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ABSTRACT: Work relatcd to proofs for [he existence of energetically pre-

ferred, non~uivial (mosdy periodic-dcnsity) solurions to the

f1aruee.Fock cquations is reviewcd. Bath long- and shorth-

rangcd interacting sysrems of N-bosans ar -fermions (N)> 1) are

con'sidered, and stabi!ity critcria discussed •. Also, sorne exac[
results associated with trivial (plane-wave) solurions are sur-

vcyed. The main condusion is thar, for <lny fixed physical

density, a sufficienrly strong interpartic!e coupling can induce
rhe appearance of non-uivial UF srates. These solu[ions pro-

vide a firsr step in s[udying [he properties of many-particle

sysrems, which range from astrophysical plasmas and quantum
crystals ro nuclear maner and helium ar vcry low remperature .

• \t'ork 'iponsored in pan by Instituto Nacional de Energía Nuclear, (México).
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I. INTRODUCTION

de LI ano

Since 1 have known Professor Marcos Moshinsky, he has emphasized
char (he srudy oí physical nacure can be, oot only carried out more simply,
bUI a150 formulated more elegantly, by finding che "hidden syrnmetry" in a

given siNarion. 1 s[fongly suspect mar his beloved late wde, Elena, shared
"'¡eh him chis esthetic conviction. This panicular out.look has made a lastlng
impression on me, and ir is with deep appreciation towards bom thar 1 wcite
(his survey.

80th classical and quanrum sratistical mechanics are in grear pan
concerned w¡th identifying [he syrnmeuies characterlstic of a given thermo.
dynamic phase, and of elucidating che conditions undee which a given symme-
uy is broken and a oew one established, duc to a specific system hamiltonian.
Thisis perhaps the most imlxHtant qualitative aspect of the many-body problem.

Conceptually, at least, che simplest approximation, or rather -first
step", to the many-body problem, which allows for s)'stema/ic corrections to
be made a[ successive stages, is perhaps [he well-known Haruee-Fock self-
consis[en[ field method. Discussing the ma[hematically ver)' compIex many-
panicle sys[em in [erms of the simple idea of a "mean fieId" is an old pro-
cedure: i[ is found, e.g., in the formulation (1873) of [he van der \l'aals e-
qua[ion of s[a[e for a c1assical fluid of interacting panicles. The more recen[
usefuIness of [his concept in correlating many phenomena in atomic, molecular,
nuclear and so lid s[ate physics is hard ro exagerare. In [he quanrum-field-
theoretic formuladon 1 of [he many-body problem in [eerns of F ern roan diagram-
madc perturba[ion theor}', the self-consisten[ HF s[arting point, (which de-
termines [he unperturbed hamihonian as a one-panic1e operawe), guarantees2

the mutual cancelladon of a very large class of diagrams. A significan[
simplification of the [heoey then resu1ts.

The firs[ question is whethee the UF wave function $0 (de[eeminants
or perrnanen[s, accordiog as one [rea[s feernioos oe bosoos, respectively) wiIl
"carry" the basic symme[ries of [he phase under consideration, e.g., invari-
ance under translationaI or ro[ational or point-gcoup, oc etc., [ransforma[ions.

If 11 is the N-panicle hamiltonian, wi[h onl}' paicwise in[ecactions
'Ji;' and i\ is a Lagrange parameter, it is known that nnder infinitesimal (functional)
varia[ion of [he orbital s of $0' che stationarity condition

S{<<I> IH 1<1> > - '\<<1> 1<1> >} = Oo o o o (1)

leads to [he UF equations for the seif-consis[en[ orbi[als <Pa.('i) and energles
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Ea (upper case: bosons; lower: fermions)
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(2)
where [he tl are occuparion numbers subject onIy to 2n = N. A class of

¡L ¡L ¡L

trivial solutions to eq. (2) is given by the plan e waves (spins suppressed)

'J',,(r) = n-l exp (ika' r)

nonnalized to unit}' within the volume n, and assocÍated wit:h any ser of na.
subjec[ only to ~tla = N. Th is ¡s seen by realizing [hat [he first term in (2)

