

which, given f(g), can be used to determine ¢,(g) under the change of varia-
ble

-1
r=x(@ =[] dg, a=Xx"@), (2.12b)

as

¢, (q) = exp [T (pf + &), ) 4 = X txig) -T), (2.12c)

which can be checked to satisfy (2.12a) with the correct initial condition
rpﬂ (q) = Gis
Similarly, a gb_r(q.p) in (2.9b) wil! satsfy

3. (g, ) o 3
"’Ta,r - z()p L,’J,r(q,[)) = [(P} +g) Aé_,f; - fET] ] L!J'r(q' P) ’ (2-13)

where the dot means differentiation with respect to the argument ¢ . It can
be scen that, in order to conserve the canonical Poison bracket relation, we

must write

= % =1 .
Yola, ) =2 Lo (@] 47,09 (2.14)
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Now, in order to determine ’)/_r(q) we replace (2.14) in (2.13) and using (2.12)
we get

3Y..(q) . -1, ay,.(q)
7 - 5,@) g g 2T

2.15
o -2 (2.15)

This equation looks very much like (2.12) but is inhomogeneous with re spect
to it in the sense that the solution can be written as ‘){r(q)= ¢:lq>d(q)+CP.,,(q)+c2
where o8 and s ‘are constants and S-r(q) satisfies again (2.15). The initial
condition ’)g)(q) = 0, however, requires that €, = 0= €y - For the trivial case
g= 0 wehave y_= 0. The more general case will be solved below (eqs.
(2.19) and (2.20)).

2.5 Ray Transformations

In order to solve (2.15) for )f,’_(q), it can be remarked that a general
point transformation (2.12) -(2.14) can be made in a two-step process: one
where the generator function (2.10) is z(q,p) = pf(q) so that Y= 0in (2.14),
and a second, which will be called ray transformation (because it will give
rise to ray representations of the Heisenberg-Weyl group),which is generated

by functions of the kind z(q,p) = pg + g(q) i.e. f(¢g) = g hence X = In and
-1

X = = exp, so that (2.12) and (2.14) yield
i’ = e'Tq , (2.16a)
p'=e"pty Aq) . (2.16b)

The set of these transformations forms a subgroup R of P. We can now find
a series expansion for 7y, (g) in powers of T by using (2.4) on p, i.e.

V@ = I Tt peeTp= 5 Ty (g, (2.17a)
n=0 pn!

n=0n!

where ¥ (9)= 0, 7,(q) = é(q) and

%, (@) = £(@) =97, (a) . (2.17b)
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It is a simple matter to check that the series (2.17) satisfies the
differential equation (2.15) for the ray transformation (2.16). We can detemine
directly that for g(g) = ¢, we obtain % lg) = [1-(1-m)"] qm'1 and thence
y.r(q) _ e‘rqm-l
a linear combination of y_’s the group multiplication of R being the addition

(1-e™7). Since a linear combination of g's will produce

of functions, the Taylor expansion of a general g(g) will yield

Volq) =e” g g(g)-gle )] | (2.18)

which has the right boundary conditions and satisfies (2.15). The generai
point transformation can thus be generated by (2.10) as

g—q' =) =X"(X(@-T) (2.19a)

. -1
p=p' = (g, p)=p [cpf(q)] +y,.la) (2.19b)

where we use the definition (2.12b) and

- =1 r
V() = [1() o (@] [g(q)-glaptal] | (2.20)

which can be scen to satisfy (2.15).

