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ABSTRACT:

The curvature correction to the nuclear binding energy is ob-
tained by using an averaged level density appropriate to de-
scribe, up to curvature effects, the independent particle aspect
of the nuclear many-body problem. The relation between the
surface and curvature coefficients is seen to depend exclusively
on the radius of the nucleus and the behaviour of the wave
functions at the surface. Corresponding to a realistic surface
term, the curvature correction is found to be such that it in-
creases the binding energy, although the actual value is very

sensitive to the parametrization of the nuclear radius in terms

of the mass number.
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[. INTRODUCTION

In the search of « mass formula reliable for extrapolation away from
the known nuclei, a number of corrections to the semi-empirical Bethe-
Weizsacker mass formula have been pra:)p(:o:\:edl . Though small compared to
the leading terms, i. e. volume, surface, symmetry and Coulomb energies,
these corrections are important for a detailed adjustment to the nuclear data.
Furthermore, they become critical in other problems as, for example, in the
prediction of the existence of superheavy elements (a few MeV difference
produces vast changes in the calculated lifetimes). These new terms in the
mass formula are usually -but not always - inferred from theoretical models.
Their numerical values are either estimated from the corresponding models
or obtained from fits to the experimental data. The results do not always
agree.

For the “curvaﬂture" correction, which in the extended formulas is the
term proportional to A% | there is disagreement even with respect to its sign.
Yet, to quote R.W. Hasse?, “. .. curvature has a major influence on the saddle
point properties. lLarge values of the curvawre correction coefficient favor
the formation of a secondary minimum in the fission barrier of heavy elements.
For superheavy elements this gives rise to the possibility of quasi-molecular
states”. The state of affairs characterizing the curvature term is the following.
On the basis of the Thomas-Fermi model and of the droplet model, a small
curvature correction that decreases the binding energy is predicted?. On the
other hand, a curvature correction of the same order of magnitude but of oppo-
site sign is found to be needed in order to obtain good agreement with the
experimental Coulomb energies*. [Earlier, a large curvature correction which
increased the binding energy was predicted on a phenomenological shell
model basis; and it was furthermore shown that such a term was able to
produce deformation in the light and medium heavy nuclei, where the Coulomb
repulsion would not”. Itis clearly a confusing sitation.

The present paper is an attempt to clarify the question by relying on
general quantum mechanical characteristics of the nuclear many-body system.
The point of view is the following. Itis well known that in spite of the
complexity of the nuclear aggregate the gross features of the nucleus seem
to correspond to those of a system of particles moving independently in a
common self consistent potential well. In agreement with the characteristics
of the observed nuclear density, the nuclear potential is generally considered
to be constant up to a certain range and to fall rapidly to zero afterwards.
The single-particle wave functions are then quite close to free waves within
the interior of the nucleus and only become distorted in the vicinity of the
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surface where they have to go into an exponential decay®. In view of this
circumstance one can e€xXpect, as sugge‘-;tcd by R. Balian and C. Bloch’, that
the actual density distribution of smgle particle levels may bc rcpmdm ed
fairly well by that of the eigenvalues of the wave equation (V7 + &) ¢ =

in a finite domain of the same shape as the original potential, with an dppmpri-
ate boundary condition. Furthermore, an even better agreement should be ob-
tained between averaged level distributions, provided the width of the aver-
aging function is large enough to wipe out the bunching of the energy levels.
Insofar as Balian and Bloch’ have solved the wave equation problem with
arbitrary boundary conditions including up to curvature effects, we propose
to use their general result to study the structure of the ground state energy
of the many nuclcon system.

The Hartree-Fock energy of the system is given by

fgl{e +z} (1)
l

where €. and 1, are respectively the single particle energy and the kinetic
energy of the i-th particle in the self consistent potential well.  To calcu-
late the total energy without solving exactly the nuclear problem, we substi-
tute the summation by an integration with the smooth energy level distribution
provided in ref. 7, where surface and curvawre cffects have been taken into
account. We therefore evaluate:

E = ef {6+t(£)}p(5)dt. (2)

where ¥ is the width of the spreading function used to smooth out the actual
level density

pley=238(e-€) . (3)

1

The integration in eq. (2) goes from the bottom of the potenual well - ‘Vﬂ . up
to the Fermi level, - €., which is determined -as a requirement for self-
consistency- by the condition