"is [hen diagonal, as is the second (potential energy) term sincc? using

,::=: '1- '2' R = 1('1 +(2)' ki¡ = 1(k,.- k¡), Kij = ki +k¡ we have

<kklvlkktkk>=
1 2 12 3 • • 3

-ik ., ik' , - ik .,
=n-1fd're 12 v(r)[e .•.• te .•.• ]Sk +k k +k (4)

1 2' 3 •

so that the mat:rix element in (2) is o/so diagonal, Q. E. D. The single parti-
ele probability density

( 5)

will be homogeneous (or space-independenr, or transladonal invarianc) for
an}' plane-wave ser of solutions, called tri'f.ia/ solutÍons. We shall refer to
the particular set with

(fecmions)

(bosons)

(6a)

(6b)

as tbe trivial solution. The conditions for the existence of non-trivial 50-
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lu/iOTlS [O rhe flF equations will rhen be established wirh [he aid of rhe
following

Theorem: If a d(,t<:rminanr (Uf permancnr) corresponding lO a non-ho-
mogeneous (e. g., p<-'riodic or aperiodic) single-panicle probability density
is found, which has a lower expectation energy [han rhe plane-waves determi-
nant (or permanent) wim rhe (trivial) Decuparian eq. (6), [hefe exists a

lowu-energy IIF s[a[{' wirh rhe gi"t'"n nonhomogeneous properry.

Prooj: Considef rhe lIilbert space {or the exaet ground s[a[e ('¡,gen-

function oí th{' given hamiltonian. A subspace of this is spanned by [he
c1ass of aH single dc[erminantai (ar permanental) functions; [his class can

in turn be divided itlw (hree non-intersecting subclasses corresponding to

homog('neou~. (perkcdy) periodic and aperiodic (but nonhomogeneous) proba-
bility deusi(y. 111(: iow{.'st-vaiued expectation energy associated with a

given one of th<:, (hree subciasses. being a stationary value, corresponds to

a IIF solution and will c!eariy be bounded from abo ve by any trial encrgy
valu{.' associatt'd with a memb<:r of the same sube lass.

IIF JIF.. ¡, . .,;: F . < F "¡'homnon-trl\' non.lrl\l nom

Henee.

Q. E.D. \l'e stress again that E~{~~ srrietiy refers tO the particular trivial
solution specified by eqs .. (3) and (6).

ll. TRIVIAL SOLUTIONS

Consider a general hamilronian

11 15'
2m

N ,
L íJ

i = 1 J
(7)

and a dcrcnninanr (or permancnr) et>o with oeeupation numbers nA:' One has
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<<1>o

N
¿ p.. I::t> >

i<j J] o

= J¡ L <k k Iv Ik k :tk k > ["k "k - Sk k l/k (l/k + 1)/2] (8)k k 1 2 12 1 2 2 1 2
1 2 1 I 2 1 1

which was in fac( used in arrivlng at eq. (2). Combining this with the trivial
solutions eqs. (3) and (6) one obtains

E 11[' '" EII!, /1'1 =
hom hom

= I J¡ pv(O)

cp'i, + J¡ pv(O)

where we have defined

1

2p(2n)6

(basons) (9)

/ '/ ' 'i, f 3 .p", N n; e", (3h lOmJ(6n) ;v (q) '" d , exp(¡q',) 1'(,).

(11)

l. L07lg Ra1Jge. Forees. We consider firs[ [he case of a one-component
simple plasma, i. e., N poitlt particles of mas s m, charge :te, submersed in a
uniformo rigid background carrying [he opposite charge so that the system is
elcc[ricaIly neutral. This model, sumetimes called [he "jellium" model, has
be('n used cxrcnsively in rhe study of electroos io metal s and insulators3 as
well as in white dwarf s[ellar structure04

, where one has ,\' charged ions
mo\'ing in a background of (pressure or remperature) ionized electrons. The
prescnc(' of rhe uniform background can be seco 1 ro introduce a tcnn - 1pv(O)

ioto the hamiltonian (7), which refers ro the point charges, with

(12)

v (q) (3)
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Eqs. (9) and (10) then )'¡eld

o
HP

€hom =

(bosons)

de LI ano

( 14)

where

A

",
¡¡
,, «crrnions) (lS)

