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ABSTRACT:

Closed algebraic expressions are given for complete (but non-
orthogonal) sets of functions, adequate for the quantum me-
chanical description of the translationally invariant orbital
motion of three identical particles, The functions apnear as
linear combinations of hyperspherical harmonics wiih good
permmutational and orbital angular momentum symmetries. Both

the two-dimensional and the three-dimensional problems are
discussed.

I. INTRODUCTION

The subject of the nuclear three-body problem has attracted the at-
tention of a great number of investigators, both theoreticians and experimental-
ists, in the last few years. On the theoretical side of the problem, attempts
have been made to obtain the wave function of the ground state of the bound

system by a variational method. There are two basic requirements that any

.
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trial wave function should satisfy. One is that it must depend on two rela-
tive vectors (elimination of the motion of the center of mass); in this con-
nection a suitable pair of relative vkctors are the Jacobi vectors that will be
defined in Section II. The second requirement is the observance of the ex-
clusion principle; this can be accomplished by working with antisymmetrric
functions that are an appropriate sum of products of an orbital function with
a definite permutational symmetry, times a spin-isospin function with the
conjugate symmetry.

A complete orthonormal set of orbital functions permutationally adapted,
was constructed by M. Moshinsky!, in terms of harmonic oscillator functions.
Even if the oscillator functions seem to be doing well in nuclear physics, it
would be desirable to have other sets of symmetry adapted orbital functions
atone’s disposal. An alternative that has been widely discussed in the
literature, consists of orbital functions which are a product of a hyper-radial
function depending on the six-dimensional radius, times a hyperspherical
harmonic depending on five angles.

In this paper we shall implement a method, originally proposed by
Dragtz, that will allow us to obtain, starting from the results of ref. (1) for
oscillator functions, general formulas for hyperspherical harmonics with good
permutational symmety. This analysis will be presented in Section IV. We
think that the essence of the method can be more easily appreciated by
presenting the detailed calculations at a more elemen tary level. For this
reason we discuss in Sections II and III what we call a model problem: a
system of three bodies on a plane, and deduce for this simpler problem all the
results that have a correspondence in the real problem. The two-dimensional
problem was analyzed long ago by Smith !, but he did not discuss the permu-
tational aspect of the problem, in the case of identical particles.

II. THE MODEL PROBLEM

The internal motion of three particles on a plane can be described by
the two Jacobi relative vectors r'l : r'2 , defined in terms of "ie physical po-

sition vectors r r.as

i ' fa
n=AND0 =) 5 L= AN (-2 (11.1)

Then the Schrodinger equation for the internal motion, supposing only two-
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body interactions, reads

2m s 3,22 23 31

2 2
[-iza v+, +V]'P=E‘P, (11.2)

where x| | i =1,2, are the two cartesian components of the Jacobi vector

r's (s =1,2). Itis generally impossible to find exact solutions of eq. (I1.2)
for physically interesting potentials V Therefore, we shall try to find an
approximate ground state elgenfuncuon and eigenvalue of (11.2) by means of
the variation method. The completely antisymmetric trial function is con-
structed as a linear combination of proc[uc:s of an orbital function (D(r " r )
times a spin-isospin function G (o'c 2031 ’."2”3)

¥ =36 3 R,0m 67 (11.3)

Here [ = {/ Ll } a partition of the number 3, and r = = £ ) the Yamanouchl
symbol?, dcnotc the permutational symmetry of a function; it is known” that
® and G must possess conjugate (or associatg) permutational symmetries,
we indicate the symmetry conjugate to fr by f r. The C, in eq. (II.3) play
the role of variational parameters and they are determined by the usual method
of solving the secular problem associated with eq. (II.2). The spin-isospin
part of the trial function is well known, (see for instance, ref. (4)), so we
shall discuss in what follows only the orbital part (i)(lr1 5 By s

Let us introduce four-dimensional hyperspherical coordinates
(p,ﬁ,qﬁl,qﬁz) for the Jacobi vectors, in the following way