3. THE GROUP OF QUANTUL POINT TRANSFORMATIONS
3.1 The Quantization Process
One can describe the quantization of a system characterized by a
set of observahles as a scheme by which we can associate to each function

fig,p) in @ relevant for the system, one element F(Q, P)of W the universal
enveloping algebra of the Heisenberg-Wevl algebra W -

‘Q.Pl=iH, Q@ HI =0, [PH]=0, (3.1)
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i.e. the set of all formal sums and products of the generators Q,P and H,
including formal infinite series'. We further ask for the element F(Q,P)
to be hermitean under the scalar product defined on the Heisenberg-Weyl
group W generated from (3.1), which essentially reduces to the statement
that Q,P and H be taken hermitean. When we speak of a “quantization
scheme” we mean a scheme for associating to every function f(g,p), poly-
nomial or series in ¢ and p, an F(Q,P). The quantization scheme is not
unique® and, it may be argued, it should be physically irrelevant, at least
in the framework of the physical systems amenable to solution a la Schrodinger.
This is certainly the case for up-to-second order operators in Q and P:
however, it has been found that the dynamical algebras, classically equiva-
lent through a point transformation® may not be unitarity equivalent on the
quantum level”: they belong to different representations of the algebra, a
feature directly traceable to the fact that the quantization scheme is not in-
variant under general canonical transformations and thus the values of the
Casimir operators (or order higher than two in Q and P) need not be equal
even though the dynamical algebras are the same. Thus, if we want to avoid
“paradoxes” of this kind, we must follow the maxim guantize once and only
once.

?

Keeping this in mind, we can choose the quantization scheme proposed
in Ref. 4 out of simplicity on group-theoretical arguments, the “symmetrization”
rule which is defined through

""" =5 {Q"P"+P"Q" } , (3.2)

and represent Q and P in the Schrodinger realization

Qflg) = gqf(q), Q:¢q 5 (3.3a)

Plg) =-i62 f(q), P:-i52 | (3.3b)
e dq

Hio) = 5/(g), H:# , (3.3¢)

where the colon separates the abstract operator from its realization, on the

space of infinitely differentiable functions f(q) of compact support. These
are dense in the space of square-integrable functions on the real line with
measure dg. The domain of the operators (3.3) can then be enlarged through
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adjunction to the space of continuous linear functionals. We do not have
to explore the full freedom in choosing non-Schrodinger realizations of the

1 all are uni-

algebra (3.1) since the Stone-vonNeumann theorem asserts that?
tarily equivalent to (3.3). Indeed, through the use of the unitary represen-
tations of canonical transformations we should be able to explore this freedom

in a systematic fashion.
3.2 Quantum Canonical Transformations

We now want to build a proper definition for a canonical transformation
in Quantum Mechanics as a mapping of N on itself, i.e.

Q- Q =®(Q,P,H) , (3.4a)
®: P-P'=¥(Q,P,H), (3.4b)
H-H' =Q®H) , (3.4c)

such that the functions ®, ¥ and ) include a specification of the order of
the arguments, and the commutation relations of the algebra (3.1) be preserved,

1€
[®Q,P.H), ¥(Q,P.H)] = Q(H)
[®.@] =0, [¥.Q]=0, (3.4d)

and such that the domains of @', P’ and H' be the same as that of Q, P and
H. As H'is still in the centre of W}, it cannot but be a function of H only.

A representation of W will yield a representation of (3.4) if we take
the latter to be a similarity transformation of 0 as

Q' =c,AQA™, (3.5a)
P'=c APA" (3.5b)
H'=c¢cH, (3.5¢)

b
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; ; =
where we assume the existence of a left inverse A~ for every element A

considered, which evidently satisfies (3.4) when the numbers €1 Cp and <,
are related as

- .5d

T (3.5d)

and thence, for the whole of I\

F'(Q.P)=F(Q',P') = F(AQA™', APA™' )= AF(Q.P) A" .
(3.6)

Furthermore, if the set of transformations (3.4) is to form a group, a two-
; . = .
sided inverse A" must exist.