A=2 ~' B=~
,

1 1J' ( -.£ )'1,e a a:;:::
5 2ma~ " 2", 2ao a 0=--,; 9",a me

(16)

p ~ N/fl
J

kp~ 2__ =
6",'

3 (17)

and, clearly, rs == 'olao = 'ome2/ff2 is a dimensionless coupling constant, '0

being simply re!atl.d {O [he interparticle disrance. The system is meo cJear1y
almosr ideal al higb densities and very non-ideal al /ow densities -in exact
orposition ro [he more commoo case uf shon- ranged lorces as, e. g. , a sysrem

of argon atoms, ~foreover. sinn' €~~~ is a figurous upper bolUld to me exacr
ground state enngy of 11, che model s)'stem uf fermions is oot trivial since
ir can become a self-bound, condensed s)'stem (negarive eneeg)' per particle),
as is seen from ch(' raet rhar eq. (15) can be o(:sarive foc a cange uf values uf
's (",hich can be considcred a variational parameter).

For fermions, Gf'll-Mann & Rrueckner5 have considered the next-order
corrections [o eq. (5) in terms of the pardal sum af all so-called "ring'"
diagrams, obtaining (in rydbcrg units, e2/20

0
)

E ~ E HI' + 0.0622 In '. - 0.094 + ...
hom '"

lbe "ring" diagrams can be shown [O be me mast divergent (at

lor ',",« 1 ; summing the next most divergent diagrams give [)u
O( r In, ) as the next correction. Since••• .'1;

(18)

small q values)
Rois6 a tenn

0.0622 In, - 0.094 + O{r In r )
.'1; ."i S ---. const': ln,s ----. O (19)
A/r2 - /JI, , « I , ....•o

5 S 5 S
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the HF resuh ror the total energy eq. (15) is exact in the high.density, or
weak-coupling (small value of e) limito

Indicadon whemer lowcr.energy non-trivial solutions exist or not
can be obtained by considering the problem of s/abílí/y. Iwamoto & Sawada 7

have considered chis in terms oí whether the second variation oí the bracketed
expression in eq. (1) is positive or negativc definite; if the former occurs
che solution proposed, which differs infinitesimally from the trivial soludon,
corresponds to (an at least local) minimum. Their analysis is ver}' elegant,
complete and general since various kinds of instabilities(density, spin, etc.
fluctuations) are allowed for; however, a very simple compressíbí/íty cri-
terionS for a special but important kind oí instability can also be seen. Con-
sider the ground state energy density

2(p)"e!fl=pE(p) (20)

and consider a small densiry inhomogeneity PI (r)« p defined such rhar
particle number is conserved, 1. e.,

Id'rp/rl=O. (21)
Q

Then Taylor-expanding

2(p+p) = 2(p)+ 2'(p)p +~2"(p)p'+ ...
1 1 2! 1

(22)

and the energy difference between the homogeneous and the inhomogeneous
state is

1 2" I' ,= _ (p) d rp (r) + ...
?I J_. Q

Since the system prcssure (free energy F =: E - TS, S is entropy)

(23)

p ( ª"E)
<la TN,

= - =p'E'(p) (24)
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eq. (23) immedia[ely ¡eads to

2" dI'0-<0=.- (p) 5 o~_ )
dp

o . (25)

In shon, dI' /dp < O signals [he appearance of a lower-energy, inhomogeneous-
d{'nsi[y ground s[a[(:. '\loreover, [he expecration value in any s[a[e (eigen-
s[ate or nor) is

l' = < 11> = < T> + < l' >" < T > + < U > + < tJ > - < U >. (26)

N
If no\\' U ~ .::s u. is a one-partic1c operator, and in addition ir is the HF ficld

1:::: 1 '
""hile [he s[ate is the HF determinan[ (or permanant), we have frum eq. (2)

oro multiplying by Sa.j31la and summing ovt"r a, by eq. (8),

< II > = 2 < ti > .

