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ABSTRAeT:

lJedicado a mi estimado y querido
Maestro Marcos ,\{oshinsky, quien me
infectó COt; la enfermedad de los gmpos.

The a-cluster ansatz for a-like nuclei leads ro the inlroJuetion

of a ~roup of pcrmutations of the c1usters. It proves 10 he a

uscful tool tú study the ansan and to simplify the antisymmcrri-

7.ltion l1f a-cluster functions. The merhod is applicd ro the
calcularion of two hoJy matrix c1em(..nrs, The al,l;:cbraic part of

[his problem is completely sol ved. The numher of coefficients

thar arrear is si~nificanrly rcduced and all coefficients are
~i\.en either explicitly or implicitly throu,gh a generating function.

Fellow of [he "'J)cutsche Forschul1~s~emeinschaft",
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1. INTRODUCTlON

Sdigman

lñe cluster representatioo 'of nuclei1.2 is [oday a vas[ f¡cId ex-'
tending ¡mo nuclear suucture and nuclear reactions3•••. The permutational
structure of (he general cluster ansatz has beco investigated in several
papersS-q. In every respect (he theoey has gone far heyond (he simple
conceprs of a-clustering. Yer (he a-cluster is the most tightly bound and
therefore physically most likely srrucrure to appear in a oncIeus, panicular-
Ir as a-clustering is strongly favored by supermultiplet theoey. Actually
a-clustering in a-like nuclei is briefly discussed in re£. 10 and sorne quali-
tative insight is obtained. AIso there has beco recently considerable inter-
est in quanets11 and other excitatioos related to a-cluster structure 12 in
hi~hly excited a-like compounds. First microscopic calculations of a-160
scauering are performedlJ.

AlI chis ineerese seems to justify an analysis of the permutational
strueture of the a-cluster ansatz wichin the general framework given in refs.
5, 6 and 7 (henceforth denoted by 1, 1I, I1I). We shall therefore proceed !O

such an analysis in the presene paper and we shall make exeensive use of
rt'suits and noeations given in 1, 11and III. The paper wiIl consist of two
pares.

In chaprer 2 we shall discuss in detail che special properties ol a-
cluster functions chat were briefly touched upon in reL 10.

As an application we discuss in chapter 3 the calculation of two-body
m.ltrix elements between symmetry adapted funcrions. Im¡x>rcantsimplifications
are obtained and pan of the algebraic coefficients evaluated using the proper-
ries discussed in chap[(:,r 2. 1'0 complete this result and make its application
practical in chapter.ti a generating function for all algebraic coefficients not
given in chaprer 3 is constructed, using resulrs 00 nonort:hogonal orbirals 14.

Thus a complee(' procedure ro obtain che algebraic coefficients appearing for
ewo-body rnatrix elemenes betwe(,1l syrnmcuy adapted a-cluster funetions is
pre sen red.

2. TIIE a-CU;STER A:-:SATZ

\\'e shall creat a-like nuclei in the framework of the nuclear cluster
modell. 2. Th{'ref\)({' \\"e make foc [he 11 = .ik panic!{' orbital W<l\"efunction
an ansatz in [("rms of Q-c1us[('rs as
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(2.1)

lIerc ni is a ser of four nuckons forming rhe ith a-clusrer, epi is a function
of rhe reiarive vecrors of these four parricles and is assumed s)1nmetric W1der
permurations wirhin the ser ni' X is a function of rhe k -1 relative vecrors
between rhe scrs of nucleons forming rhe k clusters. Thus 'P musr be sym-
metric, i. e. a basis of rhe unir IR (irreducible representarion) wirh respecr
ro rhe subgroup /1 uf 5(11) of all permutarions wirhin the sers ni' 11 may be
expressed as a direcr sum of S (4) groups

11
k
L $5(4) C5(7Z).

i:: 1
(2.2)

The unir IR of 11 consisrs of unit IR's uf the 5(4) groups and we shall denore
it by {4}k (distinguish from {/} which denotes an IR of 5(,,)).

As we are inreresred firsr of all in rhe permurarional aspects of the
problem we rewrire 'Vas

(2.3)

emphasizing thc properties with respect to 11 and including all other charac-
teristics of rhe function in an rhar denotes an orbital configuratian of tl nucleons.