3.3 Unitary Quantum Canonical Transformations

The very general realization (3.5) is, besides the assumption of the
existence of an A™' for every A considered, not very satisfying since the
transformation (3.5) does not in general preserve the hermiticity of the e
lements of i}, unless A be unitary (with respect to the measure on the
Heinsenterg-Weyl group), i.e. the existence of Al = AJr is assured. Preser-
vation of liermiticity thus leads us from the group of general transformations
(3.4) to a more restricted group, “parametrized” in a different way, of unitary
canonical transformations Q, given by
z f- 1]
i Ff . ei'l" Z Fe-:"r Z

o B
=F+ir [Z,F] + “_;’ri [z,[Z,F]) +... (3.7a)

exp (z"r'me YE

where the hermitean element Z(Q,P) el generates a () transformation on
Fell labelled by Z, where we have defined®® the operator Z__ associated
to Z as
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2. E=iLF (3.7b)

a generalization of (2.3b) in (2.4). The linearity of (3.7b) allows us to write
(3.6) as we did with (2.5). Furthermore, the pseudo-Lie algebra of infinitesi-
mal generators of Q is given by the hermitean elements of W themselves with
the Lie bracket

(2, Zocom) =12, Z,) o (3.7¢)

1com’ " 2com

a generalization of (2.6) which can be proven by applying it to any F€ I and
using the Jacobi identity. We expect that a representation of the hermitean
elements of Ul as (3.3) will provide a unitary representation of Q.

We should remark here that while we will indeed only consider elements
of Q, particular non-unitary canonical transformations, with A = 11(Q), function
only of Q, in a basis where @ is diagonal, are being used to provide the
passage between local and non-local measures preserving the hermiticity of
operators in I which generate the dynamical algebra of a system. The price
paid is the loss of hermicity of the operators Qand P themselves®.

What is the relation between K and 0, the classical and quantum
groups of canonical transformations? There being an infinity of quantization
schemes, to every z € & of order higher than second in g and p will corre-
spond in general more than one hermitean operator Z€ 0. Hence, to every
one-parameter subgroup in K will correspond one or more one-paramter sub-
groups in Q. There is thus in general a many-to-one correspondence between
the elements of O and K.

Assume, however, that we have chosen a definite quantization scheme
so that out of K we build a unique subset of @, so that to every one-parameter
subgroup of K generated by a function z corresponds a one-parameter subgroup
of Q generated by the corresponding, unique, operator Z. In this way we
construct a one-to-one mapping between the elements of the generating alge-
bras of K and the subser of Q which can be extended, at least locally, to the
group. This, however, is still not an 1somorphism between the algebras (nor
the groups), since we must still demand that under the Lie bracket operation,
the one-to-one correspondence be preserved, i.e. that the Poisson bracket
(2.6) for K keep the correspondence with the commutator i3.7c) for @ . This
clearly does not hold in general. We conclude therefore that K is neither
locally nor globally isomorphic with O, not even within a definite quanti-
zation scheme subsert.
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We can restrict ourselves, however, to those subgroups of K and Q
whose generators do maintain the correspondence between Poisson brackets
and commutators. Indeed, we have a slightly larger freedom in that if a
commutaror differs from the quantization of a Poisson bracket in an additive
term, function of H only, the correspondence is still assured, since the
generators of Q act through the commutator operation (3.7b). These subgroups
are precisely those of inhomogeneous symplectic and point transformations*.
The classical and quantum versions of these subgroups will be isomorphic.

3.4 Extended Symplectic Transformations

The group of linear automorphisms® of the Heisenberg-Weyl algebra
W (3.1) is given by

Q Q' a b e Q
Pl— | P = e d P (3.8a)
H HZ 0 0 g H ,
such that
g = lad- bc]_l : (3.8b)

The upper-left 2x 2 submatrix is, for g = 1, the group of real symplectc transfor-
mations $p(2, R) considcred in Ref. 1. This is multiplied in direct product
by the subgroup of dilatations Dil/{g) with g = 0, and multiplied in semi-di-
rect product by the subgroup T(2) of “translations” Q= Q +eH, P = P + fH.
This is further multiplied in semi-direct product by the representatives of the
two disconnected pieces of the dilatation group g > 0 and g <0, a C(2) group
of two elements. The group of automorphisms of W is thus the extended
symplectic group

C(2) 2 [T(2)2(Sp(2,RYe Dil)] . (3.9)

There is clearly an isomorphism between the Isp (2, R) 22 T(2) 2 5p(2, R)
subgroup of (3.9) and the group (2.7) of classical inhomogeneous symplectic
transformations. Under these restricted canonical transformations, classical
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and quantum observables and operator: of up-to-second order are mapped
among themselves and hence, for these transformations on these observables,
Classical and Quantum Mechanics follow each other.

