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ABSTRACT: Cl(lsed "11gc~!"aic.: .~xpressh.p¡ are given for complete (but non •.

ouhogonal) sets of functions, adequale fot the quantum me-

chanical description of the uanslationally invariaut orbital
molion of three identical pauic1es. The function;-: a¡,,,ear as

linear combinalions 01 hyperspherical harmonics wii.h good

permUlational and orbital angular m')mentum symmeuies. 80th
the two •.dimensional and the three.iimensional problems are

discussed.

\. INTRODUCTlON

The subject oC the nuclear three-body prob~(~mhas attracted the at.
tC¡:tlon of a great number of iJ1V(.~tjgators,both theoretic:ians and experimental-
¡sts, in the last fcw yenes. On the thcoretical side of the problem, attempts
have been made to obtain che:wave function of the ground state oC me bound
system by a variational 01(' thod. There are two basic requirements that any

• ~'orL::supported by Instituto Nacional de Energía Nuclear, México.
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trial wavc function should satisf}'. One is mar ir mus[ dcpend on two rela-
[¡ve veC[Qrs (eliminarion af [he morioo of the center of mass); in chis con-
neerion a suitable paie of relative v~ctors are the )acobi vec[Qrs [har will be
defined in Secdon Il. The second requirement is the observance of the ex-
clusion principie; (his can be accomplished by working with antisymmetric
funcrions [har are an appropriate suro of products of an orbital function with
a definite pennutational syrnmetry, times a spin-isospin function with (he
conjugare syrnmetry.

A complete orthonormal ser of orbital functions pennutationally a~apted.
was construcred by M. Moshinskyl, in tenns of harmonic oscillawc functions..
Even if (he oscil1awr functions seem to be doing well in nuclear physics, it
would be desirable to have other sets of syrnrnetry adapted orbital functions
at one's disposal. An alternative that has beeo widely discussed in the
literature. consists of orbital funcuons which are a product of a hyper.radial
function dependiog on the six.dimensional radius, times a hyperspherical
harmonic depending 00 five angles.

[n this paper we shall implement a method, originally proposed by
Dragt2, that will allow us to obtain, starting from the results of ref. (1) for
oscillator functioos, general formulas for hyperspherical harmonics with 800:J
permutational symmetry. This analysis will be presented in Section IV. We
think mat me essence of the method can be more easily appreciated by
presenting the detailed ca1culations at ~ more elementar)' level. For this
rcason we discuss in Sections 11 aod III what we call a rnodel problem: a
system oí three bodies 00 aplane, and deduce for this simpler problem aH the
results chat have a correspondence in che real problem. The two-dimensional
problem was analyzt'd long ago by Smith 1), but he did not discuss the perrnu-
tacional aspcct of th.e problem, in the case of identical partic1es.

1I. THE MODEL PROBLEM

The in(ernal morioo of mree particles on a plan e can be described by
me (WO jacobi rdative vectors ;1' ;2 ' defined io terms oE . 1<'" physical po-
sition VCctors r , r , r as

I 2 3

; = (1/1'6)(, +, - 2,,) .
2 I 2 (11.1)

Then the SchrOdinger equation for the intemal motion, supposiog ooly twO-
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body interaction s, reads
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(11.2)

~here ;~">'j.J- :;: 1, 2, are the c9o'ocanesian components ol che ]acobi vector
's (5 = 1, 2). lt is gene,ally impossible 'o find exact solutions of eq. (1l.2)
for physicalIy intcrescing porencials Vi;' Therelore, we shall cry to lind an
approximacc ground scace cigenfunction and eigenvalue of (11.2) by means of
che variation method. The complete1y antisymmetric trial lunction is con-
structcd as a linear combinadon al products of an orbital lunction <t> (;1' ;2)
times a spin- isospin func(ion G (0-10-20-37 lT

2
-r
J):

(11.3)

lIe,e I = {¡,/,!,} a partition uf the numbe, 3, and , = (', ',',) !he Yamanouchi
symbolJ, denote thc permu[3cional symmctry of a lunction; it is kno9o'n3 thar
<t> and G must possess conjugate (or associatsJ permu[ational symmetries,
we indicate [he symmctry conjugate to Ir by f;-. The Cv in eq. (11.3) play
the role of variational parameters and they are detcrmined by che usual memod
of solving (he secular problem associated with eq. (11.2). The spin-isospin
pan of (he trial function is welI known, (see for inscance, rel. (4)), so we
shall discuss in wha[ folIows onl)' [he orbital part 4>('1' ',).