From th<.' wavefunetion 'JI we !lave to consrruct a syrnmetry adaprcd
wavcfuncrion, i.e.;1" basis for an IR of 5(11), in order to be able to combine
lhe lauer with a spin-isospin function ro an antisymmetric trial~ funcrion as
described in l. To construcr rhe symmetry adaprcd funetions \ve procecd as
proposed in 111chap[cr 2 by induction. The multipliciry of any [1{ j of S(11)
in rhe reprcsenrarion induccd from rhe IR {4}k of 11 is detcnni.neJ by Littiewo(xis
rules for the outer productlS. Because of the Pauli principie no partititonj
with morc than 4 colurnns is adrnissable and we f¡ud [herefore thar j = {4k}
is the only IR of S(71) that is possible and the corresponding multiplici[)' is l.
This implies (har rhe multi.pli.ci.ty labeIs introduced in 1I[ are superfluous in
llur cast.'. alld can wke onlr orl(' '\:alue. Particularly their choice as intermedi-
ate partitions (lU, eg. (2.6)) reslIiting fmm the indlluion frolll j < k clusters
[O an IR of S(.lj) Ieads ro rhe unique panirions {4;1' In agreernent wirh 111
el{. (2.. ')) [he symlll(:'(ry aJaptcd state nJa~. then be \\'ri[(en a."
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( 2.4)

is a Youngoper-
kwhece I is a row index foc the IR {4 } of S(n), and

{.j k}

C,,{,nk

ator (a ...•defined in II eq. :\.6). thar ensures the right [ransformation prop<:r-
t¡es of the stal<: (2.4) under pennut<ltions fmm S(,1).

According ((l the reciproci ty theocem uniqueness of induction implies
uniqu('ness of subduction. Thus a state of the type

(2.5 !

with {4}R denoting a row of the IR {.iR} of S(n) is uniquely defined (a f.l(' [
implicitly used in the Young opnawr in eq, (2.4».

\\'e now reven to [he' chain of grollps gin'n in eq. (2.2). Ir has heen
floted pceviously 10 rhat it is possihle [O insen a rath('c significant group inro
this chain. This group is a semidirect product of 11 with the g:roup J;(k) tbat
permutes the sets of partic1es fonnin,g [he a-clusters, The IH.'W chain r<.'ad..•

Ji e 11/\ ~(k) e Sin)

The semidir<-'Cr prodllct properries ar<.' easily checked and 11 is found to be rhe
normal subgroup in the sem idiren producr. For compler(.nes ...•we note rhat
chis semidirt'ct produc[ is actuall)' a wrnh product 16 but we shall no[ mak,.'
use of this facr.

\\'e are int('rested in me 11{ {4}R (,f /1 and {.:iR} of S(n). From rhe
peope'nies of th(, semidirect producr we find that no eleme'nt of i/k) and
thert'Íore of IJ A J~(kl can ('hange the IR uf 11. On [he orher hand the mulri-
plicit\' of the 11{ {.í} of 11 in the 1I{ {.iR} of S(n) is l. The'cefOT(' no ekmenr
of J(k) or 11 /\ t!(k) can rransform the St,He eq. (2.5) ifIto a different Slate
bur must reproduce ir .llmo't \~irh ,\ rhase. The srate eg, (2.5) is thus flot
on[~. a hasÍ ...•fllr rh,. unir IH (lf JI but ,11"'0 for a Orle dinH'nsionalll{ofJl A érk).

C:,l!cularion pron ...• tht.' phast" ro be ~ 1 ( ...•ee re£. 17) and the ...•r¡l[e eg. (~.5)[o
be a b,L..•Í ...•uf rhe unir IH of 11 /\ Y{'k) <lnd b~' conseqU('flCe of ~,(k).

If \~<: wi ..•h ro u..•e th(' chain of groups (~,6) r.uher than (2.2) ro ..••imply-
fy ouc .\pprtl.lch (o Zl-Lk(' nucJ<..i W(' IIl<lYpeoc('('d in t\\'o quite distinct ways.

()ne \\(luld ht, !O find a prirnÍri,'(' cluster fUflCtiofl which wOlJld not
llnly fnrm ,l ha ...•¡..• fnr (he unir IH of JI but r,lthn for the unir IH of 11 /\ i(k).
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Such a rrocedure involves additional assumptions abou( (h<: explicit fo.m of
the trial function. For sorne trial functions such an approach m.lY pro\.<:
us(."ful. ,\Iso in ref. 10 i( was show~ tha( sorne qualiri1(i\'e information ,lhour
lhe W<l\'e function may be obtained in (his way.

The othcr approach relies on rhe fac( that (he sti.l(CS l'q.(2.5) bdonj!:
ro (he unir of IR of 1I1\_~(k). From 111we can se(." thar such St<ltl'S do occur
in bra and ke( of sorne algebraic coefficien(s rhat arrear in the [wo-body
matrix clements of symmetry adapted s(ates. \\le rhus cxpect that (bese
coefficients simplify if the ahove men(ioncd propcrtics arc exploitcd. In
(he ncxt chap(er we shall follow this hne ro simplify (\\'o-b(xJymatrix elemcnrs
without further assumptions about the trial functions.