3.5 Quantum Point Transformations

The subset of Q of elements of the form

Q- Q' =0(Q) (3.10a)
P-P'=¥(@Q,P,H (3.10b)
H—-H' =Q(H) (3.10¢)

in analogy with Section 2.4, will constitute the group of quantum point transfor-
mations if it preserves the W algebra (3.1). We can translate the results of
Sections 2.4 and 2.5 to the quantum case* ?* because both the classical
generator functions (2.10) and the functions involved in (3.10) i.e. (2.12¢)
and (2.14) are of the form z (g, p) = pF(g) * G(g). Under quantization in the
symmetrization scheme (3.2) we associate the operators

Z(Q,P)=%5{PF(Q+F@QP}+6(Q) , (3.11)

and it is easy to check that the Poisson bracket and commutator of two
quantities —classical or quantum= of the form (3.11) is again of that form.
As F(q) and G (g) . they are d.ifferentidblc and hence F(Q) and G (Q) are
formally so, defining F(Q) and G (Q) as

[F(Q),P) =iHF(Q) . (3.12)

The expansion series (3.7) for point transformations generated by Z acting
on Q and P, is then identical to (2.4) generated by z acting on ¢ and p, with
7'H=7T. ‘Ihe group of quantum point transformations (3.10) is therefore
isomorphic to the group P of classical point transformations, and will be
denoted by the same letter. Without further computation we can thus state
that (3.11) in (3.7) generates a point transformation (3.10) in P with
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Q' =0,(Q)=X"(XQ-7'H, (3.13a)
. 3 | n -
P'=w(Q,P)=%{P[® (@] +[®.(@] P}+TI Q) ,(3.13b)
H'=H . (3.13c)

where upper-case greek-lettered functions are identified with their classical
lower-case counterparts > in (2.12) and (2.15). Using (3.12) it is easy to
show that (3.13) indeed leaves the algebra W invariant. When writing down
these equations we have glossed over as to the kind of elements of Ul which
can be used. We repeat the caveat given in the Introduction: We ask our
point. transformations to be one-to-one invertible, infinitely differentiable
mappings of the whole phase-space onto itself. We further assume that we
are working in a representation (where Q is diagonal, for instance) where we
can give meaning to the possible appearance of formal power series in Q.
For operators of the kind (3.13) under point transformations, therefore,
Classical and Quantum Mechanics follow each other. We should note, however,
that even though we have proven that the classical and quantum versions of
the subgroups of inhomogeneous symplectic and point transformations are
isomorphic, the composition of one symplectic and one point transformation
may lie outside both subgroups. Similarly, the correspondence will break
down if we apply point transformations to observables other than (3.13) (i.e.
(2.8), for example) or symplectic transformations to observables other than
(2.8) (i.e. (3.13), for example).

3.6 The Quantization Scheme under Canonical Transformations

Consider two or more systems related through a canonical transfor-
mation on the ciassical level. This is the case of the three elementary one-
dimensional svstems considered in Ref. 6. It is a question of central inter-
est to know whether this correspondence can be carried over into Quantum
Mechanics through a single quantization scheme. The answer is, in general,
no. In order to show this it is sufficient to give a counterexample.

Consider the observable f = gp? and its corresponding hermitean
operator F = % {QF’2 3 PQQ } under the symmetrization scheme (3.2). Now
consider a classical canonical transformation (2.19) with A 0 for simplici-

ty and a fixed 7, and its quantization
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-2

f=f" = @) [o@] p*=0(g)p?

