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ABSTRACT: Wepr~senr firsr a review of the ddinition and properties of

classical and quantum canonicaJ transformationst from the point

al vi~w of a current program on the rol~ of canonical transfor.

mations in Quantum Mechanics. The groups and the corre.

sponding infinitesimal algebras are eJ:plored. The subgroup of

point transfonnarions (i. e. canonical rransfonnations between

pairs oE conjugare observables, where one oE a pair is function
only .0E one oE rhe other pair) is oE special interesr since it is a

group oE transformarions for which classical and quantum me.

chanics follow each other. Only the group of inhomogeneous

symplectic transfonnations has similar characteristics. Poinr

transfonnarions are ueated in detail and a principal series of

unitary represenutions is constructed.

1. INTRODUCTlON

The role of canonical transformations in Quantum Mechanics has
recently been a subject ol active research at rhis universityl.6. There is
a two.fold purpose in this program: on ane hand one would like to develop
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techniques to implement mappings of arbitrary physical problems ooto simple
and well known systems, such as (he harmonic oscillator,thc hydrogen atom,
(he poior rOtor oc (he free particle, and use (he knowledge one has abour che
spcctra and wave-functions, [he syrnmctry and dynamical algebras and groups,
transition operators and selection rules of (he lanee, and translate them to
(he former2• 3, 7. On (he other -and farther- hand, one would like lO have a
clear and unambiguous answer 00 a number ol fundamental questions which
can be posed 00 (he connections betwcen Classical and Quanrum Mechanics:
\t'hat is a quantization scheme? When is ie unique? Whar is [he celarion
betwcen Poisson brackets and cornmutarors? What is the relation between
canonical transformations in Classical and Quanmm Mechanics? When do
they follow each omer? If mey don't, whal is the origin, namre and conse~
quenccs of the disagreement?

For rhe time being, one can give answers to a fair pan of lhese
queslions on lhe leve! of SchrOdinger Quantum Mechanics (i. e. no spin, no
relativity and nO( [00 much else), through lhe ramer elegant mechod of em~
bedding che problem in a group~cheoretical Concext by introducing the Weyl
ring of all quantum~mechanical operators built from che universal enveloping
algebra of the fundamental Jleisenberg-\t'eyl algebra'" 5. Out of this work
has come a statement 00 which we intend tú elaborate, oamely, mat among
all canonical transformations, Classical and Quantum Mechanics followeach
omer under inhomogeneous symplectic and point transformations.

1I0mogeneous symplectic transformations have beeo studied in Re£. 1,
aod lhe purpose of this article is to preseoc sorne results 00 point transfor~
mations, i. e. caoonical (ranSfOemalions belween paies of conjugale observa~
bies, where one of a pair is funccton ooly of one of the olher pairo Poinl
cransformarions form a f~Jnction group, where che number of paramecers is
in(inile and one has tú deal with a non-Iocally-compact group. Ahhough
these groups are nor quite Lie groups8, one can in this case define infinitesimal
generators, rhere being an infinity of rhem spanning a funcrion algebra, and
find a class oí repr~sentalions with lhe characteristics of a principal series.
A supplemencary series~like class oí represenlations is being invcstigalcd9

in connection with lhe program sel OUl in Re£. 6.
Classically, rhe problem -if lhere ever was one- seems lO be es~

sentially solved. Quancum~mechanically, however, several restrlctioos rnusl
be made al this scage on the eype oí systems we waOl to work with: Firsc,
che dornain of (he posilion and momentum operators will be (he space oí
infin itcly .•differenliable functioos of compact support 0f1 che fu/! line (cXlenda~
bl(' (O (he space of concinuous linear functionals 00 lhe full lioe). The
important pan of [his slalement is to ask (he full rt.'al lioe lO be ae our
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disposal. Ooly io chis way will (he SchrOdioger rep-esenra(ion of me quao(um
operators of posi(ion and mornen(umbe well-defined, aod close onto a Heisenberg-
Weyl algebra. Problems related ro rhe phase and rime "operarors"}O -es-
sentially Quantum Mechaoics 00 a compact space- are thus avoided
by, for the momenr, not looking at them. Likewise, rhe point rransfor-
marioos considered will be mose which map the full lioe 00 the full line.
Secand, we wanr ro consider in vertible one-to-one point (raosforrnarioos.
This has to be so, if we want ro find rhe uoirary represeotation of che group
which will leave the specrrum of a given operaror invariaor. This is a rarher
serious limiration on rhe general freedom we would like [O eojoy, sioce n-ro-l
caoonical mappiogs of phase space have been successfully considered3 for
rhe anisorropic and secror harmonic oscil1arors. Thc fine prior shows,
however, mat me caoonical commuration relations preserved rhere have beeo
pres~rved weakly, i. e. ooly when raking subsers of rhe matrix elemenrs of
the operarors involved, io sorne particular basis, and exrrac(ing n nooequiva-
lenr operarors and eigenfunctioos sers. Classically, this corresponds ro
viewing phase space rhrough a set of projection operarors which acr as a
grid 11. Third, we will not consider mappings which exhibit singular points
such as those encounrered by balls bouncing off walls or similar inrerface
phenornena. Sorne rimes one can circurnvenr rhis restrictÍon by choosing the
dornaios of rhe operarors ro be resrricrcd ro a class of amisyrrmerric, periodic
oc periodic-antisymrnerric funcrioos. These dornains, howevec, are flot always
left invariant by the operarors of an algebra.

In conclusion, we ask our point rransformariofls to be ooe-to-one,
iovertible, infinirely differentiable rnappings of the whole of phase space
ooto itself.