3. TWO-BOIJY MATRIX ELUIENTS

In I it \Vas shown how lO obtain the matrix elemenr of a two-bod)'
operator bctween antisymmetric starcs from orbital and spin-isospin marrix
elcments. Thc lancr may be obtaincd according lO the procedures described
in refso IR, 19 and become particularly simple for al1 a-like nuclei as the
partition describing the spin-isospin statc belongs ro the unit IR of SU(4).

Similarly to [lleg. (4.3) rhe orhital lwo-bod)' matrix element is given

-" k I {.1
k
}(a {.n e k 1'(,,-l,n)

{.1} ,f','f"

k
{.1 } 1" { I.}k

e , , "{ }k a q )
f ' f, 4

, (3.1)

where the states l'q. (2.4) ha\'l' been u.~l'd. /' define.o;¡ an IR of S(Il-2). I ¡' I
its dimen ...•ion. " its ro\\" index and 1'1 an IR of S(2) referring ro the lase t\\'o

k
p<lf(ie1es. TOj!:ed1er ¡'r'l'l d<:finc a ro\\" index of (he IR {4 } of S(,J) ,

\re .•.•hall now proceed in .lnalo~y to 111 chapter 4 and try a ...•far as
po ..•sihle 10 separa(' the inter,lC[ing partieles. For this purpo .•.•e w(' ha\'e lO
find ,1 De (dOllble co .•.•et) dl.-'composition of the YOllng opcrators \\"id) rcspect lO
W 11 ,lIld Y'J -::) IDS( 2). Such a dec(\mposition \Viii contain matrix elements
of [h(' De ~<-'nerawr ..•[hat han_o ('ithn in bra or ket a st,1(e of (he type (2.5) .
.\t this poil1( \\(' shall lherdore lry (O wkc ad\'antagc oí th(' (act mat dernen[s
\I{ 1I/\,~(k) ,1et tri\.ially on !'illch a st •.1(('. In ordn (O do [his \\"C' shall no(
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make [he choice of De generators proposed

choose ehe generaror Y 'ol ,he De q ol Sr,,)
q ,

(he ¡eft and 11 [O the r¡ght in che fonn

y = y s .q j.J. ¡..L,K

in III eq. (3 .9). Inseead we shall
with cespect ro S(l1 - 2) ID 05(2) (O

13.2)

where rhe paie uf ¡ndices J-l and g will span rhe ran,ge of q i. e. al) De. \\'e
require s co be an clement of éJ(k) and \' wiII turo out ro be rhe De [Jcner.¡;, ~ . ¡;. ,..
ator ol S(,,) decomposed wi!h respece to S(" - 2) ID S( 2) ro [he Id! and 11"J;(k)
lo (he r¡ght. In order [O [¡nd (he pcnnutatiolls Yj1. and sji..,g' and [O determine
rhe range of rhe indin's j.1.amI g, we have ro cOllsider che possible De S}111bols
foc decomposition w¡rh respec( ro S(11 - 2) $S(2) and IJ. A.ccording ro 111 {'q.
(3.6) rhey are 2 x k matrices essemially of [\\'0 rypes: 00(' contains in rhe
second row and ith colurno a 2 and rhe H;S( uf [he s('Cond row contains zero.-;.
Thc other contains in rhe seconJ ro\\' a 1 in [he idl and jrh column. A~i.lin
[he remaining elemen[s of [he second ro\\! are zero. The [wo [ypes of De
symbols are shown in fig. 1.

1 1 j(

~:======:BEj~=-==--==--==--=~
F i¡¿. 1a

ffi:===[ffi:==:D
¡: i ~. 1b

Fi.'::. 1. Th{. (\\'0 Iypes nf DC symbols fo( rh{. decomposirion of 5('1) wirh respecr ro
5('1 - 2) @ S( 2) an d JI.
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We propose for lhe generalOrs (3.2) lhe following form, lhal has only
rwo values for rhe index)..l. For)..l = 1 we obrain!

Y, = e, S"g = (Oj' 0.); ; = 1...• , g =1 ... ' , (3.3a)

where dIe index g could be ser idenrical ro the ¡ndex l. For)..l = 2 we find

Y 2 (

n-4

0-3

0-3

n -2

0-2

n - I

0-1)
0-4

(3.3b)

where rhe index g srands for rhe possible indcx pairs 1, J. While y are
¡L

sorne pennurarions frorn S(n), e denoring rhe unir permurarion, rhe symbols
(ni' nj) ¡mply rransposirions of d;(k) inrerchanging rhe particle sers making
up the c1uslers j and j. Comparison of (3.3a) wilh fig. la and (3.3b) wi[h
fig. lb show rhar acrually for ever)' De exacrly one generaror is defined.