0 :/{?hﬁz ; ;r'1 = p cos(B/2) , flz = p sin(B/2) (II.4)

)2 (I1.5)

the range of the angles being 0 £ 8<7, 0 ~€d)s €27 . We shall select for
<D(l:1. ;2) a function of the type

(r,r)=R(P)Y(B, ¢, b)), (I1.6)



100 Chacon

where the angular function is a hyperspherical harmonic and satisfies the

t.*qua:ion5

2 2 2
—|}il+4cotﬁ%_+ 1 3 4 1 9 ly-k(K+2Y.
of B a8 302 o228 3%
2 2
(11-7)

The solutions of this equation can be expressed in terms of the representation
functions® of the group SU(2),

_ ,K’rl Kie ;
YKm1m2{q51’ﬁ’¢2)_ F Dm1+m2 ml-m2(¢1+¢2"8’¢1 (;52)

b

2 2
_ K#1l ei(m].¢>l+"“2"152)dK/2 (ﬁ) ) (11.8)
g7 2 "’1””2""1'"‘2
2 2

These hyperspherical harmonics constitute a complete orthonormal set in
the following sense

* = pa—
YK'ml'm; YKm1m2 sin Bdﬁa’qbldqbzA Sk Em]m; szm;
o m,mzzK,K—Z,K—4,...,—K. (11.9)

One of the advantages of the orbital functions, as given in eq. (I11.6),
is that the internal kinetic energy operator is diagonal with respect to them
in the quantum numbers K, m

. 5
[y namely

2 2
5 % RO Yy = Yim.m 4R 3AR _ EIR*TIR] . {1110}
s ;‘_2 1 1. 2 dp2 pdp pz

Another important advantage, is that they allow an efficient evaluation of
the matrix elements of the interaction potential through the use of angular

momentum techniques. For instance, in the simple case of a central potential,
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V. | P )= V,,(V2p cos (B/2)), we can make an expansion in a series
of Legendre polynomials (a multipolg expansion)

v, (V2p cos'B j o :»:/,(p)d (B) (I.11)

and then the matrix elements of V,, are expressed as a finite sum of integrals
of a product of three d(/3) functions, for which a closed formula exists®. As
for the radial functions themselves, in the case of bound three-body systems,
a convenient choice would be a set of orthonomal functions decaying to zero
as p goes to infinity; for instance, Laguerre functions’.

From the definition of o and of the Jacobi vectors, it is clear that 0
is invariant under permutations of the three particles. Therefore the permu-
tational properties of the orbital functiond)(l:1 , 1:2) will be wholly contained
on the hyperspherical harmonics. Thus the main problem to be solved now is
the construction of linear combinations of Yy~ possessing a good permu-

tation symmetry. We shall do this in the next section, follewing the idea of
Dragt? in which one starts working with harmonic oscillators, but then this
restriction is removed and general results are obtained.

[II. THE MODEL PROBLEM. HYPERSPHERICAL HARMONICS
WITH GOOD PERMUTATION SYMMETRY.

We shall begin with an analysis of harmonic oscillator functions of
the two Jacobi vectors rl, 22 in which case enforcing the permutational
symmetry is relatively easy'. As the analysis to follow is so similar to that
presented in ref. (1), we shall only sketch the main steps. We choose a system
of units such thatm =w =% = 1.

The harmonic oscillator states can be expressed very conveniently
in terms of a polynomial function of the creation operators

7. =AN2)(r - ip,) s=1,2 (111.1)

acting on the ground state IO >: we can also define the annihilation oper-
ators £ = T)s For our problem it is rather more useful to introduce the
“spherical” components of the vectors, namely T)US , 0= +,-, defined as
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Mys =(AVDT, iR, ) (I11.2)