Let us introducc four.dimensional hyperspherical coordinares
(p,f3,ep,ep) fo, the )acobi vectors, in ,he following way

'2 .

r.,-.-,
p=vr +r ,, 2 ;, = p cos (f3/2) ',= p sin (f3/2) ([1.4)

;1>
x+i~-=res
1-"> 2-"> .">

s = 1, 2 (11. 5)

the range of the angles being O~ f3 ~ 7T ,

<1>(;1' ;2) a function oC dle t)'pe
We shalI selec[ for

(lI.6 )
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where che angular function is a hyperspherical harmonic and satisfies che

equacion 5

[ o' O 1 o' 1 o' ]l4 0¡J + 4cotf3 of3 + ~ oq,' + ~ oq,' y = K(K + 2) Y.
SIO _ 2 cos - 1, '

(11.7)

The solutions of chis equation can be expressed in terms of che representation

lunctions. DI the gtoUp SU (2),

El;'
m +m. ,, ,---,

(II.8)

These hyperspherical hannonics constituce a complete orchooormal set In

the followiog sensc

TT 27T 27Tf f f Y~'m'",' YKm", sinf3df3dq, dq, =
0001212 12

K O, 1, 2, ... m.,m,= K,K-2, K-4, ... , -K. (11.9)

Is (ha(

10 che

One of the advantages of the orbital functions, as giveo in eq. (11.6),
the internal kinetic encrgy operator is diaRonal with respect ro chem
quantum numbers K,m ,m ; namely5. ,

~ dR _ K(I\+ Z)R] . (11.10)
p dp p'

Another important advao(age, IS that they allow an efficient evaluation of
the matrix elements of (he interaction po(ential through (he use of angular
momentum (echniques. For instance, io the simple case oí a central JXJt<-'1ltial,
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V.
2

( 1,.- (21) = V
12
(V2P cos (¡3/2ll, we can make an expanslOn in a series

or Legendre polynomials (a multipol<; expansion)

v (l2p cos f}.).2 2
¡

= }; !¡(p) doo(¡3)¡
(11.11)

and then the matrix e1ements of V
12
are expressed as a finite sum of integrals

of a product of three d(j3) functions, for which a closed formula exists6• As
for the radial functions themselves, in the case of bound duee-body systems,
a convenient choice would be a set of orthononnal functions decaying tO zero
as p goes tO infinity; for instance, Laguerre functiuns'.

Froro the definition of p and of the jacobi vecwrs, it is clear [hat p
is. invariant under permutations of the three particles. Therefore the pennu.
tational properties of the orbital function 4>(;1' ;2) will be wholly con[ained
on the hyperspherical hannonics. Thus me maio problt:m to be solved now is
[he construction of linear combinations of YKm", {X\ssessing a good pennu-

tation symmetry. \lle shall do this in the next Is:ction following the idea of
Dragt2 in which one starts working with harmonic oscillators, bUl then this
restriction is removed and general results are obtained.

Ill. TlIE MODEL PROllLEM. IIYPERSPIIERICAL IIARMONICS
WITII GOOO PER~IUT:\TION Snl~lETRY.

convenientlycan be exprcssed very
creation operators

We shall begin with an analysis of harmonic oscillator functions of
the two jacobi vectors;l' ;2' in which case enforcing the perrnutatiooal
syrnmetry is relatively easyl. As the analysis to follow is so similar to that
prcsented in reí. (l), we shall only sketch the main steps. Wechoose a system
of units such that m:;::: W =1í;:: l.