Nu futther simplificalim would be possible by chuusing s E/lI\J;(k)

¡nsread of s E é(k). In order ro see rhis we have ro consider~~ar in rhe
f.L,~ , i -1 I

semidirecl P[OdUCl fur h,h E/I,sEro(k), hs = ss hs =sh holds. On [he
orher hand for the De ddined by the symbuls fig. la, b pussible applications
of clemenrs of JI lo Ihe right have beerl considered. Therefore rhe choice of
s EéJ(k) is no f{'srriction and the maximal reduction is found widI the defi.¡L,g .
nitlon eq. (3.3a. b) for Y¡ and)'2' We mar conclude rhat rhese are actuaIly
rhe generarors for rhe De of S(n) when de<,'omposedwirh respecto ro 5('1- 2)mS(2)

ro lhe Idl and /11\ J,(k) lo lhe righr.
For rhe bra, i.e. me decomposirion of S(n) wirh respecr ro 11 on rhe

teh and S('I -2) mS(:::!) on the right wc obrain irnmediately the generatocs

y-
q

(3.4)

with rhe same rang<:s foc rhe indiccs as in ('q. (3.3a. b).
tJsing these results wc obtain foc rh<.'De decomposition of the Young

opera [or
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{4k}

C¡','¡",{4}k
1 {4k}1 (" -2)! 2(4!)k

11' I ,,,

Seligman

(3.5)

Note che difference betwcen chis cxpression and 111 eq. (4.5). We obtain
our expression from me lalter by using the De generators defined in 3.3a, b.
\tic rhen are able ro apply rhe s (O rhe ket of rhe matrix e1emenr of me OC
generaror trivially. The algeb~~fc coefficients as welI as (he remaining
Young operaror of S(n -2) become independent of rhe index g and unir depend
on rhe ¡ndices ¡' and f.L. As fUf a'(j.-L) we have lO choose ir as a row index
uf f' in such a wa}' char no sum over row índices occurs in eq. (3.5). As
y 1 and)'2 acmal1y are chusco to be (WO of [he OC generators used in III eq.
(4.5) we may jusI piek rhe corresponding a'(q) rhat appear in (he cerm with
s = e where [he [wu expressions coincide. Wc f¡nd¡L,/?

0'(1)

k-2 2
0'(2)={4} {3}

accual1y describing rhe unir IR of [he subgroups of S(n-2):

k-l

//' = [ ::s ID 5(4)] ID 5(2) C 5(,,-2)
1 i = 1

(3.6)

//',
k-,
[::s ID 5(4)]m5(3) <ll5(3) C5(,,-2)

i = 1

(3.7)

That che cocfficicnts m(yJ.1-) do not depend on g £ollow.5 immediately from
comparing [heir definition 111 eq. (3.13) with [he De symbols of fig. 1.

Subduced lrom <he iI{ { 4k} 01 5(,,) only <wopossible pai rs j' = {l-' 2},
l" = {2} and l' = {4k., 3'} j' = {11} occur as IR 01 5(" - 2) and 5(2). :3u,
while in j' = {4k

-
12} borh 0'(1) and 0'(2) are cuntained unly 0'(2) is con-

" d" "' {,k.'3'} 'h I ¡ h d'll .[¡lIne In! = -1 • r ere ore on y [ree I erent non-zero matnx
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elernen!s of)'p. can oeeur in eq. (3.5). These mal' be !edueed 10 SU(2) eoef-
ficients and are evaluated in the appt.'ndix. The results are listed in tabIe l.

TABLE 1

The matrix elements <{4k} ¡'o '(¡.L)¡" 1)' 1 {l}{4}k> for all
, • p.

possible values of / / and fl-.