A=]  Pye)de (4)

being A4 the total number of nucleons.
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Let us point out that this procedure (eq. 2), is in fact Strutinsky's

prescription '+

to compute the smooth part in the nuclear binding energy,
which is then subtracted from the sum over the discrete spectrum to obtain
the shell contribution. While in Strutinsky’s work a numerical evaluation is
carried out, here we shall obtain an analytic expression for the binding energy
in terms of the mass number

In section Il we review briefly the work of Balian and Bloch on the
level density distribution. In section IIl, the calculation of the binding
energy is carried out. The analysis and discussion of the surface and curva-
ture corrections in terms of the boundary conditions is done in section [V.
It is found that for realistic values of the parameters involved, the curvature
correction always increases the binding energy, although the magnitude is
very sensitive to the parametrization of the nuclear radius.

II. THE ENERGY LEVEL DENSITY

The problem considered by Balian and Bloch” is that of the aver-
aged distribution of eigenvalues of the wave equation

(V24 k2) g =0 , (5)

within a volume V of arbitrary shape and for the general boundary condition

an ()

for the normal derivative on the surface §, assumed to be smooth. Limiting
cases are the well known Dirichlet and Neumann problems, corresponding
to the boundary conditions

@ =0 irichied (6'a)
9% — g g T— (6'b)
a”

The exact energy level density is given by
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ple)=Z8(e-¢;)

I

lim (1/270) [d>r [G(r, 1" €+ im)- Glr, 15 €-im)]
n=0 r=r

(7)
where G(r, r’; z) is the time-independent Green’s function satisfying the
equation

(V'+2)6r, t' 2) = - S(r=+") | (8)

with the same boundary condition (6) as above.
A smoothed energy density function py(e) is now generated by aver-
aging p(€) with a Lorentzian weighting function of width 7y, i.e. :

i
=r

R, (€)= wa M =.1_fd3r [Im G(r, r'; € + i7y)]
Tr =00 (E-E')2+')/2 il r

9
The width ¥ is chosen large enough to wipe out the fluctuations due to the
bunching of the energy levels (shell effects). [Expression (9) is evaluated
by an iterative procedure, starting from the Green’s function G, for the infi-
nite space (free propagation). The presence of a boundary then gives iise to
an expression which can be pictured as a multiple reflection expansion. The
successive terms are evaluated and summed, first under the assumption of a
locally flat surface; i.e. substituting at every point the actual surface by the
tangent plane. This gives the “surface” contribution to the density. Afterwards
the changes due to the fact that the surface is actually curved are computed
and the curvature term is obtained.

Finally Balian and Bloch determine the minimum value of the spreading
width for which the expansion converges. And they furthermore show that
B, (Y = %.;) does not differ significantly from the extrapolated distribution
function £y (y=0)= &, the use of which will then yield results conveniently
independent of . The expre ssion for R, is:

B (€) = (1/473) [Vk+fsdcrw [(m/4)-8 ]+

t (/R (A0, /R )Y +cos?8, -8 cotd )+...] (10)
s
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where do_ is the surface element at a point @ of § and R is the mean curva-
ture radius at that point. The boundary condition K, leq. 6) 1s contained

in

K
5 (k)= tan”' _“ . (11)
k

The range of 8(. is 0<5 <7/2, the lower and upper boundaries corresponding
to the Neumann and Dirichlet cases respectively.

III. THE BINDING ENERGY

In this section, we procced to evaluate the energy of the many nucleon
system as given in eq. (2), subject to the self-consistent condition (4) . The
asymptotic expression for Ay €q. (10), is used. However, rather than de-
termine from the start the appropriate boundary condition, that is, the value
of K in (6), we shall leave it as an adjustable parameter, and see whether
the value required to give reasonable results for the binding energy corre-
sponds to the known behaviour of actual single particle wavefunctions at the

edge of the potental well.

vr), €

L b

..Vo

(V4e-V(r) ¥(r)=0  {V’+Kk’] =0

- 1P ‘ =
¥(r) r=°—°0 5 +K® r:R-o

IFig. 1. The auxiliary problem
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We shall limit ourselves to the case of a spherical nucleus. As the
system is self bound by generating a potential of practically constant depth,
the auxiliary problem consists then of a spherical region of radius R, where
a constant potential -V, acts (see fig. 1). The single particle equation is
then the wave equation (5). Assuming furthermore a uniform boundary con-
dition K_ = K, the asymptotic averaged level distribution (10) is in this case:

flo = {ve+(Z- 5(k))¥s+ f3G) 2D, (12)
4772
flR)=1Y% + cos? S(k)-&(k) cot S(k) , (13)

where V = (477/3) Rs, g = 47TR2, n is the spin-isospin degeneracy factor and

k2:VD+e; (14)

units such that (ﬁz/Zm) = 1 are used.

