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NON-TRIVIAL SOLUTIONS OF THE HARTREE-FOX
EQUATIONS FOR A VERY-MANY-PARTICLE SYSTEM*

- A SURVEY -
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ABSTRACT: Work related to proofs for the existence of energetically pre-
ferred, non-trivial (mostly periodic-density) solutions to the
Hartree-Fock equations is reviewed. Both long=- and shorth~
ranged interacting systems of N-bosons or -fermions (N >> ]) are
considered, and stability criteria discussed. Also, some exact
results associated with rrivial (plane-wave) solutions are sur-
veyed. The main concliusion is that, for any fixed physical
density, a sufficiently strong interparticle coupling can induce
the appearance of non-trivial HF states. These solutions pro-
vide a first step in studying the properties of many-particle
systems, which range from astrophysical plasmas and quantum

crystals to nuclear matter and helium at very low temperature.
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I. INTRODUCTION

Since I have known Professor Marcos Moshinsky, he has emphasized
that the study of physical nature can be, not only carried out more simply,
but also formulated more elegantly, by finding the “hidden symmetry” in a
given situation. [ strongly suspect that his beloved late wife, Elena, shared
with him this esthetic conviction. This particular out-look has made a lasting
impression on me, and it is with deep appreciation towards both that I write
this survey.

Both classical and quantum statistical mechanics are in great part
concerned with identifying the symmetries characteristic of a given thermo-
dynamic phase, and of elucidating the conditions under which a given symme-
uy is broken and a new one established, due to a specific system hamiltonian .
This is perhaps the most important qualitative aspect of the many-body problem.

Conceptually, at least, the simplest approximation, or rather “first
step”, to the many-body problem, which allows for systematic corrections to
be made at successive stages, is perhaps the well-known Hartree-Fock self-
consistent field method. Discussing the mathematically very complex many-
particle system in terms of the simple idea of a “mean field” is an old pro-
cedure: it is found, e.g., in the formulation (1873) of the van der Waals e-
quation of state for a classical fluid of interacting particles. The more recent
usefulness of this concept in correlating many phenomena in atomic, molecular,
nuclear and solid state physics is hard to exagerate. In the quantum-field-
theoretic formulation' of the many-body problem in terms of Feynman diagram-
matic perturbation theory, the self-consistent HF starting point, (which de-
termines the unperturbed hamiltonian as a one-particle operator), guarantees?
the muwal cancellation of a very large class of diagrams. A significant
simplification of the theory then results. '

The first queston is whether the HF wave function (I)O (determinants
or permanents, according as one treats fermions or bosons, respectively) will
“carry” the basic symmetries of the phase under consideration, e.g., invari-
ance under translational or rotational or point-group, or etc., transformations.

If H is the N-particle hamiltonian, with only pairwise interactions
Ui o and A is a Lagrange parameter, it is known that under infinitesimal (functional)
variation of the orbitals of (DO , the stationarity condition

S{<o,[H |0, >-r<d | >} =0 (1)

leads to the HF equations for the self-consistent orbitals cpa(r:.) and energies
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e (upper case: bosons; lower: fermions)

#* f ; "
<al -V B>+ Z<anlv, [Butpp>ln, - 58,0+ D) = €3,
(2)
where the n, are occupation numbers subject only to En}L: N. A class of

trivial solutions to eq. (2) is given by the plane waves (spins suppressed)

@, (r) = gt exp (tka* r) (3)

normalized to unity within the volume (), and associated with any set of n
subject only to Zn, = N. This is seen by realizing that the first term in(2)

. 3 . a iy . . .
is thén diagonal, as is the second (potential energy) term since, using

PEIL £ Ty Rz'/z(rl‘i’rz), kijZ'/z(k;.—k].), Kl.j=ki+kjwehave

<kk, v,k .k thE>=

.

