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1. INTRODUCTION

The cluster representation of nuclei”? is today a vast field ex-
tending into nuclear structure and nuclear reactions>*. The permutational
structure of the general cluster ansatz has been investigated in several
papers®™?. In every respect the theory has gone far beyond the simple
concepts of a-clustering. Yet the a-cluster is the most tightly bound and
therefore physically most likely structure to appear in a nucleus, particular-
ly as a-clustering is strongly favored by supermultiplet theory. Actually
a-clustering in a-like nuclei is briefly discussed in ref. 10 and some quali-
tative insight is obtained. Also there has been recently considerable inter-
est in quartets'' and other excitations related to a-cluster structure '? in
highly excited a-like compounds. First microscopic calculations of a-'°0
scattering are performed 3.

All this interest seems to justify an analysis of the permutational
structure of the a-cluster ansatz within the general framework given in refs.
5, 6 and 7 (henceforth denoted by I, II, III). We shall therefore proceed to
such an analysis in the present paper and we shall make extensive use of
results and nortations given in I, Il and III. The paper will consist of two
parts.

In chapter 2 we shall discuss in detail the special properties of a-
cluster functions that were briefly touched upon in ref. 10.

As an application we discuss in chapter 3 the calculation of two-body
matrix elements between symmetry adapted functions. Important simplifications
are obtained and part of the algebraic coefficients evaluated using the proper-
ties discussed in chapter 2. To complete this result and make its application
practical in chapter 4 a generating function for all algebraic coefficients not
given in chapter 3 is constructed, using results on nonorthogonal orbitals 4.
Thus a complete procedure to obtain the algebraic coefficients appearing for
two-body matrix elements between symmetry adapted a-cluster functions is
presented.

2. THE a-CLUSTER ANSATZ

We shall treat a-like nuclei in the framework of the nuclear cluster
model'' 2. Therefore we make for the n = 4k particle orbital wave function

an ansatz in terms of a-clusters as
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k
¥= -chPi("x') X(Rl"'f?k-l) : (2.1)
I:

Here n; is a set of four nucleons forming the ith a-cluster, ¢; is a function
of the relative vectors of these four particles and is assumed symmetric under
pemutations within the setn, . X is a function of the &£ -1 relative vectors
between the sets of nucleons forming the & clusters. Thus W must be sym-
metric, i. e. a basis of the unit IR (irreducible representation) with respect
to the subgroup H of §(n) of all permutations within the sets n,. H may be
expressed as a direct sum of §(4) groups

H =
i

L Wl

® $(4) C S(n) . (2.2)
1

The unit IR of H consists of unit IR's of the §(4) groups and we shall denote
it by {4}k (distinguish from {4 } which denotes an IR of §(n)).

As we are interested first of all in the permutational aspects of the
problem we rewrite ¥ as

Y= \a"{4}k) (2.3)

emphasizing the properties with respect to H and including all other charac-
teristics of the function in @” that denotes an orbital configuration of 1 nucleons.
From the wavefunction W we have to construct a symmety adapted
wavefunction, i.e. a basis for an IR of $(n), in order to be able to combine
the latter with a spin-isospin function to an antisymmetric trial-function as
described in 1. To construct the symmetry adapted functions we proceed as
proposed in IIT chapter 2 by induction. The multiplicity of any IR [ of S(n)

in the representation induced from the IR {4}" of His determined by Littdewoods
rules for the outer product!®. Because of the Pauli principle no partititon /

with more than 4 columns is admissable and we find therefore that / = { 4k )

is the only IR of §(n) that is possible and the corresponding multiplicity is 1.
This implies that the multiplicity labels introduced in [II are superfluous in
our case, and can take only one value. Particularly their choice as intermedi-
ate partitons (IIl, eq. (2.6)) resulting from the ind_uction from j < k clusters

to an IR of §(4/) leads to the unique partitions { 47 In agreement with [II

eq. (2.5) the symmeuy adapted state may then be written as
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k
o ({4Y% {4} 1) = {{44;

o (2.4)

k

k {47}

where ¢ is a row index for the IR { 4 } of S(n), and (4
; 29 (R

ator (as defined in Il eq. A.6), that ensures the right transformation proper-

74 is a Youngoper-

tics of the state (2.4) under permutations from $(n).
According to the reciprocity theorem uniqueness of induction implies
uniqueness of subduction. Thus a state of the type

| 64" (a4 (2.5)

with {4}k denoting a row of the IR {—/lk} of §(n) is uniquely defined (a fact
implicitly used in the Young operator in eq.. (2:4))-