2

o

We can US{' the decomposition eq. (3.5) for the Young operators as

\\'el1 as their contraction properties discussed in 11 eq. (A.9) to obtain for
the t\\'o body matrix element eq. (3.1)

(3.8)

< {4~}{4}k 1)'.:.'1 {l} ¡'o'(¡;.) ¡,,><{l} ¡'o'(fl-) /"1)') {4k}{4}k>
p.

k I IJ k
L (a" {4} Is__ )''':'''T("-I",) J,_ , el)' s la"{4}).'ig p.,g p. o (p.),o (p.) p. p.,g

\\'e use me notation of pointed brackets for purely algebraic coefficicnts and
round brackets fm matrix elcments involving the trial function eq. (2.3) that
will require cxplicit intcgration.

lf we compare this result with 111 eq. (4.7) we find imlxHtant simplifi-
cations. The algebraic coefficiems only depend on the indices -¡;. and fL

that take at most two valucs and are independ{'nt of g and g. Furthermore



I(,()

,
rhey are given in [able l. Thc femaining Young operawf el is ¡nJe.

a '(~~La'(¡;.)
pendent of g, g and for (he {\\lO matri;x ('lemcnts dwt actual!)' may (lccur in

eq. (3.1) onlr l'ss("IHially four different opcrawrs uf (his type can occur. If

w(' use me approach of 111 their numhe."r \\'ould have beco 27 fOf 12C and 76
for 1(')0.

Note [h~l( \\1(' have maJe no ;ls."mmptions abou( (he wave functions

beyond (he {aer (ha( (he)' are con .•.•uuC(cd of a-clusters. By con.'ócqu('oce

rhe number of in[q~rals occurring is flor reduc('d hy (he procedure. Al (his

srage rhough ir is ('as)' to 'ice wha( additional advaIHagc wc obrain if (he

primitiv(' funetions wuuld allow [rivial application of e1ements of 1I1\'~(k) as
.•.•uggestcd a( m(' end of charrer 2. \t'c could appl)' 5__ and s [o d1(, bra

}L,K ¡l,f.:

and ket in me last line of eq. (3.H) anJ rhe SUIIl over g and g wou Id he re-
placed by multiplication with the ran,ge of these sum." givcn in eq. (3 ..la, b).

The Youn~ (lpnawr el' _ may obviou .••I" again be decomposcd
o '(J.L),O I (J.L)' •

Inro De with respect [O II~ and /1' .\S their eleml'nts can be trivially applied
l' Ii

(O the Icft and tht.: right of the Young operator in el). (3.8). If we per-

"fllrm [his decomposition as welI as dH' trivial one of el we mar rewrirt.: (3.7)
uSlflg (he resuhs of 111 eq. (,1.Y) as

I k l' ,k{,j } (,j') (TI- 2)' 2

~(TI!)'/!'/'
, < {l}{ 4}k 1 }:.:.' 1 {,k}!, a'(fi) j" >

Ii

11;':::: S( l).v SO). Tite ('xpression

1I ('f{'

z~."

z~, are rhe De geuerarors of S(tI- 2) with respect ro /1':'" aud
Ii

are genef<ltors of S(2) wirh respe<:[ [O /I~ and /1" where /1" =
Ii Ii ,

(3.9)

similarIy

.1'(2) and
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RU</H- KU).¡.J., ¡.J., (3.10)

can be easily evaluated and is givcn in rabIe 2.

TAHLE 2

The non-zero coefficients RI/(j'/,-¡¡',¡.J.-. K//)
and their indices

1.L.¡.1. fU

1,1 {2}

1,2 { 2}

2,1 { 2}

2,2 {2}

2,2 {2}

2,2 { 11}

2,2 { 11}

K" RI/

1 1/2

1 1

1 1

1

2 1

1

2 -1

Remember that the dependence on ¡;. and ¡.J.- is implicit in the sub-
groups defining the De and actually appears in m (Z~//). The expression

(3.11)

remains finally 10 be cyaluaterl. Note lhal the coefficients eq. (3.11) again
do nOl depend on g and g and thus their numbcr is greatly reduced as com-.
pared [Q lJI eq. (4.9). It would now Sf:cm natural lO proceed to lheir reduction
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and evaluation using che faer mar k -1 oc k - 2 S(4) groups aTC still contained
in 11'. This must alla\\' similar mcthods as used up [Q no\\' involving che
grmips /1' 1\ J; (k -1) and /1' 1\ J; (k - 2) and even tually !he inrerchange of ,he '''''

I 2
sc[s of thece particles in 11; could also be considered. \lhile such 3n approach
certainly reduces (he numbef of different cocffici en ts of (he type gi ven in
eg. (3.11) ir seems mar (he most complicated matrix elerncnts ínvoIving ex.
changes of nucleoos betwcen all clusters remaio and wuuld be difficult (O

trcat. \Ve shall dH'rcfore use a d¡fferent war by deriving in me n{'xc chaptee
a generating funcrion foc (he cocfficients appearing in eq. (3.11).