The harmonic oscillator states
in cerros of a polynomial function of dle

S :;:::1,2 (IlI.l )

acting on the ground suue lo>; we can also define the annihilation oper-
• • +

ators ¡: :;:::T} • Foe our problem it i5 rather more useful tO introduce the
Ss s •

• spheric.\l" components of the vec[ors, narnely TJas' a = +, -, defined as
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n = (11/2)(';' ti';',).'/ ts "1 S '/.s

Thc [Wo particle oscillator states are [hen

Chacón

(III.2)

N+';'I I

I :"1';'1 ,~,,;,, >= Á(~+J) , (7¡_1)

N -m
I I

2

N +m, ,,
Ñ -m, 2, lo>

(IJ1.3)

wherc A js a normalization coefficicnr whosc valuc is

. x.d.J +N -:n -;" )
A = (_)' I , I ,

(IJ1.4)
The sratcs (111.3) c~Hrespond [o a number of quallta of eocrgy Ns and ao

angular momentllm m,o; {or rhe 5th oscillaw[ (s = 1,2). From a group-thco-

r('t¡cal srandpoim rhey belong ro a basis (or ao irreducible rcpreseorarion of
,he chain "f group' [1(4) ::J [1(2) x [1(2) ::J 0(2) x 0(2). It is clear that the
function of 7¡ . in eq. (lI1.3) is a polynomial only if Ñ = 0,1,2, .... and• • • as. s
m ,<; = N,,,, ' ,\'.<; - 2, ... , - /''>1'.<; •

Following [he analy.sis of reL O), \Ve introduce a particular combi-
narion of crcarian opcrators

(Ill. 5)

If we denote rhe states (111.3) as PU"'ldzl~r2~2)1 O>, let us consider a ser of

polynomials P(NlmIJ\12m2)with ~.xactly rhe same structure as the previous P,
but onlv constructed in terrns of n instead of ~ . Then we find that the• '/s "s

pe~.mutations (1,2) and 0,2,3) have rhe following eHect on the polynomials
lIlT}s:

(I 11.6)

N -N
(1.2,3) PL\\m¡N2m2) = w 1 2 PC"lm¡N2m2); W = exp(l;ii7T).

(m.7)
Using projection operators of S(3)' as in reL O), we deduce that the poly-
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•(!/v2) [I'(N m N m ) + (-) I'(N m N m)] (111.8)
I 1 2 2 2 2 1 1

has the permutatimal symmetry defined by dIe pattition {I/,I,} and Yamanouehi
symbol (r r r ) indica{ed in [he following {able, , I

E J\l¡- ,"1
2

{¡} (r)

O 1,2 mod 3 {21 } (211 )

1,2 mod 3 {21 } (121 ) (Ill,9)

O O mod 3 {3} (111)

1 O mod 3' {Ill} (321)

1'0 express {he polynomial (111.8) in terms of )acobi vectors. we
proceed as in reL (1), and arrive [O (he: resulc

I'(Nm N m)=
I 1 2 2

• • Ni • •
= .~.. <NI'~IN2'~2INlml N2m2>(-i) l' (NI ~1N2~2)'
NI mI N2 m2

(Ill.IO)

where [he bracket is a harmonic oscillator u<U1sfornlation brackc[8 (common-
Iy referred to in the literature as MoshillSky brackets). In Appendix A we
shall show that for the two-dimcll:-oional problc:m. (he Moshinsky brackets are
just a product of two reprcsC.'lltation functiens d' 1(17/2) of rhe group 5U(2),

m,m
namel)'

\lhen NI = ''.;2 ¡lnd mi "" m
2
, only the ..•ymme...tric s[alC exis(s, ilnd th("n (he multipli-

carive LWlOr in (IILR) should h(" '1.: ¡nMead uf I/'v~
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(111.11)'

don

Using properües of [he d functions6 we deduce me symmetry rda-

and therefore (he oscillator functions 1J.'hh definite permutational syrnmetry
1¡l,'hichare given in (l11.8) can be written in general as

(II1.12)

where the relatioo oC l. r with N • N • € is giveo In table (111.9), and the
• I 2

summation over NI runs only over even values when € = O,oe over odd values
when € = 1.