We now revert to the chain of groups given in eq. (2.2). It has been
noted previously ' that it is possible to insert a rather significant group into
this chain. This group is a semidirect product of H with the group & (&) that
permutes the sets of particles forming the a-clusters. The new chain reads

HCHA 3k)C Sn) . (2.6)

The semidirect product properties are casily checked and I is found to be the
normal subgroup in the semidirect product. For completeness we note that
this semidirect product is actually a wreth product® but we shall not make
use of this facrt.

. . : k k ! "

We are interested in the IR {4} of H and {477 @i 8th). Feom she
propertics of the semidirect product we find that no clement of A (k) and
therefore of H A & (k) can change the IR of H. On the other hand the multi-
plicity of the IR {4} of i in the IR {—/lk} of §{(n) is 1. Therefore no element
of 2(k)or H A @(&) can transform the state eq. (2.5) into a different stare
but must reproduce it almost with a phase. The state eq. (2.5) is thus not
only a basis for the unit IR of I but also for a one dimensional IR of H A~ Rg)fé).
Calculation proves the phase to be + 1 (see ref. 17) and the state eq. (2.5)to
be a basis of the unit IR of H A 2A(k) and by consequence of ?g,(le).

If we wish to use the chain of groups (2.6) rather than (2.2) to simply -
fyv our approach to a-like nuclei we may proceed in two quite distinct ways.

One would be to find a primitive cluster function which would not
only form a basis for the unit IR of i but rather for the unit IR of H A 2 (k).
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Such a procedure involves additional assumptions about the explicit foom of
the wrial function. For some trial functions such an approach may prove
uscful. Also in ref. 10 it was shown that some qualitative information about
the wave function may be obtained in this way.

The other approach relies on the fact that the states eq.(2.5) belong
to the unit of IR of HAA (k). From Il we can see that such states do occur
in bra and ket of some algebraic coefficients that appear in the two-body
matrix elements of symmetry adapted states. We thus expect that these
coefficients simplify if the above mentioned properties are exploited. In
the next chapter we shall follow this line to simplify two-body matrix elements
without further assumptions about the trial functions.

3. TWO-BODY MATRIX ELEMENTS

In I it was shown how to obtain the matrix element of a two-body
operator between antisymmetric states from orbital and spin-isospin matrix
elements. The latter may be obtained according to the procedures described
in refs. 18, 19 and become particularly simple for all a-like nuclei as the
partition describing the spin-isospin state belongs to the unit IR of SU(4).

Similarly to Il eq. (4.3) the orbital two-body matrix element is given
by

-1’
|

@ ({4 {4 1 | T -1 | L4465

{4*} {4}
{4}.& P Tin-1,n) c

la” (4}%) , 3.1)
(iR k| o ¥
7't {4}

- @" (4% c

where the states eq. (2.4) have been used. /' defines an IR of §(n -2), |/ |
its dimension, r' its row index and /" an IR of $(2) referring to the last two
particles. Together f’r'f” define a row index of the IR {4k} of §(n).

We shall now proceed in analogy to 111 chapter 4 and try as far as
possible to separate the interacting particles.  For this purpose we have o
find a DC (double coset) decomposition of the Young operators with respect to
to I and §(n - 2) @ S(2). Such a decomposition will contain matrix elements
of the DC generators that have either in bra or ket a state of the type (2.5).
At this point we shall therefore uy to take advantage of the fact that elements

of IIAZE(E) act trivially on such a state. In order to do this we shall not
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make the choice of DC generators proposed in Il eq.(3.9). Instead we shall

choose the generator Yq‘of the DC g of $(n) with respect to S(n-2) @ 5(2) to
the left and H to the right in the form

= (3.2)
Yq Yo Su,g

where the pair of indices i and g will span the range of g i.e. all DC. We

require s#‘ to be an element of d(£) and v, will turn out to be the DC gener-
ator of S(r}% decomposed with respect to §(n -2) ® §(2) to the left and HAé(k.)
to the right. 1In order to find the permurations ¥ and S, g+ and to determine

the range of the indices t and g, we have to consider the possible DC symbols
for decomposition with respect to §(n-2)®8(2) and . According to 111 eq.
(3.6) they are 2 x £k marrices essentially of two types:

second row and ith column a 2 and the rest of the second row contains zeros.