-1k

-tk ik, o7 ‘r
=Q ' [d%re 2 v()le ¥ te ]8k1+k2’k3+k4 (4)

so that the matrix element in (2) is also diagonal, Q. E.D. The single parti-
cle probability density

P(r)=2|€pa(r}|2na_=N/ﬂ (5)

will be homogeneous (or space-independent, or translational invariant) for
any plane-wave set of solutions, called trivial solutions. We shall refer to
the particular set with

n, = Q(kF— R Y o= NG = k;./G'nz (fermions) (6a)

= Nak (bosons) (Gb)
a,0

as fhe trivial solution. The conditions for the existence of non-trivial so-
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lutions to the HF equations will then be established with the aid of the

following

Theorem: If a determinant (or permanent) corresponding to a non-ho-
mogeneous (e. g., periodic or aperiodic) single-particle probability density
is found, which has a lower expectation energy than the plane-waves determi-
nant (or permanent) with the (trivial) occupation eq. (6), there exists a
lower-energy HF state with the given nonhomogeneous property.

Proof: Consider the Hilbert space for the exact ground state eigen-
function of the given hamiltonian. A subspace of this is spanned by the
class of all single determinantal (or permanental) functions; this class can
in turn be divided into three non-intersecting subclasses corresponding to
homogeneous, (perfectly) periodic and aperiodic (but nonhomogeneous) proba-
bility density. The lowest-valued expectation energy associated with a
given one of the three subclasses, being a stationary value, corresponds to
a HF solution and will clearly be bounded from above by any trial energy
value associated with a member of the same subclass,

Eff <k <g =gt

non-triv = non-triv hom~ hom °
Hence,

E =_EHF < FHF

o
“hom non-triv.~hom °’

7 o %
non-triv

Q.E.D. We stress again that E#fm strictly refers to the particular trivial
solution specified by egs. (3) and (6).

II. TRIVIAL SOLUTIONS
Consider a general hamiltonian
N N

H:—ﬂ_2 ZV.Z+ 2”;‘;’

2m i=1 " i<y

) (7)

and a determinant (or permanent) 00 with occupation numbers n, - One has
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the general result

N
<% ]:‘%j Fpd By =

ey §
=% X <kk,lv|kk thE > [y e = 8y 4 e (m ¥ 1/2] (8)

1. 2

which was in fact used in arriving at eq. (2). Combining this with the trivial

solutions eqs. (3) and (6) one obtains

HF _ HF -
Ehom = Ehom/N -

5 pr(0) (bosons) (9)

sz/a +% pr(0) -_ 1 - fd3k1 _fdzkzv(kl— k,) (fermions)
2p(2m)° kyShp kyskg (10)

where we have defined

%
p=N/Q; C=362/10m)(61°%) " jw(q)= [d’r explig*r) v(r).
(11)

1. Long Range Forces. We consider first the case of a one~component
simple plasma, i.e., N point particles of mass m, charge te, submersed ina
uniform, rigid background carrying the opposite charge so that the system is

This model, sometimes called the “jellium” model, has

elecrically neutral.
3 as

been used extensively in the study of electrons in metals and insulators
well as in white dwarf stellar structure*, where one has N charged ions
moving in a background of (pressure or temperature) ionized electrons. The
presence of the uniform background can be seen! to introduce a term - 5 o/ (0)
into the hamiltonian (7), which refers to the point charges, with

o _ 2
By =4 (r:'j) e /rl.]. ,

v(q) = 4me?/ q?
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Egs. (9) and (10) then yield

0 (bosons) (14)
HF
€hom N
' A_B (fermions) (15)
2 7
Ts s
where
E 3 3 21 »’ 4 VA
A=3? 7,Bz_i_;aos ;CLE(_)3 (16)
5 2””1; a? 2m Zao a mel o
3
k
p=NM=2F = 3 (17)
6m? 417003r:

and, clearly, T, = ro/ao = %mez/ﬁz is a dimensionless coupling constant, B,
being simply related to the interparticle distance. The system is then clearly
almost ideal at high densities and very non-ideal at low densities —in exact
orposition to the more common case of short-ranged forces as, €.g.,a system
of argon atoms. Moreover, since ngm 1s a rigorous upper bound to the exact
ground state energy of H, the model system of fermions is not trivial since
it can become a self-bound, condensed system (negative energy per particle),
as is seen from the fact that eq. (15) can be negative for a range of values of
T (which can be considered a variational parameter).