Then, if Wo is the ground sra[e energy of /lo z= T + U,

= < T > + < U > + < tJ > - < U > " IV + < tJ > - < U >o

~w + ~<T>o

so [har

(27)

(28)

(29)

61:
111

..5 O ,.UF S ¡.-IIF winhom + < T>inhom~ whom + < T >hom<::> 'inhom .hom~ o / o
(30)

but. since the Ritz variarional principie s[ates thar < l'>hom$ < T >inhom

((he inhomogeneous densi[y s[a[(' consid{'rt:'d as a trial s[a[t") w{' have, com-
bining with eq. (25) Iha,
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while nO{in~ that op/op>O says nothing definite about the sign of
(Winhom _ w om). Therefore, the criterion dP/Op < O, which classically

c~rrcspond~ to the longitudinal, compressional wave velocity C//(l/m) (jp/a¡;
bccomiog pure imaginar!" (ami heoce indicating ao unstable density fluctu-

ation roode), signals in the 11F approximatc the appearanee o{ a /ower energy
unperturbed ground staft.', which in tum points to a breakdov.TI of a perturbativc

schemc bascd 00 the lr!"ial solutioo as zero.ordcr srate.
Applying the instability criterion to the fermion plasma result eq. (15),

using eq. (17), g!ves

Op/(Jp <O fur al! rs>n/a;6.03 (32)

This fesult agf{~es wich rhar deduced by me more elaborare analysis of ref. 7.
Wc f!lention lhar electron densities in real metals correspond to 2.(,r .::s 6.s

2. Shor/ u.ange Porees; Atl Exac! Resu/t. For either bosons or

fefmio/.", lhe IIF energies eqs. (9). (10) constitute rigorous upper bounds to

;-he {'X",1Ct ground state energy of 11. A rigorous /ower bound can be found
9

by ;cstrl..:ring (he class of two-body potentials lO

a) v(q) >0 al! q (33)

bU[ noting that this class does no! exclude the possibility of producing two-

body bound states, The example v(q); v(0)8(qo- q), with qo constant,

gives v(r); [v(O) qg/277'] [i¡(qor)lqor] which can evidently have bound
states, even if v(O) > 0, for large enough v(O) q;. Then the ground state

energy is, say

N, N
E ; <-(J;'/2m) :2: \7. >+<}; o.. >,
exact i=l' i<j'}

(34)

2 N 2 1
where < - (1; 12m) :2: \7. > "NCp'l, Ior fermions and ~ O for bosons, wirh rhe

i = 1 1
constant e given by eq. (11). The last equation in eq. (11) allows us to
write the ¡nverse Fourier transform as
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I -ik '(f.-f.)
"(f .. ,)=rr~e 1 Iv(-k)

'1, k

N
so that, defining P,. =: ~ exp (- ik. ti) we have

1{ i 'C: 1

de LI ano

(35)

N
< L "" >

i < i ']
N N

J; < ~ "(f .. )- 1 ,,(O»
i.;=1 ,] i=j

=_1_<~v(k)lpI12 >-~,,(O) ?J;Npv(O)- J;N,,(O)
2fl k • 2

(36)

me inequality following írom condidon 03a). Thus

O (bosons)

E "E /N?J;pv(O)-J;,,(O)+
ClaCI cxac[

cp'!, (fermions)

(37)

and one has a simple Jower bound. The upper bound for (ermioos eq. (10)
can be rcadil;- seco to become

cp'!, + J;pv(O)- J;,,(O) + 0(1)
kp »ka

(38)

where k is a characteristic wave number of 11 (le). lnerefore, for sufficientlyo
high density the upper and lower bounds coincide widl each orher and must
thus become equal to rhe eXOcl energy per particle: (he Jlartree-Fock energy.
for hom bosaos and ('rmioos, becomes exact at high density for interparticle
poten,ials sa,isfying bolh conditions (33a) and 03b). (We no,e ,hat ,he
lacter is nol satisfied by Coulomb forces). This re5uft can be considered a
short-ranged-fUtential analogue oC the exactness oC UF (with trivial solutions)
at high.density Cor me long-ranged-potential plasma. proved on the basis of
,he Gell-Mann & Brueckner ,heofY in eq. (19).