The other contains in the second row a 1 in the fth and jth column.
the remaining elements of the second row are zero.
symbols are shown in tig. 1.

One contains in the

Again
The two types of DC

Fig, 1a

&~
W
&~
W
I
&~

Fig. 1. The two types of DC symb

ols for the decomposition of S(n) with respect to
S(n-2)@5(2) and H,
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We propose for the generators (3.2) the following form, that has only
two values for the index ;£. For u = 1 we obtain-

Y= 5 ={n;ng); i=1l...k, g=1luik (3.3a)

where the index g could be set identical to the index #. For it = 2 we find

n-4 n-3 n-2 n-1

¥ = ; (3.3h)
n-3 n-2 n-1 n-4

e ™ (n:.,nk_l)(nj,nk); i€ 7= Quakiy g =100k (k=1)/2 ,

where the index g stands for the possible index pairsi,j. Whiley are

some permutations from §(n), e denoting the unit permutation, the symbols
(n;, n].) imply transpositions of ®(k) interchanging the particle sets making
up the clusters 7 and j. Comparison of (3.3a) with fig. la and (3.3b) with
fig. 1b show that actually for every DC exactly one generator is defined.

No further simplification would be possible by choosing Sig eH AB(k)
instead of s € (k). In order to see this we have to consider, that in the
semidirect pr’oduct for h,h'€H,s€d(k), hs = ss 'hs =sh' holds. On the
other hand for the DC defined by the symbols fig. la, b possible applications
of elements of H to the right have been considered. Therefore the choice of
£ €@ (k) is no restriction and the maximal reduction is found with the defi-
nition eq. (3.3a, b) for ¥ and y,- We may conclude that these are acrually
the generators for the DC of $(n) when decomposed with respecto to S(n - 2) @ 5(2)
to the left and HA & (k) to the right.

For the bra, i.e. the deco{nposition of S(n) with respect to H on the
left and §(n -2) ®$(2) on the right we obtain immediately the generators

Y. =35 y ' (3.4)

with the same ranges for the indices as in eq. (3.3a, b).
Using these results we obtain for the DC decomposition of the Young
operator
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k 65 (n - 2)1 2041 . ;
{4 } . = I{ }i(?? ) ( ) Zm_l,‘(y)c){' ' C’(
'frl{4} 1{'1;3! o H ri,a ()
{4}*
d*f e/ ly HAHY >y, 55, 77 (3.5)
g 8 ]

Note the difference between this expression and III eq. (4.5). We obrain
our expression from the latter by using the DC generators defined in 3.3a,b.
We then are able to apply the s to the ket of the matrix element of the DC
generator trivially. The algebraiic coefficients as well as the remaining
Young operator of §(n -2) become independent of the index g and only depend
on the indices /' and . As for a'(,u,) we have to choose it as a row index
of f' in such a way that no sum over row indices occurs in eq. (3.5). As
y,and y, actually are chosen to be two of the DC generators used in III eq.
(4.5) we may just pick the corresponding a’(g) that appear in the term with

B S E where the two expressions coincide. We find
¢4

a'()) = {4)* (2}

B (3.6)
-2
a'(2)= {4} {3}
actually describing the unit IR of the subgroups of $(n-2):

k-1

H = [ 2 e5(4)] o5(2) CS(n-2)
=
(3.7)

k-2
H =[ 2 &5(4]e5(3)e5(3)C S(n-2)
t=1

That the coefficients m(y ) do not depend on g follows immediately from
comparing their definition I1I eq. (3.13) with the DC symbols of fig. 1.
Subduced fmm the IR { 4k} of §(n) only two possible pairs f' = {4 },
= {2} andj — {4 232 }f {11} occur as IR of S$(n-2) and 5(2). Burt
wh:!e I = {4 "2} both a’(1) and o' (2) are contained only a’(2) is con-
tained in f'= {4 e ?32}.  Therefore only three different non-zero matrix
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elements ofy# can occur in eq. (3.5). These may be reduced to SU(2) coef-
ficients and are evaluated in the appendix. The results are listed in table 1.