The calculations are now straightforward, if we note that in the aux-
iliary problem, eq. (5), t(€) = £? and that from relation (14) de = 2kdk. It
follows that

B F
Azfv p€)de=2] p (k) kdk

% 0

and

g v kF ,
g {€+t(6)}ﬁg(e)de=-?°,4+zfo g k) K dk .
0

v
Il

Using eq. (12), the results are:

A="[2kR)}+ {g_s + mna{(g-s) tan § <17 }ERF +
7

+ {5/3-360[5—(2—5) tan &} (kR)] {.I5)
2 k=kF
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and

E +

N|°<

A=2E, {_{(m)’ +
L 15

2
+{%_S—mn8['/;—mn23+4(g_-5)mnSS]}(_sz._l+ (16)

+ {2-5c0t5+3taﬂ25[(2‘8) tan 5-1]} k_R}
9 2 2

k=hF

The next step is to solve eq. (16) for the Fermi momentum and substi-
tute in eq. (15) to obtain the desired result E = E(A). From the structure of
the equations, it is quite clear that only a numerical solution is possible.

In order to be able to proceed analytically however, we shall substi-
tute 8(k) in ey. (12) by some average value &, which becomes the parameter
of the calculation involving the boundary condition. In this case we have

F=- A+
2
=\ (kpR)’ =
+7 82 § 2 e RY+(T-8) ZE +2f(3)k R} (17)
and
%y 2 u 5 2 T
A= ;{;(kFR) +(%—8)(kFR) +2[(5)kFR} : (18)

Eq. (18) is now a simple algebraic equation in kp which can be solved to
give

1 ",«; lff! . = R _2};
ks = (A4 /R)(2T) {1-(%2) 3 2-Fiah +‘@(A")+..}
2n Q77 2 4

(19)
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Substituting in eq. (17) we shall obtain an expression for the self consistent
encrgy. We defer this to the next section, where the parametrization of R in
terms of A is discussed.

We want to point out here that, upon taking in the approximate ex-
pressions (17), (18) and (19) the limiting values 0 and 77/2 for &, we recover
the results that would follow from the exact expressions (15) and (16) in the
corresponding cases, i.e., K = 0 and K = . These results are

E="8202 kR +7 kR’ + 2k R 20
wF{ls(F)s(F)gf“ (20)
and
1 '/, b 1
k. :(AA/RHQZ\ { 1;(31)’22zr4+."} : (21)
2n 9 2 4

where the upper and lower signs in the surface term correspond respectively
to the Neumann (K = 0 =9 ¢/dn = 0) and Dirichlet (K = 0o =@ = 0) boundary

conditions.

IV. THE CURVATURE CORRECTION

In accordance with the arguments given in sections I and III to justi-
fy the use of the auxiliary problem, the radius R of the domains is taken to be

the same of the optical or shell model potential, that is:

. P (22)

(4]

The constant ¢ is not always included in shell model calculations. It is
however needed in order to insure an A-independent central density?. We
shall keep this constant and discuss our results in terms of it, as is done in
a similar work ' where the binding encrgy 1s calculated up to the surface

correction term
1

“Using (22) and making j« . ¢: serics expansions in A? , expressions
(17) and (19) vicld for the binding euergy of a symmetric nucleus (N = Z ;
n = 4). the foilowing resulr:
BiA) = = EtA)} = &, A g A N (23)

1
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where

; (24)
8 2mr02

52 ‘A . 6 %

a, = (27) {9_(2-5)+(_9l7) i}, (25)
272 8 4 4 5 8 A
57 vy 3 (9TVA(T_3 A ocy

ag = - 3{ﬂ5>+(9ﬂ) (7-3).C+ 3 (27)* () }
2mrz 2 8 4 r, 5 8 A

(26)

Here we have introduced again the factor (5°/2m) explicidy.