=45 {0Q) P +P*O(Q)) . (3.14a)

Lastly, consider the hermitean operator obtained from F through (3.13),
again, with r‘rE 0. This is

F~F' =(1/8@{tP+PY} + {YP+PY} ®)
(3.14b)
=5 {0QP*+POQ) + sH 4DYT + 207 Y +30Y7)

where =P (Q)and T = (d’)-l. This is obviously an operator different from
(2.24a), although they both have the same classical limit /.

When is the quantization scheme preserved? It is preserved for up-
to-second order functions under symplectic transformations and for functions
of the kind pf(q) + g (q) under point transformations. It appears that no other
general cases exist.

The importance of the non-invariance of the quantization scheme
under general canonical transformations, is that the Casimir operators of the
dynamical algebra of two classically related systems, being of order in gener-
al higher than second in g and p, may not be equal quantum mechanically, so
that the quantum systems belong to different irreducible representations of
the algebrag.

4. UNITARY REPRESENTATIONS OF THE GROUP OF
QUANTUM POINT TRANSFORMATIONS

4.1 Two Eigenbases

Consider the eigenbasis of the operator Q in (3.3) { Iq>, gE(=o00, )}

Qlg> =4qlg>, (4.1a)
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orthonormal in the Dirac sense
<qlg'>=8(g-¢") , (4.1b)
2
and complete in £ (= oo, o)

f:o|q>dq<q|=1, (4.1c)

so that
<qly>=y(g), yed. (4.1d)

Consider now the general (unitary) point transformation (2.15) =(3.13), de-
fining a new bases

leh =o' @) > =lg>, ¢'= 9@, (4.2a)

=il . . ; :
where @ is the inverse function of ¢ (corresponding to the operator function
®), both in 8. This is an eigenbasis of Q' = P (Q) since

Q') =0@] 9" (4D > = 90 (gV] 9 (gD)> =¢"|¢" ,
(4.2b)

2
orthogonal and complete in I (- o0, 0), and

(g' |y >=<9 )]y > =i (g") =Y(q) . (4.2¢)

2
The scalar product in 1 (=o,) can be written in terms of either
basis as

<y 1, > =J7_da () ()

= R P L
':f:( )[<P(<P'(q )] dq ¢'1(<p’(q ) l,bz(cpl(q 0 (4.3)

-og
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where ¢ is the derivative of ¢ with respect to its argument. It will prove
convenient to define a positive definite weight function @_ so that the measure

in (4.3) be b
dg = w:p(q‘) dq' | (4.4a)
where
' . =7 1] =l —— '
wda) = 5@ @ N = [eT(g"] (4.4b)

takes care, through the absolute value, to keep in (4.3) the lower integration
limit ¢ (=) smaller than the upper limit ¢ () by exchanging them whenever
¢ is a decreasing function of g. All integrals will henceforth be from - to
0 and the limits may be dropped from the notation. By ¢ ! we mean the
derivative of cp" with respect to its argument. The characteristics of the
mapping ¢ imply that @_ will not vanish over g .

The basis {lq)} is not normalized in the sense (4.1b) but, ¢ being

monotonous
(q,19,) = 8¢ (g))- 47" (g,)) = [ 18 4
ql q2 - L ql =9 qz - mcp(q]) (ql = 92) ’ (4.5a)
while completeness in Ez(—m,m) is phrased as

Jloyey@dg@=1. (4.5b)

We can normalize the basis { |q)} however, to form an orthonormal (in the
sense of Dirac) basis

= ’q) wq,(q)zafb|q> (4.6a)

orthogonal and complete in the same sense as (4.1) but eigenbasis of Q.
Formally ®€P is the point transformation which maps the basis {|q>}
on the basis {|g>'}, in this notation

Q' =0Qd"' = d(Q). (4.6b)
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4.2 The Transformation Matrices

In order to find the transformation matrix

l<aq, |®lq,> | = l<q,lq,>] (4.7a)

between the original and the transformed bases, we inclose Q' = ®(Q) in the
bracket <gq, |, |q2 >, obtaining

<q,1Q'lg,> = q,<q,14,> = 9(g,)<q, |4, (4.7b)

hence the transformation bracket <q, |q2 >' must have the form

<q,19,> = 8(q, - 9(q,) pyy(a,) , (4.7¢)

where 11 is an as yet undetermined function of 9,- We have asked the point
transformation (3.13) to be unitary, that is, if {|q >} is a complete ortho-
normal basis, so must {|q >'} be, thus placing all eigenbases of operators
related through point transformations on the same footing.