Instability can be studied wilh the Iwamoto & Sawada method7; they
used a repulsh'e Yukawa potential and Cound, besides spin-1ike instabilities,
unstable density f1uctuations oC long-wavelength (q -. O) \\'hich appear at inler-
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mediate densities, i.e., not too low nor (00 high. The compressibility cri-
terion eq. (31) would fail sinee 7Jp/7Jp >0 for alI p for a repulsive Yukawa,
but it is found useful10 for a tWObody potential with enough auraction to
make €fh/F negative for sorne p as then op/op becomes negative for sorneom
p. In this laner case, (he inscabilicy is eleacly associaced wi(h che for-
mation of ¡¡quid phase in che syscem; as chis stace of maner involves srrong
correlations becween the particles, it isno( clear which should be the ap.
propriace UF state. What makes this problem particulacly difficult is chat
no known obvious symmetry appears tO be broken, in the thermodynamic limit
N -- oo,íl -- 00, N/O: = constant, in (he passage from gas tv liquid or vice
versa, even at zero absolute temperature.

lll. NON-TRIVIAL SOLUTIONS

1. Long Range Forces. The simplesc example of a non-trivial so-
lution is pemaps lha, diseovered by Bloeh 11 in 1929: me ferromagnetie ferrnion
gas wi,h nel IOlal spin Nfi/2. The IIF energy eq. (15) eorresponds 10 a para-
magnetic gas, i. e. , net (Otal spin zero, namely

Epara
= A B (39)

whilc the ferromagnetic case is easily obtained from this by just replacing p
by 2p, so mal using eq. (17) gives

€ferro
( 40)

The ferromagnetic
s tate for

's>7T/a

(non-trivial) sla,e is clearly b.low lbe paramagnelie (trivial)

'J.
~.:...Q = 5.45
5(2~L l)

which IS within the range of metallic densities and below the density insta-
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bili[y critica! value 6.03, eq. (32).
The clas~ic example of flon-trivial HF 5[a[(:'5, howc\'cr, is [he U.'igner

la[[ice 12 which forms in me une-component jellium model (oc 's » 1. i. e.,
low~ensity and/or suong-coupling. \t'igner considers rhar at sufficientiy
large interparticIc separation rhe cocegr per panicle is [he ('ungy uf a single

point charge within a sphere of oppositely-charged uniform "jelIy" Of radius
'o' The charge densi[y of ,he "¡eUy" is :!: e/(471 /3)'~ while [he nC[ charge
¡ne losed in a sphcre of radius r s;.'o 15

q (,) 4n ,3

3
111 )

The potential al lh(:' spherical surface at r is !hen

cP(r) = qlr)/,

while me en(:rgy of a shell of thickness dr thefe is

d\'(r) = 'r;(r) [:!: 3e/471': ] 4T7,'dr

so thar the total potential encrgy becom('s

(42)

(4)1

v
\'( ro)

!dV(r)=
O

9 e'
10 '0

- ~ (e2/20 )
r o
s

~.i4)

which is /orJ.'er liwo rhe IIF trivial state values eqs. (14) ~¡nd (15), slnce

A = 2.21(e'/200)' II = 0.916(e2/20
0
)' The kinc[ic cflergy follows [rom

realizing that the point charge oscillates in a putcntial enngy well

3 e'
2 'o

,
+ e 2__ r

2r'o

(45)

so that the ki'lelic energy (the first term in (45) must be neglected as it is a
self.potenlial energy) is
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Lliw = (3/"1, )(,'/2" )
2 ,"" (}

Thus, the "\X,,'igner solid" energy per particle becomcs

(46)

B)

E O""l,':ner
3/, '1,- 1.8/, .s s ('ydbeegs) (47)