In (his approach. we are emphasiziog (he importance of che Heisenberg-
Wcyl algebra as (he basic building unir for Quanrum Mechanics, since we
generare a11 opera(ors our of irs universal enveloping algebra. There is an
"'inverse" approach which s(arts w¡th the syrnmerry or dynamical algebra}2
aod then looks for operators within (he enveloping algebra which forro canooi-
cally conjugate pairs and which transform under (he gcnerated group io rhe
proper way ro qualify (hcm as positioo aod morneotum opera(ors 13. These rwo
approaches are certainly not equivalent, since not al) represenrations of the
higher groups can be realized 00 a homogent:ous space restricted by (he
dirnensionality of physical space, although all can be realized 00 a gener-
alized space- resrricred ro spheres and the like- oE sufficiendy high dirnension
and borh local and oon.local measures, ",hile io sorne representatioos of me
higher algebras, posirion and rnornenturn operarors are nor ro be fouod 13. The
first approach has a classical lirnit built io, but poses the problem of quanti.
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zadon, while (he lancr has no quantization problems, but a classical Ilmie
is not always defincd. This is no problem for quaotum characteristics with

no classical analog (i.e. spinL in lact, ir mar secm as a welcome feature of

(he [heoe)', bUI when dealing with canonical transformations of me system,
ir may oot be clcar how to implement mem without recourse to me classical
correspondence.

In Sections 2 and 3 we shall define me concepts which were handled
informally in (his Introduecion, namelr. (he definitions of canonical and
poior uansformations in Classical and Quantum Mechanics. In Section 4
we build a principal series of uoitary representations of me grwp of quanrum
poin t tcansformations.

2. THE GROUP OF CLASSICAL POINT TRANSFORMATIONS

2.1 Classical Canonical Transformations

In Classical Mechanics, ler q and p be a pair of canooically conjugare

observables (Le. su eh rhar rheir Poisson braeket {q,p} = 1), and consider
a mapping

q - q' <p(q, p) , (2.1a)

p-p' = .p(q,p), (2.1b)

such rhar the luncrions <p(q,p) and.p (q,p) are differenriable every..-here
and (he Poisson bracke( is preserveJ,

{<p(q, p), .p (q, p)} 1 . (2.1c)

loe uansformarion (2.1) ls rhen ••aid to he canonical1•. Equivalent defi.
nitions can be given in terms of Lagrange brackers, Pfaffians and conservation
of measure in phase space8• 15. 16. lt is proveo [ha[ if ¡'(q'. p') = I (q, p)
and g'(q',p') = g(q,p) are elements 01 .!J,rhe space 01 inlinite1y differenti-
able functlons on phase space,

{j',g'} (q',p')= {¡'.g'} (q,p) (j. g}(q. p) . (2.2)
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Clearly, the set K of in vertible classical canonical transformations
(2.1) forms a group, the unit elernent being the identtty trasnformation, and
the space ~ itself can be taken as a homogeneous space for K

2.2 The Classical Group and its Generators

One can define a corresponden ce between J and K, in (he rnanner of
Lie, introoucing 17 for every z(q, p) E J;, a first-degree operator

%op (2.3a)

which has [he P[operty, lha, fOI eve,y I(q,p) óe

%opl = {%, I} . (2.3b)

The functions Z€i! can then be used to define a one- parameter
group of ttansformattons of J> on icself as

j' = exp(T%op) 1=1 + T {%,/} + (T2 /2!) {% {%,¡}} + ...

The linearily of [he operalOr (2.3) allows us ro wri,e (2.4) as

j'(q,P) = exp (nCf'll (q,p) = I(q',p')

= I (exp(T% ) q, exp(T% ) p)op op

(2.4)

(2.5)

In chis way, every (up lO an addittve constanr) Z€J! generaces a one.parame-
ter subgroup, che set of which is to be idencified with K. \\le can chus build
the (pseudo)-Lie algehra of infinitesimal operators z thcmselves with the

op
l.ie brackct

(2.6)
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We caIl ir "pseudo-Lie" algebra becaust:' ir has an ¡nfinite number of
elemcms, in fact, mose of ~/C, i. e.,'functions which diHer by an additive
constant are identified.

Dne can define another correspondcnce between JJ/c and (he elements
of K by (he use of (he generating function 14,15. This "parametrization" of K

is oot convenient foc our purposes, however, since we have no (rue way of
building one.parameter subgroups. The correspondence between both ap-
proaches has beco srudied but is 110t, in general, simple 18.

2.3 ne lohomogeoeous Symplectic Subgroup

Dne subgroup of K is (he ser of inhomogeneous symplectic tran sfoe-
mauons

,
q-q aq + bp + e , (2.7a)

p -. p' = cq + dp + !,

a, b, ... ,1 € R, (he real ficId,

(2.7b)

which is canonical if ad-be = l. and can be identified with a group
/S'-(2,R)~ /Sp(2,R). The subset 01 6/c geoerariog /Sp(2,R) can be seeo
to be all up-to-secand order polynomials in q and p, of which we can choose
the lineady independent set

:"(P'-q'), :"(P' + q'), q,p . (2.8)

2.4 Classical Point Transformations and their Generawrs

Th(' subgraup af K transformations of the form

q (2.9a)

p' \!;(q.p) (2.9b)

15 {he group P of point transformations.
\Ve can gt'neracc a ane-dimensional suogroup cP.,. of K depending on
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(he paramctcr T and enticel)' in P if we propose a generator function

z(q,p) = p/ ('1) + g(q)

so that, flOm (2.4)

51

( 2.10)

rp.,.(q) = '1_ T / ('1) + T 2 / ('1) ~ / ('1) _ \ T 3 / ('1) ~/ ('1) !!.- / ('1) +
2! dq ,3! dq dq,