For fermions, Gell-Mann & Brueckner® have considered the next-order
corrections to eq. (15) in terms of the partial sum of all so-called “ring”
diagrams, obtaining (in rydberg units, e’/ZaO)

€=€" +0.0622 Inr_-0.094 +. .. (18)

The “ring” diagrams can be shown to be the most divergent (at small g values)
for 7. <<1; summing the next most divergent diagrams give Du Bois® a term
O(r_ In r.) as the next correction. Since

0.0622 In r. - 0.094 + Ofr_In re)

= const r: Inr, —s 0 (19)
A/r‘f-B/r5 rs<<l rs—-o
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the HF result for the total energy eq. (15) is exact in the high-density, or
weak-coupling (small value of e) limit.

Indication whether lower-energy non-trivial solutions exist or not
can be obtained by considering the problem of stability. Iwamoto & Sawada’
have considered this in terms of whether the second variation of the bracketed
expression in eq. (1) is positive or negative definite; if the former occurs
the solution proposed, which differs infinitesimally from the trivial solution,
corresponds to (an at least local) minimum. Their analysis is very elegant,
complete and general since various kinds of instabilities (density, spin, etc.
fluctuations) are allowed for; however, a very simple compressibility cri-
terion® for a special but important kind of instability can also be seen. Con-

sider the ground state energy density

E(p)= E/Q = pe(p) (20)

and consider a small density inhomogeneity o (r)<< o defined such that

particle number is conserved, i.e.,
3
Ja rpn=0. (21)
Q

Then Taylor-expanding

Eptp)=E@r+ E R p +2 Ep)pl+ .. (22)

and the energy difference between the homogeneous and the inhomogeneous

state is

AE = E

inhom

- Ehom :‘ggdsr [8(p+pl(r))— 8(,0)] =

:%8"(,0)]‘1%;)1’(:) +... (23)
: Q

Since the system pressure (free energy F= E - TS, § is entropy)

b= (9F) = [BE) = pe'(p) (24)
T=0,N
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¢q. (23) immediately leads to
DE S Duaeml (P} G Dogepe 2F % 0 & (25)

In short, 9P/9p <0 signals the appearance of a lower-energy, inhomogeneous-
density ground state. Moreover, the expectaticn value in any state (eigen-

state or not) Is

pesls =27t Qs S TP U PRz 5l 2 « (20)
N
fnow U= 2 U is a one-particle operator, and in addition it is the HF field

while the state is the HF determinant (or permanant), we have from eq. (2)

<alu,|B> = <a#|z/]2|ﬁ;¢ uB>[n,~ %85 (n +1)] (27)

or, multiplying by 5aﬁ’?a and summing over @, by eq. (8),
Lr>=2%<y> ; (28)

Then, if %, is the ground state energy of H, = T+,

Eyp = <T>+<U>+<p>-<U>= W +<p>-<U>
= 5W+ 5<T> (29)
so that
< HF inhom inho hom hom
Al!‘H!"> f)":""‘F‘lnhom> Ehom W TR - W Mk 4
(30)
but, since the Ritz variational principle states that < T >hom g < >inhom

(the inhomogeneous density state considered as a trial state) we have, com-
bining with eq. (25) that
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BP Oowoinhom- Qwohom (31)

while notm%‘ that 0P/9p >0 says nothing definite about the sign of
(Wmhom - W'°™). Therefore, the criterion 3P /9p <0, which classically
correbponds to the longitudinal, compressional wave velocity C[\/(l-/rr;) BP/ap
becoming pure imaginary (and hence indicating an unstable density fluctu-
ation mode), signals in the HF approximate the appearance of a lower energy
unperturbed ground stale, which in tum points to a breakdown of a perturbative
scheme based on the trivial solution as zero-order state.

Applying the instability criterion to the fermion plasma result eq. (15),
using eq. (17), gives

9P/op<0 forall r > m/a=6.03 (32)

This result agrees with that deduced by the more elaborate analysis of ref T
We mention that electron densities in real metals correspond to 2 mr 2.