4. A GENERAT1NG FUNCTION FOR DOUBLE COSET MATRIX
ELEMENTS

1'0 obtain a generating funecion foc (he coefficients R(j',¡¡,f.L, K') we
nore rhar rheir dependence un rhe De K' is'the sarne as for a normalization
rnarrix cIern('nr berween stares induced tu me symmerry l' frorn primitive 7z-2
nucleon functions rhar bclong ro rhe unir IR of IL and 1/: respecrively for

¡;.
bra and k(:"£. This ma)' be seen from III eq. (4.9) by choosing nl/= O ro ob-
rain a normalization rnarrix cIernen£. Ir would be possible ro calculate the
]i.,j-L and t' dependence coerccd)' by cornparing 111eq. (4.9) for me normali-
zarion case with eq. (3.9) but we still would have lO check the phase Con-
ventions implicit in the generating function with those used in me appendix
to calculate the matrix elements of y . We shall merefore use a diff<.'rent
me(hod lO obtain (he dependence on ~, J-L and l' simultaneously w i th corree t
phases at (he eud of rhis chapter and shall concentrate on a geflerating
funcrion for me K' dependence. This allows us ro omit all o\'er factors that
may arpear,

The memods of 1,11,111 and the present paper do nat make use uf
the explicir form of the cluster ansarz but onJ)' of the fact that it belongs ro
the unir IR of sorne subgroup of the grou1' of permutations of all particles.
For our 71 - 2 1'article problem an alternative ansatz fulfi lIing this conJition
cou Id be chosen as follows. Take a SCt of k non"orthogonal single particle
functions o.J;¡, i =1 ... k and choose a producr function with occupation numocrs
u/ = 4 .... 4, 2 or w/ = 4, ... 4,3,3 as

wf'-I an-2 a' (fL)) = TI YJ .•
¡= 1 I

( 4. 1)
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where the first set of occupation numbers leads to the unit IR 0'(1) of U'and
, , 1

!he serond ro the unit IR o (2) of 11 .
2 •

In reL 9 it was discussed that the norrnalization rnatrix elernent using
the ansatz (4.1) rnust be a homogeneous polynornial in the overlaps of the
orbi tal s

Each term in this polynomial must have the form

k d .. (K')
TI (u .. ) '1

",;::1 '1

(4.2)

(4.3)

lIerc the di; (K') are the clements of the De symbol characterizing the DC
K' as given in 111eq. (3.6). The coeffici(íltS of mis polynomial must have
me K' dependen ce of 1?'(f',¡¡,j..L, K') and therefore it can be used as a gener-
ating function for these coefficients, if we obtain it explicitly.

In rd. 14 mis polynomial was obtained exploiting the single particle
propenies of the function eq. (4.1). In this approach the syrnmetry adapted
states are characterized by Gelfand patterns determining an IR and a row
index of GL(k). The IR of GL(k) is uniquely determined by ,he partition ¡'.
For the three states we are interested in, the ro\\' is detcrmined by the weight
of the state i. c. by the occupation numbers urf, which are fixed by the a'(/1).
For simplicity we may therefore use J' 10 indicate also the IR of GL(k) and
a'(j..L) as a row index ,for this IR. The Gelfand patt('rns for the three states
read as follows:

4 4 ....... 4 2
I {.jk'12} o' ( 1) 4 ....... 'Í 4

4 4

4

oÍ 4 ....... I¡ 2

l<fk'l)} 0'(2)),_ 4 ....... 4 3• I _

4 <1

4

(4.4a)

(4Ab)
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4 4 4 3

I {4""3'} 0'(2))_ 4 4
4 4

4

S~ligmlWl

(4.4c)

The sratcs eq. (4.4a, e) are of highest weight and a state proportional (Q (he

one eq. (4.4b) may be obtained by applying to me slale eq. (4.4a) a lowering
operato[ proporcional ro a single generator oí GL(k)14. 19.

With (he connection tu Gelfand states established in eqs.(4.4a, b, e)
we can now use the result of re£. 14 (eq. 6.11) [har gives che Wigner D-mauix

elemen, oí GL(k)

(4.5)

for (he normalization matrix elemento Befe lUij I stands tor me k x k rnatrix
oí single particle overlaps uij. The whole expression is a real function,
aemall)' a homogeneous polynornial in uij . This polynomial may be obtained
if we use Louck's result20 (har ir is (he same ¡x>lynomial in u .. , which wc

'1
find for a double Gelfand sr3rc19 in rerms oí 905e creadon operators.