Hence, let

5(q,-q,) = '<q,lq,>" = [*<q,|q,> dg, <q,]q,>'
= J8(q,- 9(q, ),ucp(ql) 49; 4, 9(4,)) pola,) (4.7d)

s _ =1 2
= oo™ @] luga)| 3g,- a0,

where we have used (4.4b) and (4.7c¢). The point transformation PeP will
thus have a unitary representation in the basis {|q>} when, in (4.7c)

2 =1
@] = [wp() (4.8)

This determines Fi up to a phase.
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A similar analysis for the transformation ¢! allows us to write
'<q,lq,> = 8(q,- 97 (g,)) e @) (4.9a)
which can be directly compared with (4.7c) written as its complex conjugate
[ | - -1
<q,19,”> = 8(q,- 97 (q,)) [iy(g,)] (4.9b)
so we conclude that
Po@p (@7 (@) =1 . (4.10)
¥
We shall now explore the problem of a consistent choice of phases.

4.3 The Multiplier Representation

Let fD] and @2 be two point transformation elements of P. Their
composition 1s

<I>1 Dy

"

g~ q'~q" =¢9,(9,(9) = ¢,(q) (4.11a)
and similarly

Q" =0,(d (@) =d,Q") =,(Q) . (4.11b)
The corresponding bases {|¢>}, {|¢>'} and {|¢>"} relate as

3lay= 9,08, D1y () = <4, lg,> = [<q,1q,> dq,"'<q,|q,>

=1 8,- 9,03,V (2,149, 3(0,= @, (9, ) 11 (a5

= ,ucpl(aoi{q, )),u%tqs) 6(q,~ 9,(9,(¢,)) , (4.12)
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that is, we have the relation

[} " — " (4'1321)
ucpl(q )/-L%(q ) MQPS(CI )
and hence if q)o is the identity transformation in P
=1 (4.13b
;u%(q) )
Hence the function ,u.cp has the properties of a multiplier®: 7,

4.4 A Principal Series Property

The transformation matrix of ®€P in the basis {|q>} is
<q,|®lg,>=<q, |q,> =
= 8(g,- 9(g, ) py(q,) = 8(q, - ‘P-l(‘fz”“cp-l(‘h) ; (4.14)

and is unitary if (4.8) is sacisfied.
We can examine the transformation undergone by the coordinates of
a vector ). Indeed, under ®,

¢ , i
<qly> = '<qly>=["<qlq, >dg <q |¢p>
. -1
= J8(q,- 97" (q)) [uwgq)] dq Y(q,) , (4.15a)
where we have used (4.9b). Hence, a function over ¢ transforms as

Vig) 2 opiq) = [e(@] " d (@™ (q) . (4.15b)

In this way we have a multiplier representation of the group of quantum point
_ 2 . . :

transformations P on the space L (=00,m). We recall that if /4 is a mulei-

plier, so is any power of it. In particular, we can satisfy the condition of
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unitarity (4.8) proposing

- i

Heop(@) = [wq)(q)] ’ (4.16)

|
=2

= [wcp(q)] exp [iAln w(p(q)] , (4.16)

for A real. This has the advantage of establishing a direct connection with
the principal series multiplier representations for semisimple groups? in
terms of the Jacobian (4.4), i.e.

|dq/dq' | = @, (g") . (4.17)

Two representations with different A's differ thus by a g-de-
pendent phase factor.

4.5 Ray Transformations and the Heisenberg-Weyl Group.

We want now to explore the freedom we have in (3.3) to add any function
['(Q) to P and still have a canonically conjugate operator to Q, i.e. the ray
transformation® Q ,P = Q,P+[(Q) in R (Section 2.5) in terms of the multi-
plier representation introduced in the last section.