2. Short Range Forces; An Exact Result. For either bosons or
fermions the HF energies eqs. (9), (10) constitute rigorous upper bounds to
the exact ground state energy of H. A rigorous /ower bound can be found”
by restricting the class of two-body potentials to

a) v(q) >0 all ¢ b) |v(0)] <eo (33)

but noting that this class does not exclude the possibility of producing two-
body bound states. The example v(q) = V(O)Q(qo— q), with g, constant,
gives v(r) = [v(0) qg/Z'Frz] [ji(qﬂr)/q0 r] whicl‘; can evidently have bound
states, even if v(0)> 0, for large enough v(0) q(; . Then the ground state
energy is, say

N
E - (#%/2m) 2 V Sefed I v; >

exact i <’

) (34)

where < - (52/2m) 2 v > > NCp for fermions and > 0 for bosons, with the

constant C given by eq (11). The last equation in eq. (11) allows us to
write the inverse Fourier transform as
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i -:'k'(r‘.-r.)

r,-(r‘.j;) =0} }E',e " v(-k) . (35)

N
so that, defining Ay = 2 exp(-1k*r;) we have

i=1

<

1

N
v >=%< S wir)- 3 w(0)>
; 81 11T =y

N N
<7

i,7=1
|2

s o <§V(k)|pk >-;y(0)z'/2Npu(0)-'szu(0)

20
(36)
the inequality following from condition (33a). Thus
0 (bosons)
€ comer’™ Bmer /N 2% PR{0)= Zo{0)% (37)

2
Cp/3 (fermions)

and one has a simple lower bound. The upper bound for fermions eq. (10)
can be readily seen to become

HE o ~ %4 n
hom "F»*OCPH 5 pv(0)- 5v(0)+0(1) (38)

where £ _is a characteristic wave number of v (k). Therefore, for sufficiently
high density the upper and lower bounds coincide with each other and must
thus become equal to the exact energy per particle: the Hartree-Fock energy,
for both bosons and fermions, becomes exact at high density for interparticle
potentials satisfying both conditions (33a) and (33b). (We note that the
latter is not satisfied by Coulomb forces). This result can be considered a
short-ranged- potential analogue of the exacmess of HF (with trivial solutions)
at high-density for the long-ranged-potential plasma, proved on the basis of
the Gell-Mann & Brueckner theory in eq. (19).

Instability can be swdied with the Iwamoto & Sawada method’; they
used a repulsive Yukawa potential and found, besides spin-like instabilities,
unstable density fluctations of long-wavelength (¢ = 0) which appear at inter-
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mediate densities, i.e., not too low nor too high. The compressibility cri-

terion eq. (31) would fail since 9P/9p >0 for all p for a repulsive Yukawa,

but it is found useful ' for a two body potential with enough attraction to
make Effm negative for some O as then AP/dp becomes negative for some
0o . In this latter case, the instability is clearly associated with the for-
mation of /iquid phase in the system; as this state of matter involves strong
correlations between the particles, it isnot clear which should be the ap-
propriate HF state. What makes this problem particularly difficult is that
no known obvious symmetry appears to be broken, in the thermodynamic limit
N — ,{) = o, N/} = constant, in the passage from gas tv liquid or vice
versa, even at zero absolute temperature.

III. NON-TRIVIAL SOLUTIONS

1. Long Range Forces. The simplest example of a non-trivial so-
lution is perhaps that discovered by Bloch' in 1929: the ferromagnetic fermion
gas with net total spin N#/2. The HF energy eq. (15) corresponds to a para-
magnetic gas, i.e., net total spin zero, namely

e A B
€ = a4 .5 (39)
para rs2 rs

while the ferromagnetic case is easily obtained from this by just replacing p
by 2p, so that using eq. (17) gives

€ ferro

_ _A;z, 24 - B ok (40)

r
fs S

The ferromagnetic (non-trivial) state is clearly below the paramagnetic (erivial)
state for

2

/

T, > 7/a _1_2(2/3—- D - 5.45
5(2? - 1)

which is within the range of metallic densities and below the density insta-
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bility critical value 6.03, eq. (32).