In the presenr case (hefe are two practical methods tú obtain these
polynomials, neglecting any aH over factors.

lf the weight determines a Gelfand state uniquely, this state is pro-
portional ro a WeyI state21 of the same weight. We may proceed to obtain it
as indicated in re£. 21 by filling the creation opcrators in the Young diagram
corresponding tu ¡' and rhen symmetrizing rows and antisyrnmecrizing colunms
with respen lO one of rhe indices. If ar least one of rhe Gclfand parteros
is of highesr weighr we get a simple producr of detenninants.

An al(crnarive procedure srarts from rhe fact mat stares of highest
weight in both parteros are known 19 simple producrs of determinants. The
case wherc t-'irher one Of both paneros are of the rype eq. (4.4b) can be eb-
tained by applying lowering operators ro the polynomial whcre both pattcms
are of (he rype t'q. (4.4a). This is easy because. as mentiuned t'arlier19,
the only operaror.s we need are simple gencrators, namely ¿k-l and Ck k-l.

The resule which we obmio up ro a factor from both procedures is
lisred in rablc- 3. The dc(erminanr norarion
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.. ,
6'. Al'J = ui¡ . o¡¡, U.. U.,.t - U .• I u.,, etc.

I J I J IJ I J
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(4.6)

IS used. We have (hus given homogeneous polynomials in ui¡ which are
proportional lO (he normalization matrix elemen(s of (he fl- 2 particle probleffi
aod by coosequeoce lO mc generating funcrion \\le seek.

TAIlLE 3

The ~enerating function proponional lO r/: , and me coefficienls R'(¡',¡¡.f.1. 1)
, a {~.a (u)

Cor (he relevanl values oC ¡;',f.1 dnd ¡.

'",'" / ' ~IJ R'

("' ......)
,

("' ....... ') , 1
1,1 (4"'2)

(4!)4-1 • 2lo ... 4 l ....•. 1

("," ....), 61 ....• - 1 /).1 •.•• 4-1 /i/G1,2 (4"'2)
I. ...• t. ...• -1 ,...('-')'

(4!)4.23!2

(Lt ...• )
,

[",'" ...., "," _ ..('-')' ]
2,2 ( 4'-'2)

1. .••• l ....• -1 1. ... (4-2).4:

"' •.... ( '-')' 1
1

+
[",'" ....,

(4!)'-'Ol)'L .. (.-2). 1. .......• - t

("," ....)J lo ...• - 2
2,2 (4'-'3') /).1. ...• - 2

1
¡. ...•

(4!).lI-20!)2

To dctermine the proportionali(y factor depending 00 -¡¡,¡L,¡' wc proceed
as follows. The DC con(aining (he unit pennu(ation e is denoted by K' = 1.
AH four generating funcooos listed in table 3 yield a + 1 as coefficien( for
this OC. Thus me corrcct genNa ting function is obtained by mul(iplying the
one gi\'en in (able 3 by R(j'.-¡¡',j...L.l) ¡,e. the correct coefficient for (he DC
K' = 1. This coefficient is.\ marrix d('rneot of me pcrmutation (' di\'ided by
m (Zl')' The evalua[ion is dorH' in [he appendix using agaio [he reduction to
SU(2) coefficients. which ensures a choice of phases consistent with the on('
for the matrix cicments oE)' , "I1tC coefficicn(s R(¡',ji,JJ-, I) are lisu ..d in rabie

1-'
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3 cogemer with the generating functions, and thus the correct generadng
fWlction for me coefficients R'(f',ji .•Ii,K') is obtained.

5. CONCLUSIONS

Wehave found the group of cluster permutations i!(k) and its seml-
direct produc t H I\~ (k) with the group JI of -internal permutations of the clusters
[O be powerful tools to handle the a-cluster ansacz. Actua11y we were abJe
lO simplify enormously by its use, the coefficiencs which we need in tWO
bod}' matrix elements between syrnmetry adapted a-cluster functions. \\;'e
indicace how to obtain a11 coefficients in a way mat is practical for compu-
tation. Yet there are a number of interesting open questions.

Wedid not use che techniques of cluster permutations at all points
buc avoided them at one stagelby introducing the generating funccioo. We
mencioned at mat point that no simplification of the most complicaced coef-
ficients is to be expected, but la reduction of che number of coefficients would
occur if we used cluster permutations. It would be useful if this aspecc could
somehow be included in the way we use the generating funccion.

We also treated the possibilicy of usiog cluscer functioos chac belong
from the oucset to che unit IR of 1I1\~(k) very marginally. Yet in special
rnodels like e.g. the harmonic oscillator cluster model3 such a p-ocedure looks
prornlslng.