TABLE 1

The matrix elements <{4"* Yfla'(w) " Iy | {4 }{4} > for all
possible values of f'f" and 1 .

j' f” # 1 2

fafEYay e} 1 -V3/8

(442311} | o V5/8

We can use the decomposition eq. (3.5) for the Young operators as
well as their contraction properties discussed in Il eq. (A.9) to obtain for
the two body matrix element eq. (3.1)

—n tn n rpn .r-‘/z
@ ({44 17 | -1, ) || @™ (LY (45 111 1)

k2 k
LT @ =228 5 0 oty )

i)’ LgE]® [ 5 (3.8)

<{aHa 1 {(4*) 170" Gy 1 ><{4"Y 170 ) 1]y, | {44 4)" >

n

I
>, -n{4}k|s__y T (n- ln)cf cfys
Ea g B a'(w,a’(wy "HHE

|a”{4}")

We use the notation of pointed brackets for purely algebraic coefficients and
round brackets for matrix elements involving the trial function eq. (2.3) that
will require explicit integration.

If we compare this result with Il eq. (4.7) we find important simplifi-
cations. The algebraic coefficients only depend on the indices 1 and p
that take at most two values and are independent of g and g. Furthermore
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they are given in table 1. The remaining Young operator cf, — , _isinde
a (u),a (p)
pendent of g, g and for the two matrix elements that actually may occurin
€q. (3.1) only essentially four different operators of this type can occur. If
we use the approach of III their number would have been 27 for '2C and 76
for '°0.
Note that we have made no assumptions about the wave functions

beyond the fact that they are constructed of a-clusters. By consequence
the number of integrals occurring is not reduced by the procedure. At this
stage though it is easy to see what additional advantage we obtain if the
primitive functions would allow trivial application of elements of HAB(k) as

suggested at the end of chapter 2. We could apply s __ and 5.5 e the bra
oy '

and ket in the last line of eq. (3.8) and the sum over g and gwould bere-

placed by multiplication with d’w range of these sums given in eq. (3.3a, b).

The Young operator ¢ ,

a (pha (u)

into DC with respect to H' and ",(: as their elements can be trivially applied
in

to the left and the right of the Young operator in eq. (3.8). If we per-

i

may obviously again be decomposed

form this decomposition as well as the trivial one of (’{ we may rewrite (3.7)
using the results of I11 eq. (4.9) as

@ ({4 11| T -1, m) | a2 (¥ {4k y1p)

ky|?, .2k
= B ™ a2 <{EH | (44 e >

2 . % e n
nn* | f] Hit

k 1 ' " - '] I — I n " — n
{4 }fla'(p)f y#‘l{4k}{4}k> 2 R, K'Y R (7T, 1, K™

KIKH

—n k e 1] ! — k
3 (@”{4} '5 H}'_‘I(rz*l.n)Z,;Z’,,, ) 8 a”{4}") . (3.9)
e e i K" K" Yu ,u.gl } .

Here '/f;\,: are the DC generators of §(n - 2) with respect to H' and similarly

"
Z’;,, are gencrators of §(2) with respect to H” and HL: where Hl" = §(2) and
i

H:,’ = S(1)® §(1). The expression
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R"(f" s, K") = <["| Zpu | 1" > m™ N (Zp) (3.10)
can be easily evaluated and is given in table 2.

TABLE 2

The non-zero coefficients R"(f", L, i, K")
and their indices

wpo K" R"
Lyl {2} 1 1/2
1,2 {2} i 1
2,1 {2} 1 1
24 {2} 1 1
2,2 {2; 2 1
2,2 {11} 1 1
29 f11% 2 -1

Remember that the dependence on /L and i is implicit in the sub-
groups defining the DC and acrually appears in m(ZI"(u). The expression