The classic example of non-trivial HF states,however, is the Wigner
lattice '? which forms in the one-component jellium model for r . >> 1, i.e.,
low-density and/or strong-coupling. Wigner considers that at sufficiently
large interparticle separation the energy per particle is the energy of a single
point charge within a sphere of oppositely-charged uniform “jelly” or radius
A The charge density of the “jelly” is te/(47 /3) rs while the net charge

inclosed in a sphere of radius r s, 1s

3¢ . &y 3

r . 14l)
4777‘03 3

g(r) =3e t

The potential at the spherical surface at r is then

b(r) = qu)/r (42)

while the energy of a shell of thickness dr there is

av (r) = ¢ (r) [£3e/dmr] ] d77ridr (43)

so that the total potential energy becomes

Vi) 2
V=[aviry=-2_¢ =_18 (,2/25) (44)
10 r g

0
0 Ts

which is lower than the HF trivial state values eqs. (14) and (15), since
A= 2.21(22/2a0), B = 0.916(92/2:10). The kinetic energy follows from
realizing that the point charge oscillates in a potential energy well

L2 & (45)
2

T
0 273
)

so that the kinetic energy (the first term in (45) must be neglected as it is a
self-potential energy) is
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35w = (3/r% e?/2a,) . (46)
2 < \ J

Thus, the “Wigner solid” energy per particle becomes

€ gignes = 3/737 - 18/r . (rydbergs) (47)

This value is a rigorous upper bound to the ground state energy, for r  >>1,
as can be seen from the following: construct a determinant (or permanant) of
single-particle orbitals

@(r;) = (,B/'n)}“ exp(- I’éBT‘?); B = 2Vme2/5—2—;03_ (48)

localized about the points of a perfect lattice of some given type. The ratio
of orbital width to interparticle separation is then /i]ﬁ/ro and thus proportion-
al to r;4 so that it tends to zero for 7 >> 1: in this limit, the overlap between
orbitals of neighboring sites is negligible and the off-diagonal components
of the determinant (or permanent) vanish and the expectation energy reduces
to a kinetic energy term plus the potential energy of interaction of the charges,
which since they have a spherical distribution about each site, becomes just
the classical potential energy. The latter is calculable in terms of well-
known lattice-summation techniques: Fuchs!? obtained -1.79183/r_ rydbergs
per particle for the bece lattice and —1.79172/r5 for-the fctE, while Carr!* ob-
tained -1.760/r_ for sc and Kohn & Schechter!® got =1.79168/r_ for hep.
These results are amazingly close to the Wigner result of 1.8/r_ of eq. (47);
which of course is based on very simple arguments. The kinetic energy-per-
particle term mentioned above is just

2 2 -%8r? e
<ol-EV|g> == 2 prmihfa’re Ve
m m
2
=3 2’5_ﬁ=(3/r;’=)(e2/2a0) ; (49)
m

Thus, the “Wigner solid” result eq. (47) is, for all practical purposes, the
expectation value of the hamiltonian between legitimate wial functions, and

thus a rigorous upper bound which is lower than the trivial solution result
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2 21/r2 - 0. 916/r of (15); hence, using the Theorem of Sec. I a periodic-
denslt\ HF 5olut1on exists which is energetically preferred for 7 >> 1.

Corrections ™

to the Wigner result (47) can be made whlch extend
the validity of € T ) to somewhat smaller T values:these appear as a series
in powers of (r_ 2)" of which the Wigner result gives the first two terms,
n = 2 and 3.

The instability question is easiest in terms of the compressibility

criterion; van Hom © gives

dP/3p<0 for re> 6.4 (50)

for the corrected Wigner lattice energy of ref. (14). An even more obvious
criterion for instability is P < 0, which holds for eq. (47) according to

dr
Jde 2 s J€
# dp # dp Or, %

This condition gives instability because a ground state with negative pre ssure
can at most be metastable 7" 8.

Finally, we mention that Shuster & Kozinskaya % have shown that for
7 values somewhat smaller than the limit r, >> 1 the state with two point
charges localized about each lattice point has lower energy, and conjecture
that for successively smaller r. values states with n point charges, n = 3,4, ..
will have lower energy than the preceeding one, until n = N, which is the

fluid phase.