(2.1l)

which satisfies

"'P ('1)= z 'P ('1) = - / ('1) .,.
q> .,. "'1

(2.12a)

which, given I(q), can be used [O determine r,p,..{q) under me chan~e oí varla~

ble

as

-1

T = X(q)" 1[/('1)] dq, '1= X-
1
(T) , (2.12b)

(2.12c)

which can be eheeked ro satisfy (2.12a) with (he coercer ¡nitial condition

%('1) = q.
Similarly, a </;.,.(q,P) in (2.9b) will,atisfy

0</;.,.('1, P)
OT

= z ,J, ('1 1') =op 'P.,. , [(pI + g) ~p a- /.", ] </;.,.('1, p)
0'1

(2.13)

wher<: me dor means diffewntiation with respec( to (he argument q. It can
be "cen th:.lt. in urder (O const-rve me canonical Poison bracket relacion, wc

rnu~t '.","¡te

(2.14)
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Now, in order 10 determine 'l'T(q) we replace (2.14) in (2.13) and using (2.12)
we ger

[
• ]., • O'l'T(q)

~ 'P'T(q) g(q)-j(q) oq (2.15 )

This equation looks very much like (2.12) bUl is inhomogeneous with respect
10 ir in me sense rhar me solurion can be writren as 'l'T(q) ~ e, 'Pd(q) +'P.,.(q) + c,
where el and C2 "are cons[ancs and 0-r(q) satisfies agaio (2.15). The initial
condition ~ (q) = O, however, requires thar el = O :::::;e

2
. For the trivial case

g == O we have y.,. = O. The more general case will be sol ved helow (eqs.
(2.19) and (2.20)).

2.5 Ray Transformations

In order 10 solve (2.15) for 'l'T(q), ir can be remarked mal a general
poinr transformation (2.12) -(2.14) can be made in a two-step process: one
where rhe generaror funcrion (2.10) is z(q,p) ~ pj(q) so mar 'l'T= O in (2.14),
and a second, which will be called ray transformation (because it will give
cise to cay representations of (he Heisenberg-Weyl group),which is gcnerated
by functions of rhe kind z(q,p) ~ pq + g(q) i.e.j(q) ~ q hence X ~ In and
X" ~ exp, so mar (2.12) and (2.14) yield

-'Tq ~ e q

• 'T
P ~ e P + 'l'T(q) .

(2.16a)

(2.16b)

The ser ol mese transfonnations forros a subgroup RoE P. We can now find
a series f'xpansion for y.,.(q) in powers of T by using (2.4) 00 p, i. e.

~ .
Y'T(q) ~ ¡ :?:...-z. p- e'Tp ~

n-on! op

where Yo(q) = 0, 'l,(q) ~ g(q) and

¡
• -o

(2.17a)

(2.17b)
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It is a simple manee tu check that the series (2.17) satisfies the
diHerencial eguatíon (2.15) for the ray transformation (2.16). We can detenninc

direed)' tbat fot g ('1) = '1m, we obtain Yn ('1) = [1 - (1 - m)n] qm-
I

and menee

() .,. m-1(1 -m"') S' l' b" f' '11 dY.,. q = e q - e . Ince a mear com tn3tlOn o g s \\11 pro uce

a linear combinatíon of Y.,. '5 the group multiplication of R being the addition
of functions, the Taylor expansion of a general g (q) will yield

y.,.(q) = e'" '1-' [g(q)-g(e-"'q)] , (2.18)

which has the right boundary conditions and sati5fi(:s (2.15). Thc genera!

point transformation can thus be generated by (2.10) as

q~q 1'.,.('1) = X-I (X(q)- T) (2.19a)

-1

P ~ p' = tJ;.,.(q,P) = P [~.,.(q)] +Y.,.iq)

whcrc we use the definition (2.12b) ané.

- 1
y.,.(q) = [/('1) ~.,.(q)] [g(q)- g(ro.,.'.q»)l

which can be seco ro satisfy (2.15).

(2.19b)

(2.20)

3. TIIE GROUP OF QUANTU:.' POlNT TRA~,SFOrtMt\.TlONS

3.1 Th(; Quanti73tion Process

One can describe the quantization uf a system charactcrized by a
ser of observable~ as a "'icheme by which we caj"l assllciatc t2,..each func(ian
¡(q.l)) in i rekvant fm rhe systeOi, one eIcment F(Q, P) of Ll) (he universal

eP\'eloping algebra of (he lIei~enbt:rg.\\'eyl algebra l~:

t Q. P]= iH, l Q Hl 0, [P,H] 0, (3.1)
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i. e. (he ser oí all formal suros and products oí [he generacocs Q, P and H.
including formal ¡nfinice series 19. We further ask foc the eIernent F (O, P)

(O be hermitean undee (he scalar product defined 00 [he Heisenberg-WeyI
geoup W generated froro (3.1), which essentially reduces to [he statement
thar Q, P and H be taken hermitean. When we speak oí a lIquantization
scheme" we mean a scheme foc associating ro every funcdon j(q, p), poly-
nomial oc series in q and p, an F(Q, P). The quantization scheme is not
unique20 and, it may be argued, ir should be physically irrelevant, at least
in (he framework oí [he physical systems amenable to solutirn a la SchrOdinger.
This is certainly [he case fOf up-to-second order operators in Q and P;
however, ir has been found that the dynamieal algebras, classically equiva-
lent through a point transformation6 may no! be unitarity equivalent on the
quantum level9: they belong ro different representations of the algebra, a
feature direetIy traeeable ro the faet mat the quantization scheme is not in-
varia"nt under general canonieal transformations and thus the values of me
Casimir operators (or order higher than two in Q and P) need not be equal,
even though me dynamical algebras are me same. Thus, if we want ro avoid
"paradoxes" of this kind, we must follow the maxim quantize once and only
once.