F(T:x=0)

-0.24

.u'ﬁi

-0.8

Fig. 2. aR/aS vs § for x= c/r0 =0
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The binding energy has been expressed as the sum of “volume”,
“surface” and “curvature” terms. The two last ones represent corrections
due to the finite size of the nuclear system as can be seen by looking at
B(A)/A when A goes to infinity. Furthermore, the quotient
R, (x=c), (27)
5 0

F(3; x)

i

depends exclusively on the size parameters r, and c, eq.(22) and the bounda-
ry condition & which represents the behaviour of the wave functions at the
surface. In figs. 2 and 3a, b, ¢, the function F(&; x) is plotted for different
values of x. Asr, is quite definitely determined to be between 1.0 and 1.5
Fermis, the variaton of x reflects the dependence on c of ag and ap, . The
singularity corresponds to the value of & for which ag changes sign, being
positive to the left and negative to the right.  The right side is the region
of interest, as everyone agrees that the surface correction is negative, i.e.,
decreases the binding energy. This region corresponds to values of S larger
than 77/4 , the lower bound increasing as c¢ increases. So we are always on
the sice of the Dirichlet limit (8 = 77/2, ¢ — 0 with 3¢/n finite) which clearly
represents the behaviour of bound state wave functions at the surface (the
Neumann limit § = 0, 9¢/9n — 0 is rather to be related to resonant states).
We therefore have agreement between a physical surface correction and real-
istic surface properties of the wave functions.

The function F(§;x) is very sensitive to the value of x; the terms in
which it appears soon dominate the numerator, as can be seen from the re-
versal of the asymptotic behaviour at the singularity, for x = 0.13. From
then on, the “physical” branch of F (i.¢. the one for which @¢ <0) quickly
{(x = 0.31) becomes entirely negative up to 5 =7/2. So that, for x > 0.21,
the curvature correction has always the opposite sign to surface one, i.e.,
the curvature increases the binding energy (figs. 3b, c); also the relative
magnitde increases rapidly with x. Only for very small values of x can one
find a curvature tem of the same sign as the surface term, depending on the
value of 8, as can be seen from figs. 2 and 3a.

Finally we proceed to some numerical estimates of the curvature coef-
ficient ap,, with two sets of parameters. From optical model anallysisu , we
take i 1.16F and ¢ = 0.6Fas set 1. This corresponds to x = 0.517 (fig.
3c). Also, if one puts ¢ = 0, one should take a larger r , as pointed out in
ref. 10 where the value r = 1.27F is given; this is setIl. In both cases we
determine & by requiring a¢ = - 18 MeV, which is a firmly established value'2.
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We also consider the need of an effective mas m* to reflect in some mea sure
i s 2 %

the non-locality of the self consistent nuclear field® and the value m* =0.5m

is taken. The results are given in Table 1.

TABLE 1
m* = m m* = 0.5m
a; = - 18 MeV 5 ap(Mev) 5 ay(Mev)
r o= 1.27F
I 1.287 - L.17 0.8 1.5
c =0
r = LIGF
1) 1.539 10.8 1373 20.7
c = 0.6F

V. CONCLUSIONS

General quantum mechanical characteristics of the nuclear many-
body problem have been used to establish the structure of the curvature
correction in the semi-empirical nuclear mass formula. Such characteristics
are independent single-particle motion in a self consistent potential well,
which is practically constant up to the surface where it falls rapidly to zero.
IU'nder realistic conditions, that is, an effective mass m* <m . arising from
the non locality of the potential and a parametrization of the nuclear radius
that insures an A-independent central density (¢ # 0), it is found that the
curvature correction increases the binding energy.  The numerical value is

however very sensitive to the paramertrization of the nuclear radius.

* This is discussed in ref. 5 where the modifications of the potential well depth due
to non locality are also obtained. As these have not been taken into account here,
a discussion of the volume term as given in eq. 24 is not meaningul: infact no value
of ‘-;' can reproduce both the phenomenological values of @y and £p
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~

RESUMEN

Se obtiene la correccion por curvatura de la energia de ligadura nu-
clear, usando una densidad de niveles promedio apropiada para describir has-
ta efectos de curvamra, el aspecto de particulas independientes del problema
nuclear de muchos cuerpos. La relacion entre los coeficientes de superficie
v curvatura depende exclusivamente del radio del nicleo y del comportamien-

to de las funciones de onda en la superficie. Correspondiendo a un término
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realista de superficie, se encuenua que la correccion de la curvatura es tal
que aumenta la energia de ligadura, aunque el valor real es muy sensible a
la parametrizacién del radio nuclear en términos del nimero de masa.