2. Short Range Forces. Consider first the case of a purely repulsive
barrier of range a,

v(r) = ”09(“0‘ r), v, >0 . (52)

Define a determinant (or permanent) of orthonormal single-particle, Wannier-
like orbitals (no spin)

. 2#]
Sl -R.
P (r.) =8..0 (r.)=38,, 17_1 o d_r’ '| H(J/Z—’r.—Rﬂ) ,
R, YR i if 2 i {
i (27T/d)|r].—R‘,‘

£53)
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where §,j = 1,2,..., N and the Ri are the sites of a given perfect lattice
while 4 is the diameter of spheres centered on the sites and within which we
place one particle. Let the nearest-neighbor distance be @ + d, so that the
surface of the spheres are separated at least a distance a > a, apart, i.e.,
there is no overlap of orbitals associated with different particles. The parti-

cle density is then given by

N - _ (s = dimensionality) (54)
Q a+a)

where K_is a pure number giving the proportion of the total volume occupied
by the spheres, relative to that occupied by the simple cubic arrangement.
Thus K (in three dimensions) equals 1 for sc lattice, V2 for fec or hep,
3V3/4 fur bee, and soon.  Thetrial energy per particle (which is a rigorous
upper bound) is then just

€ o= 2122 /md” > 2126 /md’ = €° (55)

pEs per

1/ 1
where d_ = (K/p) ¥ a, > (K/p)/’ - a = d and the subscript “per” stands for
“periodic probability density”. Defining a “close-packing” density
p, = K/’ag 2 p one obtains

1 =2
p“(,o) = (2Wf52/mK 1)[1/,0 l/p/’] (56)

which approaches Icunﬂtlp 3 as ,O/p << 1, diverges as ,(?/[l — 1 and hasone
inflection point at 0 = p /64 (cf. l-igure bottom). On the othcr hand, the
trivial solution for boson's gives

hom (p) =Y pv(0) = % Ty alp (57)

and represents the straight line in Figure bottom. As ¢ 1s allowed to in-
crease this curve touches the curve E (p) and, as v, increases further,
it cuts it at two points: at mtermedlate den sities, a non-trivial, periodic-
density solution to the HF equations thus exists if the in interaction is
strong enough. This agrees qualitatively with Iwamoto and Sawada’, who
used a repulsive Yukawa force. The siwation in one and two dimensions
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1D

hom /

SRS | RS
Y
=

per

2D

hom

3D

:-..“,_,444‘,4._“,.__
v
ey

P.':M

“Periodic” and “homogeneous” energies per particle compared in 1-,
2= and 3-dimensions (schematic).
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is readily seen to be that of the rest of the Figure. Defining the dimf:nsion-
less coupling constant A = ;rrwoa‘;/ﬁ2 and reduced density £ = (p/ p )/3 , and
bringing in the result ¢q. (10) for fermions, one finds that 6(;“ < - if and
only if

A 5 BaikE - &Y (bozans) (58)

1 s 3 2 2/3.
> {g[26m?K)s £] Y {27~ 37T K) 4 £% (fermions) (59)

a-o* 1
3 o
g(x)zi—f wd)f+i+i,(l+4_)cosx—4_sinx
732 o y % 3 X 3 2
% x x

which, by inspection, are both satisfied for sufficiently large A . We thus
reach the conclusion of ref. (20), again using the Theorem of Sec. I, that for
either bosons or fermions a strong enough repulsive barrier suffices to es-
tablish the existence in three-dimensions of non-trivial, periodic-density
HF solutions which are energetically preferred at intermediate densities. In
one dimension only, an arbitrary weak force, will always give a preferred
non-trivial state (cf. Figure, top), whereas in two and three dimensions a
critical threshold value of ¢ is required. These results corroborate the
conjecture of Kohn & Nettel?!, made on the basis of a Hartree treatment. in
one, two and three dimensions, after they considered the pioneering results
of Overhauser's 22 one-dimensional case. They also agree with the long-range
force Wigner lattice problem in the sense that a strong enough coupling brings
about the energetically-preferred non-trivial solutions.