Keeping this in mind, we can choose the quantization scheme proposed
in Re£. 4 out of simplicicy on group-theoretical arguments, me "synuneaizarion"
rule which is defined through

(3.2)

and represent Q and P in the Sehrodinger realization

Q j(q) = qj(q), Q:q (3.3a)

Pj(q) = - i~ ~ j(q), P:-iIJ~ (3.3b)(Jq (Jq

Hj(q) IJj(q) , H:fj O.3c)

where the colon separates the abstract operaror from its realization, on the
space of infinitely differentiable functions /(q) of compact supporr. These
are dense in the spaee of square-integrable functions on the real line widl
measure dq. The domaio of lhe operalOrs (3.3) cao <heo be eolarged lhrough
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adjunecion ro the space of continuous linear funccionals. We do nor have
ro explore rhe full freedom in choosing non-SchrOdinger realizarions of the
algebra (3.1) since rhe Stone-vonNeumann theorem asserts that21 all are uni-
tarily equivalent to (3.3). Indeed, through the use of the unitary represen-
tations of canonical transformations we should be able to explore mis freedom
in a systematic fashion.

3.2 Quanrum Canonical Transformations

We now want ro build a proper definition for a canooical transformatioo
in Quantum Mechanics as a mapping of Ul on itself, i. c.

,
Q-Q et>(Q,P,H) (3.4a)

H - H' = O(H) ,

(3.4b)

(3.4e)

such that the funetions <1>,'1' and {} inelude a specifieation of [he order of
the arguments, and the eommutation relations of me algebra (3.1) be preserved,
1. e.

[et>(Q,P,H), 'I'(Q,P,H)] = iO(H)

[et>,0] = O, ['1',0] = O, (3.4<1)

and sueh Ihal me domains of Q', P:"'- and H' be me same as Ihal of Q, P and
H. As H' is still in the ee!!..tre of Ul, ir cannot but be a funetion of H only.

A leplesenlalion of \Jl will yield a lep!!,senlalion of (3.4) if we lake
rhe latter to be a similarity transformation of Ul as

(3. Sal

(3.Sb)

(3. Se)
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where we assume (he existence of a left ¡nverse A.1 (oc every element A
considered, which evidently satisfies (3.4) when [he numbers cq, cp and eh
are re lared as

and thence, foc [he whole oC l1)

(3.5d)

F'(Q,P) F(Q',P') AF(Q,P) A-1

(3.6 )
Funhermore, if [he ser of transformations (3.4) lS to form a group. a [WO.

sided ion'cse A-1 muse existo

3.3 Unitary Quantum Canonical Transformations

The v('cy general realization (3.5) is, besides che assumption of (he
existence of an A-

1
(or <,ver)' A considec('d, flor very satisfying since (he

rransformari!m (3.5) does flor in general preserve rhe hermiticity of (he e.
lements of I~, unless A be unitary (wjth f('spect [O [he measure 00 [he

Heinsen[('rg-\l'eyl group), ¡.c. [he exisrcnce of A-1 = At is assured. Preser-

v¡ltion of itcrmiticity thus I<-'¡HL~us from [he group of general transformations
(3.4) ro a more restricted group, "parametrized" in a different way, of urlitary
canonical transformations º, given by

1
F F'

F+iT' [l,F] + [1, [l.F]J + ... (3.7a)

= exp (iT' 1 ) F ,
con

where rhe hermircan element zrQ, P) E Ul g('neratt's a Q transformatioll on

FE Ul Iabdl<:d by Z. where \\e hdve Jefined22 rhe operator Zcom associ<lted
ro Z as
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ZcomF = [Z,F] ,
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(3,7b)

a generalizarion of (2.3b) in (2.4). The linearity of (3.7b) allows us tu wrice
(3.6) as we did wirh (2.5). Furrhermore, the pseudo-Lie algebra of infinitesi-
mal generacors of Q is givcn by che hermitean elements of Ul themselves wim
the Lie bracket

(3.7c)

a generalization uf (2.6) which can be proven by applying it [O any FE IJJ and
using che J af..obi identity. \1;/eexpect chat a repccscncacion of dlC hecmitean
elements of lJ} as (3.3) will provide a unitary repre •.•cnrClcion of Q.

\t!e should remark here chat while we will ind(,cd only consider elem<:ncs
of Q, panicular non.unicary canonical rransfonnacions. with A = jL(Q),ftmctioo
unly of Q, in a basis where Q is diagonal, are being used (O provide che
passage bet~en local and non.local measurt:s prescrving che hermiticicy of
operarors in UJ whieh generatc m{' dyn.lmieal algebra of a s~:stem. The price
paid is the loss of hermieity of rhe opera(Ors Q and P themselves 9.

U'hac is the relacion becween K and Q. the elassieal and quantum
groups of canonieal cransfonnacions? There ht.'ing <lOinfinicy of quaotization
schemes, ro cvery z E l of ordcr higher rhall sccond i~q and p will corre.
spond in general more than one hermit{'an Oprr,Hur Z E U1. Ilenec, ro every
one-paramerer subgroup in K will correspond one or m')re one-paramcer sub.
groups in Q. There is rhus in general ,¡. many-{O-one correspondcnce between
che elements of Q antl K.