We can choose the realization (3.3) (the Schrodinger representation)

of the Heisenberg-Weyl algebra as basic. When integrated to the group, P
generates translations T, by r as

Y(q) = T, \p(q) =expirP/B) Y(q) = Y(qg+r) . (4.18)

If we now add to P a function [ (Q) through a ray transformation in R, the
integration to the group will be given by

V(g = T Y(g) = explir [P + (@) /5) Y(g)

=vi(g, r)Y(gtr) (4.19)

where the function v (g, r) is a multiplier. As Tor‘= 1 we must have v (g,0) = 1.
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We can relate v(g, r) with the generators of the transformation through

dvig,r) o b iy (4.21)
=0t =2vie, '

=1

where as in Section 3, ¥ is the function corresponding to the operator function
[". Itis alsostraightforward to check that the translation group multi-
plication implies the multiplier composition law

V(q,rl)V(q+rl,r2)zy(q,r!+r2) =v(q, r2)v(q Frys rl) . (4.22)

We can propose a general form which will satisfy (4.22) introducing
the complex parameter O as

o

7 (gq,r) = [plg +r)/p(g)] (4.23)

which, upon replacement in (4.21) relates p and ¥ through

y(g) = -ito 2 1n plg) , (4.24)
dq

=1
p(q) = exp (i[op] [dgy(g) . (4.24b)

If in addition we ask the transformation (4.19) to be unitary, we come
to the restriction that o in (4.24) must be pure imaginary and hence v7is a
phase depending on & = {7 i.e., for g(g) = In p(q),

Yig) = TH(g) = exp (ir [P+ 71(Q) ] /1) i (q)

(4.25a)
= exp (iT [g(q +r) - g(q)])l,bw ek
where
WY = ﬁ_;" glq) . (4.25b)
faq
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Thus for g(g) independent of g, ['(Q) = 0, while if g(g) is linear in
g, ¥ (g) = constant, and the phase factor in (4.25a) is g-independent. In
general, however, the phase will be g-dependent.

4.6 The Conjugate Operators

The representation of P as a differential operator in terms of the
eigenbasis space ¢’ of Q'is the one obtained writing P through (3.3b) using
the chain rule,

. 5 d _ 3 T |
P: —szﬁ— -ike [mq)(q P] i (4.26a)

where the sign € = + 1 is used for a monotonically increasing function ¢ and

= - 1 for a decreasing one. The operator (4.26)continues to he hermitean
under the scalar product (4.3) for the basis {\q)} . We can then pass to a
new basis {|q>'}, orthonormal in the sense of Dirac, and then P will be
represented as

. e i e
P: -ive [w (g )] 5 [wpe] (4.26b)

which is manifestly hermitean under the measure dg’. Similarly, the repre-
sentation of P’ in (3.13) as a differential operator in the eigenbasis spaces
g' of Q' and g of Q is

P': -ip dir = - itcw (¢ () ;L (4.27a)
7 q

which, when normalized, is represented by

]’z

P': -ibe[w( "(q))]-% 4 [ (¢ (g))
- CPCP a.—'q—- {P(P q

i ) -1 d d -1
ihe 4 {wq,(tp (q)) 5 + g‘}—wcp(q’ (g} (4.27b)

_ -1 d - [ . -1
tﬁew(p(q) (9)) T ibe 2w(P(<p (9)) ,
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hermitean under dg. This is to be compared with(3.13) for ['= 0. An imple-
mentation of the chain rule can thus be seen to be equivalent to the choice

of the point transformation generated by (2.10) with g = 0 and hence ['=0.
The addition of a purely imaginary function in the last equality in (4.27b) is
to be understood as due to a change in the measure, and not as a ray transfor-
mation.