The above corresponds of course only to a non-condensed (positive
energy per particle) crystalline state; it can be considered an independent-
quasi-particle, quantum mechanical analogue of the so-called Kirkwood??
hypothesis that a system of hard-spheres undergoes a fluid-solid transition
at some finite density, less than packing density, at any temperature. This
appears to have been borne out by computer expcrimf;ms24 in two and three
dimensions, for N not too large.

Normal crystals are of course condensed, self-bound, N-body systems
and this can only occur through the presence of attractive forces. For the
sake of definiteness, one can take? the potential

wir) = o {g(ao—r)—(_ﬁ/!ur) exp (-ur)}; B, u, v, >0 . (60)
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Using again the determinant (or permanent) of orbitals eq. (53) one has

E‘:)er= 2W2ﬁ2/md02 +(3/2N) RZR <Rl Rz‘ﬂllel R2> (61)
L2

since the exchange term < R|R2|Uu| R,R > vanishes identically due to the
non-overlaping character of the orbitals (for repulsive enough cores, overlap
can only increase the energy). A very useful result of Bernardes ?®, as well
as indistinguishability of sites, allows eqs. (60) and (61) to become

0 Zﬂﬁz 1 1 -2
& = T ¢
pee(P)= =2 [p7h- g4
e 2m L -,us"
“5Bu [1+ 3 A (ud/)")K = ¢ ¢ ,
’ m=1 "™ n=1 ? s
n
= m-1 t
A= [@2m+1)2m+ 1] 1- 3 &) Cmt 1) %
t=0 21 +2
)Y " (2m-2t-1)!
RLERYd=gE. Y, (62)

where C is the number of nth nearestmneighbors and s, the distance between
them. The wivial solution energy for bosons, from eqs.(9) and (60), becomes

3

. a
Eﬁjm = 2my, [_33— gg]p (bosons) (63)
i

but must be positive as otherwise the system will (rigorously) collapse.
Comparing eqs. (62) and (63) shows that for ,an sufficiently large one may
obtain

HF 0
Ehcom e Eper <0, (64)
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for some range of density, i.e., a self-bound, crystalline-like, non-trivial HF
solution.

We now briefly indicate that non-trivial aperiodic-probability-density
HF solutions exist for both bosons and fermions, these may be relevant in
consideration of the /iquid phase. Consider that in the determinant (or perma-
nent) of localized orbitals (53) we separate one or more spheres from each
other such that the average of the 12 nearest-neighbor @ values for all N
particles is @ > a_: we then have an imperfect lattice (or aperiodic distri-
bution) and the density is given by

gu_ K 2.5 (65)
(@+d?’ (a +d)’

since K €2 (the maximum value of K for closest packing). Thus, for fixed
d, p is decreased somewhat relative to the periodic conflguranon with K = V2.
There are then a whole family of curves € (p ) lying above Ep but certainly

below EHF (p) Q.E.D.
Plnaliy, stability will be guaranteed if all® com pressional wave

aper

modes, longitudinal and transverse, have real velocites but the question has
not, to our knowledge, been investigated within the single-determinantal (or
permanental) picture.

IV. REMAINING PROBLEMS

Three general questions remain: 1) once existence is established,
how can one derive the self-consistent single-particle orbitals? 2)is the
solution in question unique, i.e., is it the lowest energy one? 3) what are
the most important perturbation-theoretic Feynman diagrams to be considered
in calculating “correlation” effects, and can they be summed?.
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RESUMEN

Se hace una revision del trabajo relacionado con las pruebas sobre la
existencia de soluciones no triviales (sobre todo en el caso de densidad pe-
riodica), energéticamente preferentes, de las ecuaciones de Hartree=Fock. Se
consideran sistemas de N bosones o fermiones (N >> 1) interactuando tanto a
largo como a corto alcance y se discuten criterios de estabilidad. También,
se discuten algunos resultados exactos asociados con soluciones triviales
(de onda plana). La principal conclusién es que, para cualquier densidad fi-
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sica fija, un acoplamiento entre las particulas suficientemente fuerte, puede
inducir la aparicion de estados HF no triviales. Estas soluciones proporcio-
nan un primer paso en el estudio de las propiedades de sistemas de muchos
cuerpos, desde plasmas astrofisicos y cristales cuanticos, hasta la materia
nuclear y el helio a muy baja temperatura.