The two particle oscillator states are then

N+ m N + N - m
T By Nytm, Ny-m,

Z . 2 . 2 . 2

Bom Nym, >=AGL) ) 7 () (1.,) 0>
(1I1.3)

where Alis a normalization coefficient whose value is

. . - . . . 2
A:(_)I/?(N1+N2'm1_m2) [(N1+m1)|( = ]) ( mi)!(NQ_mﬂf]
2 2 2 2

(II1.4)
The states (I11.3) correspond to a number of quanta of energy N_ and an
angular momentam m  for the sth oscillator (s = 1,2). From a group-theo-
retical standpoint they belong to a basis for an irreducible representation of
the chain of groups U(4) D U(2) xU(2) D 0(2) x 0(2) . It is clear that the
function of ”q in eq. (III.3) is a polynomial only if N, =0,1,2,.... and
=N, N=2,..., - N_
Foliowmg [he anal\Sh of ref. (1), we introduce a particular combi-

S

nation of creation operators

LS AND=in 40, o, = AV DER +,) (II1.5)

If we denote the states (II1.3) as P(N m N m )’0> let us consider a set of
polynomials P(N m N mz) with exactly th(. same structure as the previous P
but only constructed in terms of 1) instead of 7; Then we find that the
permutations (1, 2) and (1, 2, 3) have the followmg effect on the polynomials

lI']T)

(1,2) P(N]mlz\'zmz) = P(N2 mle ml) (II1.6)

N -N
(1,2,3) PINym Nm)) =co ! 2 P(Nm Nym); = exp(Yim).

(I11.7)
Using projection operators of §(3), as in ref. (1), we deduce that the poly-
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€
(I/V2)[P(Nym Nm)+ (=) P(N;m,N m)] (I11.8)

has the permutational symmetry defined by the partition {flf2f3} and Yamanouchi
symbol (1'3 r2r1) indicated in the following table

€ N -N, {r} (r)

0 1,2mod3 {21} (211)'

1 1,2mod 3 {21} (121) (I11.9)
0 0mod 3 {3} (111)

1 0mod 3* {111} (321

To express the polynomial (II1.8) in terms of Jacobi vectors, we
proceed as in ref. (1), and arrive to the result

P(Nlmlszz) =

. o NE @ oam
— .}, - <Nlm1N2m2 N, m N2m2>(—1) P(N] mlszz), (111.10)

where the bracket is a harmonic oscillator transformation bracket® (common-
ly referred to in the literature as Moshinsky brackets). In Appendix A we
shall show that for the two-dimensional problem the Moshinsky brackets are
just a product of two representation functiens di,,m; (17/2) of the group SU(2),
namely

.thn N1= N2 and m =m,,
cative factor in (I111.8) should be l/2 instead of 1/V 2.

only the symmetric state exists, and then the multipli-
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<f\1’lmlN2m2 Nlm Nm_ > =

L5(NAN_4m +m_)
W o i e U
4(N =N tm -m,)), 4(N;-N tm -m,)

4(N +N,m -m,) (/2)
! biirnn —xcr: i * .
4(N;-N,-m +m,), 2(N-N, m tm,)

(II1.11):

Using properties of the d functions®

we deduce the symmetry rela-
tion

<N,m |NmNm>-()%NmN N,m,Nm >

and therefore the oscillator functions with definite permutational symmetry
which are given in (II1.8) can be written in general as

®(N,m Nm,, fr)=

¥ /(1;“‘+€) e
—V2 3 <NmNm |NmNm>() P(NmNm) 0>,

(111.12)

where the relation of f, r with N, N,, € is given in table (111.9), and the
summation over N runs only over even values when € = 0, or over odd values
when € = 1.