This value is a rigorous upper bound to the ground state energy, for rs » 1,
as can be seco £rom the followiog: construct a determinant (or permanant) of

singlc-particlc orbital s

(48)

localized aboU( the points of a perfect lattice of sorne given type, The ratio

of orbital width to interparticle separation is then /2/f3/r and mus pro¡:x>rtion-, o
al to ,;-:4. so that it tends to zero for 's » 1: in this limit, the averlap bccween

orbitals of neighboring sices is negligible and che off-diagonal components
of the determinant (or permanent) fJanish and the expectation energy reduces

to a kinetic energy terffi plus the potential energy of interaction of the chargcs,

which since they have a spherical distribucion about e<lch site, becomes just

me classical potential energy. The latter is calculable in terms of well-

known lattice-summation techniques: Fuchs 13 obtained -1.79183/, ..•rydbergs
per particle for the bcc lanice and -1.79172/, for the fcc, while CarrH ob-s
tained -1.760/, foe se and Kohn & Seheehteel5 got -1.79168/, foe hep.s . s
'Ibese results are amazingly close tu [he \\'igner result of 1.8/,s oí eq. (47);
which of course is based on ver}' simple arguments. The kinetic energy-per-

particle tf;"rffi ffil'ncioned abovc is just

1 2 I ~ 2t,2 lj, J 3 -:se, 2 -~,u'
=-_' ((3/rr) , d,e 'Ve

2m

3 1i '= -(3
2 2m

(3/,'1,) (e' /2a ) .
.' o

(49)

Thus, the "Wigner solid" result eq. (47) is, for all practical purposes, [he

('xpectation \'alu(' of the hamiltonian be[ween legitimate trial functions, and
(hus a rigorous upper bound which is lou.er [han the trivial solution result
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2.21/,2 - 0.916/, oC (15); hencc, usino dH.' Theorem uf Seco 1 a periudic-.,... l">

dcnsity IIF suturion exists which is energetically preferred fOf T:<;» l.
Correcrionsl'" ro (he \\'ignt.'f r('suft (47) can be made which cX[(.'nd

t1H' validity of E(r ) tú somewhat smallec r values: {hese apnt'ar as a series. l.s .•• f'-

in powcrs of (r .••-1)n. of which [he \\fignec [{'su1t giv{'s [he firsr two terms.
Tl = 2 and 3.

The instability que:-irion is (:asic'it in t('rms of (he compressibdity
criterioo; van 110m 16 give .••

Ol'/op<o foc r > 6.4, (50)

fOf (he corrected \\'igncr lattice energy of reL (14). :\n ('ven more obvious

criterioo fOf instability is P < 0, whi<-h holds for eq. (47) according w

o dr
l' = p' --.:...= p'~

op dp
lor r., > 6.25 . (51 )

This cundirÍon gives instabilit), because a ground sta(c widl ncga(ivc pr{'ssurc
can ae most be me(as(ablc 17,18.

Finally. we mention tha( Shuster & Kozinskaya 19 havc shown thac for
',••.valucs somewhat smaller chan (h{' limic,s» 1 che sta(c with /U'O roine
charges localized abouc cach lauice roine has /ou'e, {,IH:rgy, and conjcc(urc
thac fur successivcly smallcr ' .••.values s(accs wi(h tJ poine chargl's, 11 = 3.4, ..
will havc lowcr energy chan che prccccding one, until 11 -o N, which is the
fluid phase.

2. Sbnr/ Ra'lge finTees. Consider (irs( (he case of a purel)' r('pulsivc
barrier of range ao)

dr) = l' e(a - r)o o (52)

Define a determinanc (ur pcrnlancnt) of orthonormal singlc-particlc. \l'anni(:r-
like orbicals (no spin)

. 2" I If!;77S'"d r.-R; I I'i'c (r)=O .. 'i' (r.);,O .. _ I e(d/2- r-R )
-"'., '1 R 1 " , I

'id J (2 7T / d) I r - R.I
I I

~53)
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wht:r<: i.j = 1.2, ... , N and rhe R. aft" (he si{('S of a giv{'n pcrfcct lattice•whilc d is (he diametcr of sph('f('s cenu.'red 011 the siws ami "".¡thin which wc
place (me particle. L{'( th(. nearest-neighbor distance be a + d. so thar (he

surfac{' of thl' spheres are .'H'p.u<ltcd al leas( a distance a:) 00 apart, i. e .•
(hefe is 1lú (H'erlap of orbitals associatcd with Jifferent panicl<:s. Thc parti-
ele densit)' is thlon gi\'cn by

p N
í!

K -'
(a+dr'

(s =' dimensionality) (54)

whert' K oSis apure nUmbt.'f glvmg [he proportion of (he total volume OCCUpil.d

by (he spheres, re/atir'e {o [llar occupied by (he simple cuhic arrangement.