R'(f\E,uK) =<f'a'(@)| 2 [ f'a'(w)> m™ (Z ) (3.11)

remains finally to be evaluated. Note that the coefficients eq. (3.11) again
do not depend on 'E and g and thus their number is greatly reduced as com-
pared to I1I eq. (4.9). It would now seem natural to proceed to their reduction
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and evaluation using the fact that £ -1 or £ -2 §(4) groups are still contained
in H . This must allow similar methods as used up to now involving the
groups H:Aé(k-l) and H;f\é(k- 2) and eventually the interchange of the two
sets of three particles in H; could also be considered. While such an approach
certainly reduces the number of different coefficients of the type given in
eq. (3.11) it seems that the most complicated matrix elements involving ex-
changes of nucleons between all clusters remain and would be difficult to
treat. We shall therefore use a different way by deriving in the next chapter
a generating function for the coefficients appearing in eq. (3.11).

4. A GENERATING FUNCTION FOR DOUBLE COSET MATRIX
EL EMENTS

To obtain a generating function for the coefficients R(/",;_,L_,,u, K') we
note that their dependence on the DC K is the same as for a normalization
matuix element between states induced to the symmetry f’from primitive n -2
nucleon functions that belong to the unit IR of H' and H}L: respectively for

bra and ket. This may be seen from III eq. {4.9)#by choosing n"= 0 to ob-
tain a normalization matrix element. It would be possible to calculate the
iyt and f' dependence correctly by comparing lII eq. (4.9) for the normali-
zation case with eq. (3.9) but we still would have to check the phase con--
ventions implicit in the generating function with those used in the appendix
to calculate the matrix elements of y . We shall therefore use a different
method to obtain the dependence on 17, & and /' simultaneously with correct
phases at the end of this chapter and shall concentrate on a generating
function for the K’ dependence. This allows us to omit all over factors that
may appear.

The methods of I, II, Il and the present paper do not make use of
the explicit form of the cluster ansatz but only of the fact that it belongs o
the unit IR of some subgroup of the group of permutations of all particles.
For our n - 2 particle problem an alternative ansatz fulfilling this condition
could be chosen as follows. Take a set of & non-orthogonal single particle
functions g!J‘., i =1...k and choose a product function with occupation numbers
wl=4,...42or wl?: 4,...4,3,3 as

1

wh
|a®2a’(upy= T y, ° (4.1)
=1
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where the first set of occupatlon numbers leads to the unit IR a'(1) of H " and
the second to the unit IR a’(2) of H
In ref. 9 1t was di scussed that the normalization matrix element using

the ansatz (4.1) must be a homogeneous polynomial in the overlaps of the
orbitals

u, =Jgiy (4.2)

Each term in this polynomial must have the form

k d..(K")
I1 (u,-f) 4 (4.3)

i”:l

Here the d (K') are the elements of the DC symbol characterizing the DC
K' as glven in III eq. (3 6) The coefficients of this polynomial must have
the K' dependence of R'(f’ T K') and therefore it can be used as a gener-
ating function for these coefficients, if we obtain it explicitly.

In ref. 14 this polynomial was obtained exploiting the single particle
properties of the function eq. (4.1). In this approach the symmetry adapted
states are characterized by Gelfand patterns determining an IR and a row
index of GL(k). The IR of GL(k) is uniquely determined by the partition j'.
For the three states we are interested in, the row is determined by the weight
of the state i. e. by the occupation numbers wz!“, which are fixed by the a’(1).
For simplicity we may therefore use f' to indicate also the IR of GL(k) and
a'(,u) as a row index for this IR. The Gelfand patterns for the three states
read as follows:

4 4. .. 4 2
[18* "2} o (e | 4 ewinns i 4 (4.4a)
4o..... 4
4
i 4. 5 2
} {-111'12} 0" (2) e | 4. 4 3 (4.4b)
4. 4
4
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E s - W, [ JR— 4 3 (4.4¢)

The states eq. (4.4a, c) are of highest weight and a state proportional to the
one eq. (4.4b) may be obtained by applying to the state eq. (4.4a) a lowering
operator proportional to a single generator of Gk W,

With the connection to Gelfand states established in eqs.(4.4a, b, c)
we can now use the result of ref. 14 (eq. 6.11) that gives the Wigner D-matwix
element of GL(k)

] -1

! (|ui].1 ) (4.5)

a'(w,a’(p

for the normalization matrix element. Here l”i;‘| stands for the & x & matrix

of single particle overlaps e The whole expression is a real function,
acwally a homogeneous polynomial in e This polynomial may be obtained
if we use Louck’s result? that it is the same polynomial in iis which we

find for a double Gelfand state' in terms of Bose creation operators.