4.7 The Representation in the Conjugate Basis

The eigenbasis {lp >} of P, the operator conjugate to Q, fulfilling

Plp>=p|p>, pel-os,e), (4.28a)

is well known to be related, when properly normalized, with the eigenbasis

of Q through

<qlp>=@mEY? exp (ipg/¥) | (4.28b)

when in the Schrodinger representation (3.3), orthogonal and complete in
E (=o0,00), and similar relations hold for the normalized eigenbasis {|q> }
and {lp> }of Q' and P'. Use of (4.4b), (4.7¢), (4.9a), (4.16) and the com-

pleteness of the bases )1elds

] -‘/2 ‘-Lé+;'7\
<qlp> = (@m#) [wy, (9 (9] exp (ipp(q)/#) (4.29a)

] -4 " - +ik =
<q|p>=(2mp)* Lo 1 (@7 @) T exp (ipp T (@)/F)  (4.29b)

and

<g, | Bp,> =% |5, =

o | / -|(2+1')\_
= (27h)"" [dg exp (- ip q/b) [mrp(rp(qﬂ] exp (ip,p(q)/F)

N

-1 = -1 /. -1 {vi}\
= (27h) qu exp (- v (q)/8) [ w _1( ¢ {q))] cxp (z’pzq;’ﬁ) .
¢

(4.30)
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is the representation of the point transformation ® in the conjugate basis.

It is to be remarked that (4.30) is an analogue (p being continuous
rather than discrete) of Bargmann’s integral formula (with
¢,(q) = 2 arctan (e Ttan {q/Z}), compare with the form (2.12¢)) for the matrix
elements of the principal series of SO(2, 1) group%' %7 the Bargmann dmm; (T)
functions. The multiplier phase given by A in (4.16) is thus seen to be of
determinant importance A supplementary series of representations can be
obtained letting the additive function to P’ in (4.27b) to be a real function
stemming from a true ray transformation and allowing the completeness rela-

tion to read

[[lp>dpQp,pydp'<p'| =1, (4.31)

thereby introducing a non-local measure in the conjugate p-space. This

problem is under unvestigation®.

5. CONCLUSION

We have used the Heisenberg-Weyl algebra and its realizations to
frame the role of canonical transformations in Quantum Mechanics, leading
to the mapping of a physical problem into a mathematically simpler system
with a linear or constant-density spectrum with a known dynamical algebra,
and we have found unitary principal-series representations for the group of
point transformations. These have been shown to be essentially a continuous
generalized analogue of the integral formulae obtained for the representation
matrix elements of non-compact classical groups as groups of deformations
(point transformations) of homogeneous spaces as spheres, hyperboloids and
similar coset spaces.

The usefulness of the formalism presented here must be justified,
however, with concrete applications to definite pairs of “physical” systems
and their corresponding dynamical algebras and groups. This will be done
in future publications where the systems to be related will be the point rotor,
the harmonic oscillator and the (pseudo-) Coulomb potential. All three are
classically related by pairs through canonical and point transformations and
exhibit $0O(2,1) as their dynamical group. That “not all 1s well” quantum
mechanically, is obvious from the fact that their spectra are different. A
thorough understanding of the role of canonical transformations in Quantum

Mechanics should account for these differences as stemming from the fact
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that these systems belong to different representations of the dynamical
algebra and provide the proper quantum passage from one system to another.
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RESUMEN

Se presentan la definicién y propiedades de las transformaciones ca-
noénicas cldsicas y cuanticas, desde el punto de vista de un programa actual
de investigacion, que se lleva a cabo sobre el papel de las transformaciones
canonicas en Mecanica Cuantica. Se exploran los grupos y las dlgebras in-
finitesimales correspondientes. El subgrupo de transformaciones puntuales
(es decir transformaciones canénicas entre pares de observables conjugadas
donde una observable de cada par es funcién sélo de una del otro par), es de
interés especial, ya que es un grupo de transformaciones para el que la me-
canica clasica y la mecanica cudntica dan resultados iguales, Solo el gru-
po de transformaciones simplécticas inhomogéneas tiene caracteristicas si-

b

milares. Las transfurmaciones puntuales se tratan en detalle y se construye
una serie principal de representaciones unitarias.