We have (hus in eq. (111.12) me complete explicit solurion for oscil-
lacor states with good permutational symmetry. Let us see how can we use
[hese resuhs to obtain (he hyperspherical harmonics of Section 11, with defi-
oile permutational syrnrnetry. Fae chis purpose let us note mar mere is 3n al-
temative express ion fOf (he [\\10 particle oscillator sta tes, namely
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INKm m > =, 2
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with the coefficient 811 being given by

N- K + ••
-- 11 K+m +m

(_) 2 ( '2 ) "
B

v
= 2 +_V_'_~K + 1)( K-';"-';'2)!{ K-';', +';'2)J 2x

K-:'-:' [ 2 2 J
vl(m

2
+v)I( , 2_V)'

2

These statcs correspond [O a number N := N + N 2 of quan ta o f ene rgy. an
• I

orbital angular momcntum m~ for the sth oscilla[Or (5 ::; 1,2), and a value
K(K + 2) of ,he operator on the LIIS of eq. ~1I.7)(which is ,he square of the
generalized four-dirncnsional angular momenrum). From a group-theoretical
vieu'poinc the sta[Cs (111.13) bclong t(' a basis for an irreducible representaur.,

of [he c~ain of g[OUPS U(ó) ~ Oró) ~ 0(2)x 0(2). From ,he [l"O p[evious
... u..._ons it can be secn [hat the function of.~ in eq. (111.13) will be a

• (T~. •

¡'olynomial only whcn N := 0, 1,2, ... ; K ::; N, ('.1. 2, ... ,1 or O; and mI :tm2:=

K K - 2, .. '. - K.
Taking the scalar pro:.l.lct ••f (;;!'5) ,",,'ieh(111.13) we obtain ehe cransfor"

mation coefficient between the os~ilIator statcs c~.1.ssified by U(2) )( U(2)

and by O(ó), namely

(NmNm INKm'm')=8 ,8 ,SN'N+N x
I 1 2 ~ 1: mlm) m2m2 ' , I 2

s K+m +m N-m-m
(-r( "+5)1( , .2_s)!

lO( 2. 2 2 _

oS K-m-m N-m
s! (m

2
+ S } ~ ( 1"2 _..•• ,~ ( _ =' _: - S ) ~

2 .

(111,:5)

.r. '" .111I ,

x (_) 2
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Using chis coefficien, we can express ,he staces on the RIlS of eq. (I1I.12)
in cerros of 0(4) scaces. i. e.,

N +,
1

=/2 ~ (-) 2

Ñ¡N2';'1';'2
<Ñ,;,Ñ,;, INmNm >x

11221122

(I1I.16)

If.we cransform now IÑ1';'lÑ2~2 > back to che ]acobi configuradon space
vectors, we obcain a result of this soft

The angular function Z 15 defined as

~I1I.17)

mm
1 2

with

NmNme . I .1 2 2 (KIT) =
m1m2

NmNm
C. 1 .1 2 2 (KIT) Y • •

Km mmi m2 I 2

(I1I.IB)

N +,
1

.~. <Ñ1';'J~2~2INJmlN2m2>(-) 2 (NK';J;"2IÑJ~IÑ2';'2)
NI"'2

(111.19)

Ac chis poinc we follow thf" reasoniog oI re£. (2). Ir is shown tbeie
that the four dimensional Laplacian operator 9: acting 00 a hannonic o~cil.
lator wave function with N quanca oC energy: '1' ". product:s a multiple

N,K''''J'''2
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of IV ••
N- 2, K, mI' m2

From lhis faCI, and from rhe idcntiry

(1[1. 20)

N = N + N = K, [he rransformarion coefficicnt oC ([11.15) simpli-I ,

fi{'s to a monomial and lhe detal led formula for rhe coefficient appcaring in

,
wht:re A is lhe operawr on lh<.' left hand sidc of (11.7), il (ollo\\'s mal all lhe
.7, with given \'alue.s of 1\../.r hU{ wirh S = NI + N