In the present case there are two practical methods to obtain these
polynomials, neglecting any all over factors.

If the weight determines a Gelfand state uniquely, this state is pro-
portional to a Weyl state 2! of the same weight. We may proceed to obtain it
as indicated in ref. 21 by filling the creation operators in the Young diagram
corresponding to f and then symmetrizing rows and antisymmewizing columns
with respect to one of the indices. If at least one of the Gelfand pattems
is of highest weight we get a simple product of determinants.

An alternative procedure starts from the fact that states of highest

weight in both patterns are known '

simple products of determinants. The
case where either one or both patterns are of the type eq. (4.4b) can be ob-

tained by applying lowering operators to the polynomial where both pattems
19

are of the type eq. (4.4a). This is easy because, as mentioned earlier™”,

the only operators we need are simple generators, namely c*® ' and Ch kot -
The result which we obtain up to a factor from both procedures is
listed in table 3. The determinant notation



a-cluster configurations. .. 165

. ool

AL :u._,A’.'., =gy..4.0.0 — .. 04.1. €tc. (4.6)
] 1y ) L7 B Cacy

is used. We have thus given homogeneous polynomials in 4. which are

proportional to the normalization matrix elements of the n - 2 particle problem

and by consequence to the generating function we seek.

TABLE 3
The generating function proportional to Df: 2 and the coefficients R'(/',,('_J.,y., 1)
i , a'(@,ae'(w
for the relevant values of /1, and f°.
ﬁ?ru' f’ ~D R'
T (4412} (Ax....k)z 1o... k=172 1
% ) EER (Al....i"l) (4!)k-l_2
R d e T 1....k-1 1....k-1 frﬁ
1,2 {472y (4 ) B vt o onans ﬁ;./
(4% 2312
i " 3 i R lo... k-1 1....(k-2)k
2,2 {4h 12} (Al....k) [Al....h-l A:....(k-!)h1
1
1. ... k-1 1 A k-2)k —_—
e B eagn B @riay?
k-2.2 AR 1....k=2 1
. {4*%3%y (4, ) B g SL.
(41231

To determine the proportionality factor depending on 1Z,ut, /" we proceed
as follows. The DC containing the unit permutation e is denoted by K'= 1.
All four generating functions listed in table 3 yield a + 1 as coefficient for
this DC. Thus the correct generadng function is obtained by multiplying the
one given in table 3 by R(f',7i,i2,1) i.e. the correct coefficient for the DC
K'=1. This coefficient is a matrix element of the permutation e divided by
m(Z;). The evaluation is done in the appendix using again the reduction to
SU(2) coefficients, which ensures a choice of phases consistent with the one
for the mawrix elements of 2. The coefficients R(f',1Z,it, 1) are listed in table
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3 together with the generating functions, and thus the correct generating
function for the coefficients R'(f',1I,iz, K") is obtained.

5. CONCLUSIONS

We have found the group of cluster permutations & (k) and its semi-
direct product HAB (k) with the group H of internal permutations of the clusters
to be powerful tools to handle the a-cluster ansatz. Actually we were able
to simplify enormously by its use, the coefficients which we need in two
body matrix elements between symmetry adapted a-cluster functions. We
indicate how to obtain all coefficients in a way that is practical for compu-
tation. Yet there are a number of interesting open questions.

We did not use the techniques of cluster permutations at all points
but avoided them at one stage |by introducing the generating function. We
mentioned at that point that no simplification of the most complicated coef-
ficients is to be expected, but la reduction of the number of coefficients would
occur if we used cluster permutations. It would be useful if this aspect could
somehow be included in the way we use the generating function.

We also treated the possibility of using cluster functions that belong
from the outset to the unit IR of HAd(k) very marginally. Yet in special
models like e.g. the harmonic oscillator cluster model® such a procedure looks
promising.