Assume, howc"ce, chac we have: chusco a definice quantization scheme
so thac out of K we build a unique SUb~(:,l o( Q, so rhac ro every one.rnramec('f
subgroup of K gencraced by a funcrinn z corresponds a one-paramctcr subgroup
uf Q ge::neruted by the corresponding, unique, operator Z. (n this way we
eonscruct a one.co-one mapping betwccn me el('mcnts of che generating alge-
bras of K and the subsc! of Q which can bc extended, ac least locally, to me
group. This, however, is ~;{ill noc an IM)morphism between me algebeas (nor
the groups), since \\le must still dl'maod thar uodee che Lic bracket operatioo,
the one.co-one eorrespondcnct" be preserved, i.c. char the Poisson bracket
(2.6) for K k{'ep che correspondence wich che commuca(Or (3.7c) for Q. This
elearly does no( hold in general. W(' coneludc chcf{'fore chat K is neicher
loedll)" nor glohall}' isomorphic with º. noC c"en within a definire quanti.
zati0c¡ .'ichcme suh."iec.
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IJ.'e can rt.striet oursdvc .••. h()\VeVeT, [O those subgroups oC K ami Q
who .....e gell('rarors do m,linrain the corr(.spondellc(:, bcrwcen Poisson brackers
and COllllllutators. lndt.:"cd, we han: a slighdy larger frccdom in that if a
commuta[Or differs froro lhe quantization oC a Poisson bracket in ao additi\'c
[(..rm. function oCH onl)', (he corrcspondence is still assured, since rhe
g,'nerawfs oC º aec through lhe cornmutator operation (3.7b). These subgroups

art:' precisely (hose oC inhomogencous symplectic and point transformadons".
The classical and quantum \'ersinns of (hese subgroups will be isomorphic.

3.4 Extend('d Symplecric Transformations

Thc group oC liot'ar automorphisms23 of (he lIeisenberg-Weyl algebra
IJJ (3.1) is gi\'en by

Q Q' a b e Q

p - P' e d j P

H H' a a g H

such rhar

-I
g [ad- he]

(3.8a)

(3 .8b)

The uppn-Ieft 2)( 2 submatrix ¡s, (oc g = 1, rhe f!;fOUP of real symplccuc transfor-

malioos Sp(2. R) considcr(,d in Ref. 1. This is multiplico in dicen product
by (he suhgroup oí dilatations f)iI(g) wim g =:: O, and multiplied in semi-di.
ree! produet by ,he subgroup '1'(2) 01 "transla,ions" Q - Q + eH, P ~ P + jH.
This is furtht.c multiplinJ in semi-direct produ<.'( by rhe represenrarives of (he
(\\'0 disconllectcd pie'ces oí rhe dilatation group g > O and g < O, a e (2) group
of [\\'() (;'lcmenrs. The group oí automorphisms of Ul is (hus (he extended
symplectic group

C(2), ['1'(2) s(Sp(2,R)",lIi/)] (3.9)

"Ibere is cl('arly an isomorphism bctween the /sp(Z, R) ~ "1'(2) 8JSP(Z, R}

suhgroup of (3.9) and [he group (2.7) of c1assical inhomogeneous symplectic
rcansformarions. L'ndn [hese resrrincd canonical transformations, classical
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and quancum observables and operator ~ oC up-w. secono order are mappeJ
among themselves and henee, for thesc transforma[ions on these obscn.abl<.'s,
Cla:ssieal and Quanrum Meehanies follo\\! ca eh other.

3.5 Quantum Point Transfonnations

The subset of Q of cIernents of thc form

O~ O' =<1>(0)

P ~ P' = '1'(0, P,I1)

H ~ H' = fl(H)

(3.10a)

(3.IOb)

(3.IOe)

in analogy with Seetion 2.4, will eonscitute the group of quanrum pojnt transfor.
mations if it preserves rhe U1 algebra (3.l). \Ve can translate dle results of
Scctions 2.4 and 2.5 to the quantum e3sc4,24 becausc both the classical
generator fUnCtlOllS (2.10) and the function .••involved in (3.10) i.c. (2.12c)
ano (2.14) are of [he form z(q.P) = PF(q) + (; (q). l:nd('f quantization in the
.s}'rnmetrization scherne (3.2) we associate th<: op<:rators

Z(O,P) !¡ {PF(O) + F(O)P} + G/O) • (3.11)

ano il is eas}' tú check that the Poisson braek('[ and eom mutator of two
quanlities -classical or quantum- of [he forrn (3.11) is again of that formo
.h 1'('1) amI G(q) E,t the\' are diffetenti,lble and benee 1'(0) and G (O) are.' .
formally so, dcfining P(O) and G(Q) as

[1'(O),Pj = iHF(O) (3.12)

lbe ('xpansion series (3.7) for point transformations generatcd by Z acting
on Q and P, is then identical to (2.4) gencratcd by z aeting on q and p. with
T' H = T 1. Thc group uf quantum point transformations (3.10) ¡s th t..re fort..
isomorphie to [he group P of elassical point transformations. and will be
denoted by the same le((er. \\.ithnut further eomputation we can thus ~nate
thar (3.11) in (3.7) generates a point transformation (3.10) in P with
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(3.13a)

H'= H , (3.13e)

where uppcr~case greek-lcucred functions are identified with their classical
lower-ease eounterparts25 in (2.12) and (2.15). Using (3.12) it is easy 10

show mal (3.13) indeed lcaves [he algebra Ul ¡ovarianL When writi!!8 down
(hese equarioos we ha ve glossed ayer as lO (he kind of elements of Ul which
can be used. \l/e repear (he caveat given in (he lntroduction: We ask Que
point. transformations lO be onc.w-one ¡nvertible, ¡nf¡nitel)' differentiable

mappings of (he ",hole phasc.space 00[0 itself. \l/e fucther assume thar we
are working in a representation (w'lere Q is diagonal, for instance) where we

can give meaning lO me possible appearance of formal pawer series in Q.
Fur operacors of (he kind (3.13) under puint transformations, therefore,
Classical and Quantum Mechanics follow each other. We shoold note, however,
mat eveo though we have proveo that the c1assical and quantulJ1 versions of
rhe subgroups of inhomogeneous symplccric and poinr transformalions are
isomorphic, the composJtion of one symplectic and one point transformation
ma)' lie outside both subgroups. Similarly, the correspondence will break
down if we apply poinr uansfonnarions ro observables other than (3.13) (i.e.
(2.8), for example) Of symplectic transfonnations to observables other tban
(2.8) (i.e. (3.13), lor example).