2
= K.K + 2, K + 4",. are

proportional lo eadl other. \1;'{' can lhus obra.in a minimal ser of Z if we jusI
include rhose Z wirh ,'J = ¡"I + '\'2 = K. Thi:-.: set i ..•still o\'crcomplere
because sorne Z functions in i[ are proportional (O o(hcr Z with
K = S - 2. S - 4. "., 1 or O. which occurred earlier in a step-by-step cOUflring
procedure. ¡\ rule ro obrain a complete ..•.•vslem is ro de¡ele for K = S + i". I ,

all se's (8,m/',m,) {¡} for which ,he se, (.",- l.m,-1.8,-I.m,+ 1) {¡}
occurred ar an earlier slep whell K = SI + "'2- 2,

Thus we ha\'(.' in eq, (111.18) lhe Soiulion w(' were looking for: the
functions defined by eg. (111.18) constiwlt.' a complete sys[em of hypcrsphcrical
harmonics with good quannlltl numbers K./. r. if W{' consider ooly the cases
of SI + t""'2 = K and the sets (NImi "'2m2) {/} obeYlll~ (he ru le of the preceeding
paragraph,

\\'h en

(llLl8) is

%,

K.m - m
, 2,

x

N + m
I I,

K +';' +~I ,,

\
. . . . e) x

~(N-N+rn-,.,,)2
I 2 I 2

8 .
NI +N2.1\'I+ N2

~C,,'~¡\'+m +m )
ti 1 2 1 2

~(N-I'\¡'+m-m )
I 2 1 2'

,
rn +<
I

(Kjr) = (-)

1

N -m,

K-m -mI ,,

0/1.21)
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We recal! ,ha, when ,he E oí ,able (111.9) is O ,he summa.lion over N. runs
over even values, and when € = 1 th~ surnmation is over NI odd.

IV. TIIE TIIREE-DIMENSIONAL PROBLEM

The steps followed in Section III to obtain hyperspherical harmonics
with good permutational syrnmeu)' for use in [he quantum mechanical problem
of (hree bodies in a plane, can be repeated now for (he physically realistic
three-body problem in space. We shall give next (he esseodal results,
stressing the parallelisrn with the corresponding results of Se _."ion III.

The harmonic oscillator functions in (he jacobi cooru .. ues ;}' ;2 •
and wi,h defini,e permutational symmetry {¡}(,), orbi,al angular momentum
L and projection M, were obtained by Moshinsky et a11• They are given by

!f>(n,l¡n,I,Utl/,)= •• 2.. (->"¡B(i¡,n/,n,J,,/,)<~,I;~,I:Lln/,n,J,L>x
"111"212

(IV.I)

00 (he right hand side oí (bis formula, B is essentially a phase factor given
in reL (1); the next bracket is a harmonic oscillator transformation bracket8

(i. e. a M.:>shinsky br~cket) foc whose evaluation tables or computer programs
are available;\and the last factor is the vector coupled product of two oscil-
lator fune tions in the J acobi vectors ;1 ' ;2.

These vector coupled funetions correspond ro a c1assification scheme
by ,he chain oí groups

(1) (') (1) (')
U(6):> U(3) x U(3) :>0(3) x 0(3) :> 0(3) :>0(2) (I \' .2)

In analogy with the two-dimensional problem we can introduce oscillator
funcuons corresponding to a classification by the chain of groups

(1 ) ( 2)
U(6) :> 0(6) :> 0(3) x 0(3) :> 0(3) :> 0(2) . (I V .3)
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\l'e shall denote these functions as 9
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(lV.4)

where ;1 = p cos a, ;2 = p sin a, and (es' ePs) are the polar angles of ;5'
5= 1,2. The range of <he indices is N = 0, 1,2, , .. ; K = N, N -2, N -4, .." 1
or 0, and K ~ 1 + 1 :;, L ~ [1 - 1 [. We call the YKI I LM hypersphetical har-

1 2 1 2 1 2

monics for the spatial three-body problern; the explicit form of F(a) is given
in reL 9.