Finally there is the important question to what extent the presented
methods can be generalized. Consider a case of k-1 a-clusters and one
cluster of less than four particles. This is certainly an interesting structure
as it leads to the lowest supermultiplets for many light nuclei. We can see
immediately that a group B(k -1) of a-cluster permutations can be formed and
we could proceed in close analogy with the steps presented in this paper. A
number of complications will appear. The matrix elements we have to evalu-
ate will be connected rather with SU(3) than with SU(2) and the muluplicity
appearing in the subduction of §(n -2) will complicate the generating function.
We can thus conclude that the method of this paper is useful whenever mauy
a-clusters appear in the ansatz but at the same time difficulties arising from
non a-clusters are considerable.
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APPENDIX

To evaluate the mauix elements of ¥, we consider that in a state

18" P o) 175 = | (4™} o¥u) s (A.1)

thé IR f' of S(n-2) andfherefore the states are completely determined by the
IR {4k} of §(n) and the one dimensional IR a'(;_L) " of H' ® $(2).

We now consider any group G fulfilling the conditioi'Ll HI_:GB S(2)CGCSn).
The IR of G to which (A.1) is a basis vector again must be uniquely determined
and we may introduce the labellfor this IR as an additional although spurious
quantum number in the state eq. (A.1). For our purposes it is convenient to
consider the chain

H:Lea S(2)C S(n-8)o S(6)® $(2) C S(n-8)a S(8) C 5(n) (A.2)

The IR of the intermediate groups to which the state eq. (A.1) belongs are
{4k-2} for §(n - 8) and {42} for $(8). The IR of $(2) is naturally again f"
and determines the IR F' of $(6) to be {42} for /"= {2} and {33} for /"= {11}.
Similarly we may introduce a group $(n -8)® §(8) in the chain H C §(n). The
state | {4k}{4}k > is characterized by the IR {4k'2}{42} of S(n-8) e S(8).
We write the newly found labels although they are superfluous and
omit f' in the matrix element of y . The phases that might be introduced for

the states containing these additional quantum numbers are chosen to be + 1.
We then find
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(kY a1 |y, | L4 > =< (€ o' 1 |y, [ L4414} >

{4 ALY E " 1 |y, | (AHAH N>

{47} P £ |y, | {47314} > . (A.3)

In the last line we used the fact that the permutation y involves only the
last 8 particles. b'(u) contains the last two components of a’(x), i.e.
b'(1) = {4}{2} characterizes the unit IR of $S(4) ® S(2)and b’ (2) = {3}{3
the unit IR of 5(3) & §(3). The matrix element of ¥y is reduced in eq. (A.3)
to a matrix element of the two cluster case. These matrix elements are
evaluated in IT eqs. (A.1,3) in terms of gj symbols of SU(2) and thus may be
considered as known. The results are listed in table 1.

To calculate the matrix element of the unit permutation that appears
in R(f'JZ,/1, 1) we introduce again a group in the chain H,ut C 8(n =2) charac-
terizing bra and ket. A useful chain is

H;cs(r:—S)@S(())CS(r, =2y . (A.4)

The state 1]'0'(;1) > belongs to the IR {4k-2} of ${n-8) and to an IR F'of
$(6) which is {42} for /' = {4}2-12} and {33} for f'= {4k"232}.

Using these results we find again setting eventual phases = +1

e

<fla'(@)|e|f'a'(u)>

_ <]r {4.&-2} I"'U'(—}I)If' {412-2} F'ﬂ'(,u.)> (A.5)

<F'B" (@ |F'b (> .

The b'(/_;) are defined as above. We thus obtain a two cluster matrix element,
which we evaluate again using II (A.1,3). This ensures consistent phases
and we can obtain the coefficients R'(,f",ﬁ,,u. 1) listed in table 3.
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RESUMEN

El ansatz de C\imulos a para nucleos tipo a, lleva a la introduccién
de un grupo de permutaciones de los cimulos. Resulta itil estudiar este ansatz
y la simplificacion de la antisimetrizacion de las funciones de camulos a.
El metodo se aplica al calculo de elementos de matriz de dos cuerpos. La
parte algebraica de este problema esta completamente resuelta. El nimero
de coeficientes que aparecen se reduce significativamente, y se dan todos
los coeficientes, va sea explicitamente o implicitamente a través de una fun-

cion generadora.