3.6 TIte Quanrizarion Scheme under Canooical Transformations

Consider two or more systems relared through a canonical rransfor.
marion on me ciassical leve!. This is the case of the three elemenrary one-
dimensional svsrems considered in Re£. 6. Ir is a question of central iorer.
esr to know wherher mis correspondence can be carried over ioro Quanrum
Mechanics duough a single quantlzation scheme. The anS'l,\,'er is, in general,
oo. In order to show this ir is sufficient to givc a counterexample.

Consider the observable I = qp2 and irs corrcsponding hermitean
operalOr F = J¡ {QP' + p' Q} under the symmetrization seheme (3.2). Now
consider a classical canonical transformation (2.19) wirh Y.,. == O for simplici.
ty and a fixed T, and irs quanrization
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. -,
1- l' = <p(q)[ <p(q)] p' '" 8(q) p'

=>); {e(Q) p' + p'f)(Q)} .
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(3.14a)

Lastly, con sider ,he hermi 'ean operator obra ine d from F [h rough (3.13),
again, widl f.,.= O. This is

, ,
F - F' = (1/8),(<1>{TP + PT} + {TP + PT} <IJ)

(3. 14b)

• 1
where <IJ'" <IJ(Q) andT = (<IJ)-. This is obviously an operator differenr from
(2.24a), a1<hough rhey borh have the same classical limir l.

When is the quan tization sehemt:"preserved? h is preserved for up.
to"seeond order funetions under symplectic transformations and for funetions
of [he kind pl(q) + g (q) under poinr transformations. 1<appears rhar no orher
general cases exist.

The importance of the non-invarianee of the quantiza(ion se hem e
under general eanonieal rransforma(ions, is (ha( (he Casimir operalOrs of tht:
dynamical algebra of two c1assieally rela(ed sys(ems, being of order in gener.
al higher man second in q and p, may not be equal quantum mechanically, so
(hat the quantum systems belong lO different irreducible reprcsentations of
,he algebra 9.

4. UNITARY REPRESENTATIONS OF TIIE GROUP OF

QUANTUM POINT TRANSFORMATIONS

4.1 Two Eigenbases

Consider [he eigenuasis of [he operaro< Qin(3.3) {Iq>, q€(-~,~)}
I.e.

(4.1a)
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orchonormal in [he Dirae sensc

,
and complete in J:; (-00,00)

~'olf

(4.1b)

J~ooIq > dq < q I
so chat

I , (4.1c)

<qly,> =y,(q), Y,E,!;. (4.1d)

Considcr now me general (unhary) poine transformadon (2.15)-(3.13), de-
fin ing a new bases

I
where cp- is the ¡nverse function of ep (corresponding to [he operawr function
<1», both in,l:. This is an eigenbasis of Q'= <I>(Q) since

,
onhogonal and complete in.c (-00,00), and

(4.2b)

(4.2c)
,

The scalar product in.c (-00,00) can be wriuen 10 (crros of either
basis as

Jq>(oo) • .1 I -1 1 -1 ,. _ ,= [ep(ep (q))] dqy,¡(ep (q»)Y,,('f!(q))
ep('oo )

(4.3)
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where <:pIS che derivative uf ep with respect to its argument. It will prove
conv(;'nient to define a posirive definitc weight function Wcp so mat me rnt"aSUfe
in (4.3) be

where

_ 1

W",(q')= 1~(",-l(q'})1

(4 Aa)

(4Ab)

takes care, through the absolurc value, ro k('ep in (4.3) (he lower integration
¡imit cp(-e'oQ) smaller than rhe upper limi( cp{oo) by exchanging them whenever
ep is"a dccreasing funniun of q. All integrals will hencefor(h be from -00 (O.•.....
r><.> and thl' limits mOl)'be dropped from the notation. By cp.] we mean the
dt"rivarivc of cfl with f('spect to its argument. The charac(eristics of tht"
mappin#?; ep imply thar ú)cp will not vanish over q.

The basis {Iq}} is not normalized in rhe sense (4.1b) bur, '" being
monotonous

(4.5a)

2
while completeness in.c (-00,0<;1) is phrased as

(4.5b)

We can normaliz(' the hasis {Iq)} however, (O form an orchonormal (in the
sensc of Dirac) basis

x
I q >' = I q) w",(q} , '" <1>Iq>

orthogonal and complete in th<.'same sen se as (4.1) but elsenbasis
Formally <1>£P is the point transformationwhich maps (he basis
un the hasis {Iq >'}, in this notarion

o' = <l>O<l>-' = <1>(0).

(4.6a)

of Q' .