Thus K 3 {in (hec(' dimensions) ('quals 1 (oc se lattice, /2 fOf fee Of hcp.
313/4 (Of bec, and so oo. Th(' trial energy p('r particle (which is a rigorous

upper bound) is then just

Epe, (55)

'/, ,
"he,,- do" (K/p)' - ao > (K/P)Y' - a = d and ,he subscrip, 'per" stands lor
"pc.:riodic probability density". Defining a "close - packin~" density

p :=o l\./a3 ~ pone obtaills
n o

'/, '/, '/, -,
E
O (p) = (27Th'/mK ')[l/p'- l/p']
p('r

( 56)

which approaehes I {"onst! p% as pipo «
infi{'Ction point Olep = p 1(,4 (eL Figure,

o
trivial solution for hosolls giv('s

l. di,,'erges as plp -. 1 and hasollf'
n

honom), On tht, oth{'r hand, the

E 1/1' (p) = '; Pl/(O)
hom 12 ( 57)

and n:prc.'s{'nts eh" straight lin,' in Figure, bOBorn, As f'O is allowed to in-
creas{' (his curv{' touches th{' curve (0 (p) and, as t' incre-'ases rurth('r.per o
i( C14/S ir at two roines: at int{'rmeJiaee dc.'nsiti{'s. a non-uivial. periodic-
density solution ro ehe JlF equ.uions (hus (:xis(s if (he in intcraction is
suon~ ellou,gh, This agr('cs qualitati,"ely with Iwamoto and Sawada7• who
us(,d a [('¡l\Jbive Yukawí.\ furn', The siwaeion in Oll{' and two dim{l1Sions
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"Periodic" and "homogcneous" energies per particle compared in 1-,
2- and 3-dimensions (schematic).
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is readily seen [() he that of th(: rest of the Figure. Defining the dirnf:nsion-
less coupling constant A.o; mf)oa~/¡,2 and rcduced density e :;:;;(pi p)l;, and
bringing in me result eg. (10) for fermions, one finds that EO < Eh o if andpc-r om

on II' if

(58 )

(ferrnioos) (59)

x'g(x)= 72
x .- f SlO)" d)' +

o )'
3+1 (1+4)
- - - -
x x3 X x3

4cos x - _ sin x
2x

which, by inspeclilln, are bmh sa[i:di{.d fur sufficiently large A.. We thus
reach me conclusion of reL (20), again using the Thcorcm of Seco 1, that for
('ither bosoos or fermioos a strong enough repulsive barricr suffices [() es-
tablish the exis[enc(' in three.dim('nsions of non-trivial, periodic-density
11F solutions which are cncrgetically preferred at iIHerm{,dia[e densities. In
one dimension only. an arbitrarI' weak force, will alwaI's give a prefcrred
non-trivial stat{' (d. Figure, top), whercas in two and three dirnensions a
cri[ical chrcshold value of f~ is required. These results corroborate rhe
conjecture of Kohn & Ncuei 1, made un the basis of a lIartrce treatment in
one, tWOand rhr<.c dimensions, aft('r the)' consi(kred the piooeering resul[s
of Ovcrhauser's22 on('.dimensional cas(', Thcy also agr('e widl me long.range
force \l'igner lattice problcm in the sensc that a strrmg (,1lfmgh couplillg brings
about me energctically.preferreJ non .trivial sulutions.

The aboye corrcsponds of course only to a non-condcnscd (positive
energy per partide) crysrallin(' s[ate; ir can be consider(,d an inJependcnt-
quasi-particIe, quantum rnechanical analogue of the so.called Kirkwood

23

hypothesis that a sysrcrn of hard-spheres undergoes a f1uid-solid transition
at sorne finit<, density. I('ss thall packing densiry, a[ 011)' [emperarure. This
appears to ha ve becn borne out by compurer cxperirnents2

-4 in [wo and thrcc
dimensions. for N not (00 1arge,

:\'ormal crys(als are of courS{' condensed. st'lf-hound. N-bod)" s)"stems
and this can ooly occur through th(' pr{'sencc of auracti\"e forces. For rhe
sakc of definitcn{'ss, one can (alelO the potential
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LJsing again the dercrminant (oc pennanem) of orbital s eq. (53) une has