We have thus in eq. (II1.12) the complete explicit solution for oscil-
lator states with good permutational symmety. Letus see how can we use
these results to obtain the hyperspherical harmonics of Section II, with defi-
nite permutational symmetry. For this purpose let us note that there is an al-
ternative expression for the two particle oscillator states, namely
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|NKm m, > =

=

m oy v, . . . . )Z(N-ml'ﬂ; )-v

. m. .
%Bv(Thl) 1(7?+2) . (7?-2) (Tf+1n-l+77+2n-2 lO)
(I11.13)
with the coefficient B, being given by

N-K

+ . .
= Y Kém +m i
2

(-) * (1 2+p) e e
i - 2 EK‘*’I)(K mz1 mz)!(l( ml+m2)1 y

v = 2
K-ml-m2
vi(m,tv)! (% "2 s
2

"
K #m K+ ’
. {(ﬁ_gﬁ.n(yfﬂ),( il | ”‘2 ”’2)] . in14)
K,

These states correspond toa number N = ;\.-'11' N, of quanta of energy, an
orbital angular momentm m_ for the sth oscillator (s = 1, 2), and a value
K(K + 2) of the operator on the LHS of eq. ‘II.7) (which is the square of the
generalized four-dimensional angular momentum). From a group-theoretical
viewpoint the states (II1.13) belong tc a basis for an irreducible representatica
of the chain of groups U(4) D 0(4) D 0(2)x 0(2). From the two previous
( ia_ons it can be seen that the function of 7.705 in, ‘eq. (FI1.13) willlbe a
polynomial only when N =0,1,2,...; K=N, M- 2 ..., 1l or0; andm, im2=
K.B~2 s~ K

Taking the scalar prod.ct of (:i1.3) with (III.13) we obtain the transfor-
mation coefficient between the oscillator states ciassified by U(2) x U(2)
and by 0(4), namely

(Nm Nm, |NKm'm!)=8 .8 8, —
i ko ) Al m m, mm, N,N]+N2

K+m +m N-m
s

I (. PR 1T il Wi P 1

= 2 R
%% . - (111 :5)

s K-m -m N_—-m

sf(m,z’rs,‘!(__ﬁ'__z---s\-ff__?. 2w

2 .
<-m -m K—m -m

(Km

1y (2 (T g ey )

K+m +m K+m

(HoKyy (e g gy 2y, (S, (O
2 2 2

Bl B 7L T
x (=) 2 2
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Using this coefficient we can express the states on the RHS of eq. (I1.12)
in terms of 0O(4) states, i.e

®(N1m1N2m2’ fr)=

+e
N1

3 (92

iy

2
NN,

) <N,m N,m, |Nm N,m,> x
1™
x(NKm_m, [N ) NKmm, > (111.16)
vectors, we obtain a result of this sort
Nm Nm
O (N,m N,m, fr) = %RNK(IO) ZK}'I 2B D) (11.17)
The angular function Z is defined as
Nm NmNm
2@ by = X T gy (¢, B, ¢,)
m;mz m, m2 Kmlm2
(I11.18)
with
Nm N m_
& 112 2 (Kf?) -
m_m
g

N +e
1

. (NKr;:Ir;r

_2 <NmNm l.P\J'rrzl.l'\i’21'712>( )
NN

,INm Nom) (.19)

At this point we follow the reasoning of ref.. (2)-

It is shown these
that the four dimensional Laplacian operator V acting on a hamonic oscil-
lator wave function with N quanta of energy: ‘P

N, K,

« « ,produces a multiple
i
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of ¥ « .« . From this fact, and from the identity
= K,ml,m2
22 d 9 2
V.=p2 (pS +2)=A (111.20)
PV, =g ap(’o‘ap

where A2 is the operator on the left hand side of (I1.7), it follows that all the
Z with given values of K, f,r but with N = Nl +N2 =K,K+2, K+4,... are
proportional to each other. We can thus obtain a minimal set of Z if we just
include those Z with N = N, * N, =K. This setis still overcomplete
because some Z functions in it are proportional to other Z with
K=N-2 N-4,..., 1or0, which occurred earlier in a step-by-step counting
procedure. A rule to obtain a complete system is to delete for K = N_+ N
all sets (NlmlszQ) {/} for which the set (Ni-— l‘ml— 1. N~ 1,m2+ 1) {f}
occurred at an earlier step when K = N, tN,-2.

Thus we have in eq. (I11.18) the solution we were looking for: the
functions defined by eq. (III.18) constitute a complete system of hyperspherical
harmonics with good quantum numbers K, [, r, if we consider only the cases
of N * N, = K and the sets (N,m N,m, ) {/} obeying the rule of the preceeding
paragraph.