{Iq >}

(4 .6b)
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4.2 The Transfonnarion Matrices

In arder to find the transformation matrix

WoH

berween (he original and [he uansformed bases, we ¡ociase Q ':;::; 4>(0) in [he
bracket < q 1 1, I q 2 > , obtaining

<q iQ'lq >' = q <q I'q >' = m(q )<q iq >'
12212 Tl12

hence che transformadon bracket < q 1 I q2 >' must have che form

(4. 7b)

(4.7 e)

where J1.c.p is an as yet undetermined funecioo of Q2' We have asked me poinr
transformation (3.l3) to be unitary. char ¡s, if {Iq >} is a complete ortho-
normal basis, so must {1 q >'} be, (hus placing all eigenbases of operators
related through point transformadons 00 (he sarne footing.

llene e, lec

S(q -q)= '<q Iq >'=J'<q Iq >dq <q iq >'
1212 13332

(~.7d)

-1 ,

= I q,(ep-'(q¡))i ifL'p(q,)i S(q¡- q,) ,

wherc we have used (4.4b) and (4.7c). The poinc transformation <I>€P will
chus ha\.'c a unitary repu;,sentation in [he basis {I q>} when, in (4.7c)

(4.8)

This derermines jL<p up [O a phase.
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A similar analysis for the transformadon <p.l allows us ro write

(4 .9a)

which can be directly compared with (4.7c) wriuen as ÍtS complex conjugate

(4.9b)

so we conclude that

(4.10)

We shaIl now explore the problem of a consistent choice of phaseso

4.3 The ~lultiplier Representation

Let <1>1and <1>2be two point transformation elements of Po Their
composition is

(4.11a)

and similarly

(4.11b)

The corresponding bases {11f >}, {I If >'} and {I If >"} relate as

8( ()) (J - < I >" - J< I >' d '< I >"1f3- 1'3 1ft f1.CP3If, - 1ft", - 1ft If, If, If, If,

(4.12)
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char ¡s, we have [he relation

and hcnce if!f>o is [he identity transformadon in P

Hence che fWlction j.J-ephas the properties of a multlplier26.?l.

4.4 A Principal Series Property

The transformarion marcix of $£ P in che basis {I q >} is

;8(q -CjJ(q»¡;. (q );8(q -CjJ-'(q,))¡;. (ql)
, I CjJ' 1 CjJ"'

~'olf

(4.13a)

(4.13b)

(4.14)

and is uoitary if (4.8) is satisfied.
We can examine me transformadon undergone by che coordinares o(

a vector 1./J. Indeed, under eJ>,

(4.15a)

where we have used (4.9b). Hence, a funcrion over q transforms as

(4.15b)

In chis •.•..ay we have a muhiplier representarion of (he group of quanrum poinr
transformarions P 00 (he space .c2(_oo,oo). We cecall char if ¡.J. is a muhi.

plier, so is any po\\:er of it. In particular, we can satlsfy [he condirion of
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uni,ari,y (4.8) proposing
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(4.16)

(4.16)

for>-" real. This has the advantage of establishing a direct connection with
the principal series multiplier representations for semisimple groups27 in
terms of the )acobian (4.4), i. c.

Two representations with different ,,'s differ thus by a qadea
pendent phase factor.

4.5 Ray Transformations and the Heisenberg-1,l'eyl Group.

\tIe want now to explore the freedom we have in (3.3) 10 add any funcuoo
r(Q) 10 P and still have a canonically conjugate operator to Q. i. e. the cay
transformation2S Q,P - Q,P+f(Q) in R (Sec,ion 2.5) in terms of ,he multi-
plier representation introduced in the last section.

\tIe can choose the realizarion (3.3) (rhe Schrodinger represenrarion)
of the Heisenberg-\tIeyI algebra as basic. When inregrared [O the group, P
generates rranslations '[~ by T as

1jJ (q) - T 1jJ (q) ; cxp UrP /f!) 1jJ (q) ; 1jJ (q + r) ., (4.18)

If we now add ro P a function r(Q) rhrough a cay rransformarion in R. rhe
imegrarion ro rhe group will be given by

l' I
YJ(q) - T, 1jJ(q) ; t"XpUr[P + f(Q)] /15) 1jJ(q)

;v(q,')'jJ(q+r) (4.19)

where the function 11 (q, T) is a muhiplier. As ro!'= we musr have 1I(q. O) = 1.
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\X'ecan relate v(q, r) with rhe gencrators of rhe transformation through

\\'o!f

01'('1,')
O,

, "" o

~y(q)
~

(4.21)

where as in Section 3, Ji is rhe funcrion corresponding to rhe opcrator funcrion
r. Ir is also straightforward [O check thar rhe translation group multi~
plication implies rhe multiplier composition la\\'

We can propase a general form which will satisfy (4.22) introducing
rhe complex parameter a as

°1'0('1,') = [p(q +,)/p(q)]

which, upoo replacement in (4.21) relates p and y through

(4.23 )

'1('1)
., d= - ZrJCT_

dq
In p(q) , (4.24)

-I
P ('1) = exp (i [(J'~] Jdqy ('1» (4.24b)

]f in addition we ask rhe transformaríon (4.19) ro be unitary, wc come
tú rhe restricrion rhar a in (4.24) muse be pure imaginary alld hence va is a
phase depending on (J' = iT ¡.e., for g(q) = In p(q),

(4.25a)
= exp(iT[g(q+')-g(q)])tj>(q+',

where

'1('1)
,

tr." g(q) .
dq

(4.25b)
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lOus for g(q) independenr of q, f(Q) " O, while if g(q) is linear in
q, y(q) = constan[, and the phase factor in (4.25a) is q- independent. In
general, however, [he phase will be q.dependenL

4.6 lOe Conjugate Operators

The represen[a[ion of P as a diHerencial operator in [erms of the
eigenbasis space q' of Q' is [he one obrained writing P rhrough (3.3b) using
[he chain rule,