We rnust no\\' calculate the transformation coefficient berv.'een the
states in (he chains (lV.2) and (lV.3), namely (NKI,I2In/¡n2/2). JUS( as in
the two-dirnensional problern however, wc shall not need the most general
coefficiems of this type hut only mase with K::: N; these particular coef-
ficients were calculated by Raynal and Revai 10, we shall introduce them
later in eq. (lV.7).

( 1) (2)
Passing <hen in eq. (1\'.1) from U(3) x U(3) s(ates 10 0(6) s(a(es,

we arrive at a result of this sOr[

(IV. 5)

wht. _ the angu lar (une ti on Z ¡s defined as

(lV.6)

with

(lV.7)
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10, the e of eq. (IV.7) becomes

Aya reasoning similar (O thar following eq. (111.19), we obmio an (over-)
complete ser of angular functions w¡eh good quanrum numbers K,L,M,j,' if
we take all ,hose Z of (lv.6) with 2"1 +', + 2n, +', ~ N~ K; and in order to
obtain a complete ser of independent funcuons we follow the rule of takin.'::
lOto aecuun t unir rhose quarrcrs (Tz/1n/2) foc which '1 + '2 = L + -'1 [1 _ (_/oJ-L 1

Fae [he case N ::;:.K, taking me coefficient (N K 1';1';2)' • (rom ref.
/1 1,

(IV.8)

Thus from eqs. (lv.6), (1\'.8), and ,he ,wo rules of the las, paragraph, we
obtain a compll?tt' .'H:'! oE six-dimensional hyperspherical harmor.ics with good
permutational syrnmcrry. Ir should be mentioned thar tht> functions in chis
ser which hav(' the same quanrum numbers J\'I,N

2
,K,L,M,/, r and d¡Hee unir

in '1' '2' .are in general, flor orthogonal (l"s = 2ns + 1.0;:,)'
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APPENDIX A

111

In this appendix we shall detive fotmula (IlI.II) fot me two-dimensional
hannonic oscillator transformation brackets (i. e., Moshinsky brackets). In
me oscillatot state given in eq. (llI.3) the vectotS 71" 71, play ,he tole ofi
position vectors of each oscillator. The transformadon to (normalized) rela-
tive 'TJ

1
and center of mass T}2 coordinates would be given by

_1_ ('J + 71 )/2 1 ,
71 (A .1)

Substituting this into eq. (1ll.3) and expanding ,he binomials

N+N (Ñ+';')1 2 1 1
• • • • • ---,- '+s --,-

[NmNm>=A2 L (-) x
1122 pqrs

p

x
N • m
_' __ 2+p_r,

(71. ,)

+q-s

lo> .
(A .2)

Taking the scalar product oC mis statc with another state 1 N
1
m

1
N

i
m

2
: which

is constructed exactly as (111.3) but only with vectors YJs instead oí 7Js' we
obtain
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N, + N,---,-
=2' 8 •. 8 ••

N + N N'" N m + m , m +"',1 2' 1 2 1 2 1

x

,
x n
s = 1

J
-1'. o.

r N+M N+m-N-m N+m
x ¿(-)fr! (2 2 _ r )! (1 1 1 '+ r)! ( _1__ 1 _ r) I X, r 2 2 2 •

[

•••• ~- 1
s N-m N-m-N+m N-mx¿,H s!(_2_2_s)!( 1 1 1 I+S),(_I_I_s)! .

s 2 2 2

(A.3 )

Comparing (his result with (he expression6 foc (he di , (/3) representationm,m ••
funetions of 5U(2), we obtain eq. (I1I.l!). 10e faet mat Ns:t ms and Ns 1:ms
are even numbers ensutes chat che (hree ¡ndices of a d are simultaneoulsy
lntegers oc semi-integers.
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RESUMEN

Se presentan expresiones algebraicas cerradas para conjuntos de fun-

ciones completas (pero no orwgonales), adecuados para la descripción cuán.
lica del movimienw orbital, uanslacionalmen(e invariame, de (fes panículas
idénticas. Las funciones aparecen como combinaciones lineales de armóni.

cos hiperesféricos con buenas simetrías pennutacionales y de momento angu.
lar orbital. Se discuten tanto los problemas en dos como en [fes dimensiones.