Finally there is the important questioo to what extent the presenced
memods can be generalized. Consider a case of k -1 a-cluscers and one
cluster of less than. four partic les. lb is i s certainl y an in tere stin g Stnlcturc
as it leads lO rhe lowest supermultiplers for many light nuclei. We can see
immediately chat a group JJ(k -1) of a-cluscer permutarions can be fonncd and
we could proceed in close analogy with rhe sreps presented in chis paper. A
nurnher of complications will appear. The macrix elements we have [O evalu-
ate will be connec{ed ramer with SU(3) than with SU(2) and the multiplicity
appcaring in rhe subduction of S(rl-2) will complicare rhe generating funetion.
\Ve can thus conclude chat che method of chis paper is useful whenever mallY
a-c!usters appear in the ansarz but ar che same time difficulties arising from
non Q-clus ter s are con siderable.
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APPENDIX

To evaluate the matrix elements of y we consider that in a state
¡J.

(A.l)

!he IR ¡'of S(n - 2) and~herefore !he sra res are complerely delermined by lhe
IR {4¡¡} of S(n) and lhe one dimensional IR a'(¡;.) ¡" of 11' •• S(2).

¡J.
We now con sider any group G fulfilling [he condilion 1/;" S(2)C Ge S(n).

The IR of G to which (A.l) is a basis vector again must be uni<pe1y determined
and we may introduce the labellfor this IR as an additional although spurious
quanrum number in the state eq. (A.l). For our purposes it is convenient 10

consider me chain

11' •• s (2) e S(n - 8) •• s (6) •• S(2) e S(n - 8) •• S(8) e S(n)
¡J.

(A.2)

The IR of the intermediate groups to which the state eq. (A.l) belongs are
{4k-2} for S(n -8) and {42} for S(8). The IR of S(2) is nalurally again ¡"
and delerm in es lh e IR. F' of S(6) tu be {42} for ¡" = {2} and {33} for ¡" = { ll}.
Similarly wc may introduce a group S(n - 8) ••S(8) in [he chain 1/ e S(n). The
S[ale I {4k}{ 4}k > i s characlerized by !he IR {4k-2}{ 42} of S(n - 8) •• S(8) .

We write the newly founll labels although they are superfluous and

omit l' in the matrix element of Yp.. The phases that might be introduced for
the s{ates containing these additional quantum numbers are chusen tO be + 1.
We lhen find
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<{4'} ¡:'b'(fL)¡" Iy I {4'}{4}' > .
l'

(A.3)

In the last Jine we used (he fact mar [he permutation y involves onlr [he
l'

last 8 particles. b'(p,,) contains (he Jas( [wo components of a'(j..L), i. c.

b'(l) = {4}{2} eharaeterizes the unit IRofS(4)<!lS(2)andb'(2)= {3}{3}
the unit IR of 5(3) <!l5(3). The matrix element of y is redueed in eq. (A.3)

l'
[O a marrix element of [he [wu cluster casco These matrix elements are

evaluatod in II oqs. (A.1.3) in terms of ej symbols of SU(2) and thus may he
consider(;'d as known. Thc results are listed in rabIe 1.

1'0 calculatc [he matrix element of (he unit perrnutation that appears

in R(f',Ji,fL, 1) we introduce agaio a group in [he chaio 1/; e S(rt -2) charac-
[<:"rizing bra and ker. A useful chaio is

11' e 5(01 -8) <!l.\"(6) e 5(01 -2)
l'

(A.4)

Tho stato 1/' a'(¡d > bclongs to tho IR {l-'} of 5(01-8) and to an IR ,..' of
S( 6) wh ieh ¡s {42} for ¡'= {4k- 12} and {33} for !' = {4k -, 3 2} .

Using (hese results we find again setring everHual phases = + 1

< ¡'a '(ji) I e 11' a ' (j1) >

(A.5)

The b' (,/1.) ar(' dcfined as above. \\'e mus obrain a [wo cluster marrix e1mH"u,
which w(" ("",alu,Hc again using II (A.l, 3). This cnsures consis(cn( phas(;'s
<lod w(;' can obraio (he cocfficicn(s !?'(j',fi.f.L. 1) lis((:,d in mblc 3.
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RESUMEN

Seligman

El ansatz de c~mulos a para núcleos tipo a, lleva a la introducción
de un grupo de permutaciones de los cúmulos. Resulca útil estudiar este ansatz

y la simplificación de la antisimetrización de las funciones de cúmulos a.
El método se aplica al cálculo de elementos de matriz de dos cuerpos. La
parte algebráica de este problema está completamente resuelta. El número

de coeficit:'ntes que aparecen se reduce significativamente, y se dan rodos

los coeficientes, ya sea explícitaml'flte o implíciramente a través de una fun-
citlll generadora.