P: .•.. d .•- lo _= - In €
dq

(4.26a)

where the sign € = + 1 is used foc a monotonically increasing funccion cpand
€ = - 1 foc a decreasing one. The operator (4.2ó)condnues [O he herrni[ean
under !he scalar producl (4.3) for !he basis {I q)}. We can lhen pass 10 a
new basis {1 q>'}, or[hononnal in the sense of Dirac, and [hen P wilJ be
repcesented as

P:
,
-1 d

- ifJ€ [wm(q')] -.--.
T dq

(4.26b)

which is manifestly hermitean under the measure dq l. Similarly, me repre-
sentadon of p' in (3.13) as a diHerential operator in me eigenbasis spaces
q' of Q' and q of Q is

p': -i!J d =-iff€Wm(<jl.,(q».:!....JqT T dq

which, when normalized, is represented by

(4.27a)

P ':

(4.27b)



70 Wol!

hermitean undet dq. This is to be compared with (3.13) for ro; O. An imple.
mentarion ol (he chaio rule can thus be seco to be equivalent (O [he choice

of me point transformation generated by (2.10) with g o; O and hence r o; O.
lbe addition of a purely imaginary funccion in [he lase equality in (4.27b) i5
to be understood as duc to a change in (he measure, and oot as a cal' transfor-

macion.

4.7 The Representarion in the Conjugare Basis

Thc eigenbasis {I P >} of P, the opera<or conjugate <o Q, fulfilling

pE(-oo,oo) , (4.28a)

is well known ro be related, when properly normalized, with (he eigenbasis
01 Q through

%
< q I P > = (277H' exp (ipq/fJ) , (4.28b)

wh en in the Schrod ioger representadon (3.3), onh ogo:J.a 1 and e oro pIe te in
.c2
(_OQ,oo), and similar relat.ions hold for (he normalized eigenbasis {I q>'}

and {I p >' } 01 Q' and P '. Use of (4.4b), (470), (4.9a), (4.16) and the com.
pleteness of the bases yields

and

k -~ + i A
<qlp>' = (27715r' [w'l'('I' (q))] exp(iP'l'(q)/fJ)

I -1 +i A
'<q Ip> = (277/jr" [w -1 ('1"1 (q))] exp (ip,{'(q)/I5)

rp

<p 1<I>Ip > = <p Ir >' =
I 2 1 2

-1 + i A
= (27715r'Jdq exp (- i¡'J,q/t) [(V'p(rp(q)] exp (iP2'1'(Q)/15)

(4.29a)

(4.29b)

, .,.Ij- . -1 -1 -;Z+'I\= (2776) dq exp (- IP 'f (q)/15) [w ('jJ (q))] exp (ip q/l5)
1 - 1 2'p

(4 . .$0)
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is (he representadon of me point transformation C1l in the conjugate basis.
Ir is ro be remarked that (4.30) is an analogue (p being continuous

rather than discrete) of Bargmann's integral formula (with
'P.,.(q) = 2 arctan (e""tan [q/2]), compare with the form(2.12c)) fot the matrix
elements of the principal series of 50(2, 1) group26. 27, [he Rargmann d;ml (7)

funerlons. The multiplier phase given by A in (4.16) is chus seen tu be of

de[erminan[ importanee A supplementary series of representations can be

obtained le[(ing the additive funerlon to P' in (4.27b) to be a real function
stemming from a true ray transformation and allowing me eompleteness rela-

rlon to read

JJlp>dp(1(P,p')dp'<p'l = 1. (4.3 I)

thereby introdueing a non-local measure In the conjugate p-space. This

problem is under unvestigation 9.

5. CONCLUSION

'~/e havc used tht, Ileisenherg-Weyl algebra and lts realizations [O

frame the role of ('anonical transformadons in Quantum Mechanics, leading
to the mapping of a physical problem iuto a mathemarlcally simpler system

with a linear or constant-density spe(.trum with a known dynamical algebra,

and we have found uniti.lry principal- series (('presentations for the group of

point transformations. :rhese have been shown to be essentiallya continuous
generalized analogue of the integral formulae obtained for thf? representation
matrix elements of non-compact classical groups as groups of deformations

(point transformations) of homogeneous spaces as spheres, hyperboloids and

similar coset spaces.
lbe usefulncss of the formalism prescnted here must be justified,

howe\'er, with concrete applications to dcfinite pairs of .physical" sy.stems

and meir corresponding dynamical algebras and groups. lbis will be done
in future publieations where the systems to be related will be [he point rotor,

the harmonic oseillator and rhe (pseudo-) Coulomb potential. AIl three are
classieally related by pairs thr,mgh canonical and point transformations and
exhibir SO(2,1) as thcir dynamical group. Thar "not all is well" quantum
mechanically, is obvious from the faet mat their spectra are different. A
thorough undcfstanding of the role of eanonical transformations in Quantum

~1echanics should account for (hes{: differenccs as stcmming from the faet
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that mese systems be long to different representations of the dynamical
a Igebra and provide che peoper quantum passage troro one system ro another.
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RESUMEN

Wolf

Se presentan la definición y propiedades de las transformaciones ca-
nónicas clásicas y cuánticas, desde el punw de vista de un programa actual
de investigación, que se lleva a cabo sobre el papel de las transfonnaciones
canónicas en Mecánica Cuántica. Se exploran los grupos y las álgebras in.
finitesimales correspondientes. El subgrupo de transformaciones puncuales
(es decir transformaciones canónicas entre pares de observables conjugadas,
donde una observable de cada par es {unción sólo de una del otro par), es de
interés especial, ya que es un grupo de transformaciones para el que la me-
cánica clásica y la mecánica cuántica dan resultados iguales. Sólo el gru-
po de transformaciones simplécticas inhomogéneas tiene características si.
milares. Las transformaciones puntuales se ttatan en detalle y se construye
una 5erie principal de representaciones unitarias.