When N = Nif sz K, the transformation coefficient of (II1.15) simpli-
fies to a monomial and the detailed formula for the coefficient appearing in

(I11.18) 1s

i o« \73
m +e K+, +m
NmNm T . - 2
Ct 2 2 ) =19 5 s 8 B & . x
™y ""LJ""?."'"l+"’2NlN2 By NN ¥ Ny :
. Ny Fomy
) 2 z
I\—rﬂll—m2 K
2 | "
G(N1+N2+m1+m2) ) (W)x
i i v .
. . ) /S(NE*NZ*'ml—mz),Q(Nl-N2+m1—m2] 2
N -m Kem -m
1 1 e O
2 2
. 1(N1+N2-m—m2) ) . (W\.
';le—Nz-ml+m2), ‘/.(NI—NZ—ml*‘mz) 2 CIIT.21)
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We recall that when the € of table (III.9) is O the summation over N, runs
over even values, and when € = 1 the summation is over N odd.

IV. THE THREE-DIMENSIONAL PROBLEM

The steps followed in Section III to obtain hyperspherical harmonics
with good permutational symmetry for use in the quantum mechanical problem
of three bodies in a plane, can be repeated now for the physically realistic
three-body problem in space. We shall give next the essential results,
stressing the parallelism with the corresponding results of S¢ _rion III.

The harmonic oscillator functions in the Jacobi cooru. .ates ;1, r-2 ,
and with definite permutational symmetry {f} (r), orbital angular momentum
L and projection M, were obtained by Moshinsky et all. They are given by

n . g ®
(D(nlllnzlzl,Mfr) = .E. 1= IBU]’"1I1"2[2’fr)<"1[1”2[2['|"111"212L>x
nlinghy
< (Y., Y. ()] (Iv.1)
"111 n212 LM

On the right hand side of this formula, B is essentially a phase factor given
in ref. (1); the next bracket is a harmonic oscillator transformation bracket®
(i.e. a Moshinsky bracket) for whose evaluation tables or computer programs
are available; and the last factor is the vector coupled product of two oscil-
lator functions in the Jacobi vectors r'l . r'2 .

These vector coupled functions correspond to a classification scheme

by the chain of groups

(1) (2) (1) (2)
UG)O U(3) xUB) DO(3) x0(3) DO(3)D0(2) . (Iv.2)

In analogy with the two-dimensional problem we can introduce oscillator
functions corresponding to a classification by the chain of groups

U(6) > 0(6) 5 03) x 0(3) ) 5 0(3) > 0(2) . (1v.3)
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We shall denote these functions as®

Yakitim o 6) = Ryk(P) Yip 1 4(2, 6,8, 6,,8)
12 12 (1V.4)

= F Y; (B..¢) Y; (6, ,
Ryk (@) K’Jz(“” 1 ( »®) Y (6 d’z)]uu

where r'1 = pcos a, r.? = 0 sin a, and (95, d)s) are the polar angles of r;.
s =1,2. The range of the indicesisN =0,1,2,...; K=N, N-2, N-4,...,1
or0,and K2/+/ 2>2L> | b= 12! . We call the YKIII2LM hyperspherical har-

monics for the spatial three-body problem; the explicit form of F(a) is given
in ref. 9.

We must now calculate the transformation coefficient between the
states in the chains (IV.2) and (IV.3), namely (NK!llzlnl[lnzlz). Just as in
the two-dimensional problem however, we shall not need the most general
coefficients of this type but only those with K = N; these particular coef-
ficients were calculated by Raynal and Revai'®, we shall introduce them
later in eq. (IV.7). i 43