E
O = 2n'5'/md'+(!-íN) ~ <R R 1" IR R>p cr o I 2 12 I 2

R,R,
(61)

s¡nce (he exchange [erm < R 1R
2

1 vlll R2 R I > vani .•.hes identically due (O (he
non-overlaping character of me orbitals (for rcpulsive enough coces. overlap
can onlr ¡,¡crease [he energy). A very useful resuh of Bernardes25, as well
as indistinguishability of sites, allo\\'s eqs. (60) and (61) (O becornc

,
EO (p) = 2nfí [_'¡' _~J-'
per p 3 - A )

mK2~ o

1
N-, -¡;.S}

[ 1 + ~ '\. (¡Ld/2) 'm ] ~ C. ~ ,
rn "" J ,., =: 1 f-LS,.,

A ==m
[(2m + 1)(2m + 1)'( ~1- mi' (_)' (2m + 1)' l

I 1=0 (2n)21+'(2m-2t-I)! í
s =a+d=a +d, o o (62)

",ht're en is che nurnher of ,ah nearest-netghbors ano sn (he distance between
thern. 11te trivial solution energy foc bosons, froro eqs.(~) and (60), becomes

€IIF = 27100hom (boson s) (63)

hu( mus( be positin' as otheru'ise (he system will (rigorously) collapse.
Comparing (.'qs. (62) and (63) shows that for /3'10 sufficiently lar~e one may
ohm in

EIII.'>EO <O
hom p('r (64)
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for sorne range of density, i. e" a self-bound, crystalline-like, non-trivial HF

solution.
\\'e now briefly indicate mat non.trivial aperiodic-probability"¿ensity

lIF solutions cxist for bom bosons and fermioos, these may be relevant in
consideration of the liquid phasc. Considcr mat in the determinant (or pama-
nent) of loC'alized orbitals (53) we separate one or more sphcres £rom each
odH'r such that the average of the 12 ocarest-neighbor a valucs for all N
particles is a> ao: we then hav{' an imperfcct lauice (or apt'riodic disui.
hution) and the densiry is givcn by

p K

(ii + d)'
< (65 )

sincc K < 12 (the maximum value of K for closesr packing). Thus, for fixed
d, P is decreased somewhar relative ro me pcriodic configurarion with K :;;;ff
Thnc an' theo a whole family of curves E (p) lying above EO but certainly

IIF _ aper per
be/ou' E hom (p) Q. E. D.

Finally, srability will be guaranteed if al/26 compressional wave
modes, longitudinal and transvt'rse, have real velocities but the questíon has
not, tu our knowledge, becn invC'stigated wirhio the single-dererminantal (or
permanenral) picrure.

IV. R E~IAINING PROBLEM5

Three general questions remain: 1) once exislence is establlshed,
how can on{' derive rhe selj-consistenl single-particle orbirals? 2) is rhe
solutioo io questíon unique, i. e., is ir rhe lowesr energy one? 3) what are
the most important perrurbation-rheorcric Feyoman diagrams to be considcred
in calculariog "corcelarion" effecrs, and can mey be summed?
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RESUMEN

Se hace una revisión del trabajo relacionado con las pruebas sobre la
existencia de soluciones no triviales (sobre codo en el caso de densidad pe.
riódica). energécicamentc preferentes, de las ecuaciones de Haruee-Fock. Se
consideran sistemas de N bosones o fermiones (N » 1) interaccuando tanto a
lar~o como a corto alcance y se discuten criterios de estabilidad. También.
se discuten algunos resuhados exactos asociados con soluciones triviales
(de onda plana). La principal conclusión es que, para cualquier densidad fí.
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sica fija, un acoplamiento entre las partículas suficientemente fuerce, puede
inducir la aparición de estados UF no triviales. Estas soluciones proporcio-
nan un primer paso (.'n el estudio de las propiedades de sistemas de muchos
cuerpos, desde plasmas astrofísicos y cris[ales cuánücos, hasta la materia
nuclear y el helio a muy baja temperarura.