Passing then in eq. (IV.1) from U(3) x U(3) states to O(6) states,
we arrive at a result of this sort

nll 7.21

®(nlnl LM, fr)= %( Rak (0 Zhlyy? (2,6, 4, 6,,¢)  (V.5)

whe _ the angular function Z is defined as

inl
h Mt

ZKLM/r (a,6,,¢,,0,, %) =

. nilnl
=2 B(,,nlnlfr) Cr T URLIeIY 5 5 (a,8,¢, 6,, ) (IV.6)
i1 11 KI 1 LM
172 12 <
with

nilnl n > . . . .
11722 _ s (o it L
¢t (KLfr)= 3 (=) "(NKI I |n, bln, L)< inl Llntni L> .
12 nn

i (1v.7)



110 Chacon

By a reasoning similar to that following eq. (II1.19), we obtain an (over-)
complete set of angular functions with good quantum numbers K,L M,/ r if
we take all those Z of (IV.6) with Zr}l * 11 + 27121" 12 = N= K ; and in order to
obtain a complete set of independent functions we follow the rule of taking

into account only those quartets (nl n,l ) for which L+, =L+% [1-NL]

For the case N =K, taking the coefficient (NK lr;ln.z)l. . from ref.
i1
1
10, the C of eq. (IV.7) becomes
% feriio) 5
K-[1+12+1 K+ll-12+l

nlnl %
EXT2 (kL= 3 ’ ’
! i . .
BB 1" " n,
-5
K+1 4 .
. <mlnl LlnlniL>: (1v.8)
K-1 -1
1
L 2

Thus from eqs. (IV.6), (IV.8), and the two rules of the last paragraph, we
obtain a complete set of six-dimensional hyperspherical harmorics with good
permutational symmetry. It should be mentioned that the functions in this
set which have the same quantum numbers Nl N, K, LM, f, 7 and differ only
in 11, 12 , ‘are in general, not orthogonal (NS =2n, + ls).
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APPENDIX A

In this appendix we shall derive formula (IlI.11) for the two-dimensional
hamonic oscillator transformation brackets (i.e., Mgshit_lsky brackets). In
the oscillator state given in eq. (II1.3) the vectors ;B play the role ofi
position vectors of each oscillator. The transformation to (normalized) rela-
tive 7 and center of mass 1), coordinates would be given by

U | . AN |
7)1_72(’71+7)2) yo T _-5(-7]1+772) . (A.1)

Substituting this into eq. (III.3) and expanding the binomials

N#+N, N +m
¥ o 3 g * T3 2
N1m1N2m2> =A2 2 (_)r+s *
pgrs
P
Nl-m 2+m2 !’\12—”.:2 Nl+m1
—p4r
2 2 2 2
% x('r)H) x
q ¥ s
N N+ N -m
x 12 ppe L22 2 4 e 272 4o
2
(m.,) (7, 4) (m_,) lo >
(A.2)

Taking the scalar product of this state with another state [N1M1N2‘m2> which
is constructed exactly as (II.3) but only with vectors M instead of Ngs We
obtain
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Comparing this result with the expression® for the d]

functions of SU(2), we obtain eq.

(IIL:1.1):

Chacon
N1+N
- . - 2
. . ey s o
<Nlm]Nm2]N1mlN2m F 8N1+N2,Nl+ N2 mtm,m+m,
L
2
xﬁ[(s sy (Y w(s sy, (Ns )]x
s=1
e -1
N N m N +
x E( )[r‘( 2 ) (#;+r)!(%3._ r)EIX
. -1
x 2( ) [s'( 2 -5 (——1 t+s) ( -s)]
(A.3)

nt B repre sentation

"ﬂ}efactthatN +m andN +m

are even numbers ensures that the three indices of a d are slmultaneoulsy

integers or semi-integers.
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RESUMEN

Se presentan expresiones algebraicas cerradas para conjuntos de fun-
ciones completas (pero no ortogonales), adecuados para la descripcion cuan-
tica del movimiento orbital, translacionalmente invariante, de tres particulas
idénticas. Las funciones aparecen como combinaciones lineales de armoni-
cos hiperesféricos con buenas simetrias permutacionales y de momento angu-
lar orbital. Se discuten tanto los problemas en dos como en tres dimensiones.





