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ABSTRACT: We investigate the symmetry properties of the coupled seccad-
order partial differential equations used by A.M. Turing, to
describe the kinetics of chemical reactions that can lead to
geometrical symmetry breaking in living embryos. It is shown
that the equations possess a richer symmetry algebra than can
be found by the usual extensions of the classical work of Lie.

The significance of some of the symmetries is discussed.

[. INTRODUCTION

How is it that the cells of a living organism, all of which arise by
growth and division from the union of a single egg and sperm cell, become

different from each other? This question characterizes one of the great myster-
ies of contemporary biology — the mystery of cell differentiation.
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Sometime after its fertilization the egg of an animal divides, the re-
sulting two cells grow and divide, and this process continues, leading to the
formation of a blastula — a polygonal shell of perhaps 2° cells. Experiments
show that in many animals all of the cells in the blastula can be considered
cquivalent. If one or several of them are carefully separated from the rest,
each can independently develop into a whole animal.

However, as the quasi-spherical blastula continues to grow, there
comes a time when the cells are no longer biologically equivalent. This
decrease in effective biological symmetry is also accompanied by the develop-
ment of a depression at some point on the sphere. As this depression deepens,
the decrease in biological symmetry is emphasized geometrically and the
embryo is said to become a gastrula.

This transformation of the highly symmetrical blastula into the less
symmetrical gastrula poses the problem of cell differentiation in its simplest
form. 1If it is solved at this level, then one can in fairness ask the biochemist
to answer in some detail the question, “How is it that a sphere develops into a
horse?”

The question just stated is due to A, M. Turing, who seems to have
outlined the only answer to it that is at unce logically, mathematically, physi-
cally, chemically, and biologically possible.!

As it is logically necessary that an object with geometrical symmetry group
G in an homogeneous environment will evolve in time to an object with the
same symmetry, it must be true that in an embryo small deviations from the
polygonal, essentially spherical, symmetry of the blastula become determi-
native. This is physically possible only if the evolving biochemical system
becomes unstable to small “perturbations” that change its geometrical symmetry.
If these “perturbations” were simply those of the rough and tumble of embryonic
life, there would be no inheritance of characteristics — no phyla, classes,
orders, genera or species, whatsoever — no biology as we know it.

It may be admitted then, either that the “perturbations” are supplied
by the genetic material in the cells, and/or that the genetic material determines
directly or indirectly the effect that the “perturbations” may have upon the
system. Since the genetic material itself is not a miniature replica of the
full grown organism, it is evident that it does not act directly, impressing the
image of a homunculus upon the developing embryo. Rather, it must mediate
chemical reactions that are unstable to perturbations, and these must lead to
a change in the local or global symmetry of the embryo, a change that is
essentially independent of adventituous perturbations. Only a subclass of
all perturbations can be amplified.

The facts of biology thus suggest that there exist chemical reactions
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that, though beginning in a homogeneous environment, develop spaually in-
homogencoes distributions of reactants, either in solution or .n a gel, and do
so in u dererm'pate mann. o,

I'he biological importance of such reactions was recognized in the
1930's by Alvin \\'cinbergz. who showed that a pair of coupled chemical re-
acrions in solution could pive rise to a spatially inhomogencous distribuuon
of reactants, both inside and ourside a spherical cell, if the reactancs diffuse
at different rates through the solution and the cell membrane. Further ad-
ditions w the theory of such reactions were contributed by N. Rashevslt o3
A Tdirly simple exampic of a coupled series of reacuons that developed in-
homogenecously in an inttially homogeneous solution in vitro has been recendy

4
drscovered.

II. THE KINETIC EQUATIONS

consider a scquence of chemical reactions involving substances
“X" and “Y" and let their respective concentrations be X, Y. We shall
suppose these concentrations to be functions of time ¢, and of position r.
In Turing’s theory of morphogenesis these substances are termed morphogens
and Turing supposes that at least ope of them favors the growth or develop-
ment of a cell in which its concentration is changed. He considers diffusion
to take place between cells in this case. and also considers reactions in an
initially homogencous medium. We consider only the latter. The local rate
of production of “X” is 3X/3¢ and that of “Y ™ is oY /9d¢. 1Lf “X7, “¥”
diffuse through the solution and have aiffusion tensors M, N then the kinetic

cquations arc of the form

ax
At
(1)
Y
ot
where roare the Cartesian coordinates. The functional form of / and g 1s
determined by the particuiar reaction sequence.  In Turing’s theory this is

srobably to be considered an inherited characteristic though Turing himself
g g

does not say so.
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Suppose that f =g =0 when x = b, y = k throughout the solution.
Then the system is in a steady state which may or may not be an equiltbrium
state’ That is, the steady state is characterized only by the requirement:

X/t = 3dY/ot =0

Letting X = x + b, Y=y tk, and expanding / and g in Taylor series, one ob-

tain s

L :ax+by+R‘+ 23;‘1“21’,

ot [} ar‘. F)r‘,

(2)

?)' = cx tdy tR,t ZBEN"'-;*}\ ’
1 r. T.

where R' . R arc terms that are not linear in the macroscopic flucwations
®; ¥ Thie behavior of the solution near the steady state (x =0,y = 0) is
determined by the linear terms in eqs. (2). The equations obtained by dropping
Rl. R,are casily solved, and the results have been discussed by Turing for
the case when the solution is confined within a thin annular region, and for
the case when itis confined between two concentric spherical surfaces of
slightly diiferent radii. He also investigated the case of three morphogens.

For our purposes here 1t is sufficient to consider the case of two
reacting substances confined within a thin annulus. The fluctuations u ! and
u? of their concentrations are considered to be functions of the time x' = ¢,
and of x? = & where J is an angular coordinate measured from an origin at the
center of the annulus. We also assume that the diffusion tensors are constants.
We may then write the linearized kinetic equations as

5 13 2
_ﬁﬁ k u'tk u2+d,a_”_
o 12 1T L
(ox-)
(3)
0.0 ~2 2
a,“, kE u'+k ul+d du_
Jxr | 2 22 2 5
o -2

The solutions of these equations are
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QUL ~ PN, R [ 2 o
u ;(.m: , u ECmum ; (4)
x ! ¥t
2 S g ey i
g o . p#p' (5)
- x x 2
u"’IZ(Azem +B:’em )Elmx,
Here p and p' are the two roots of the equation
_ 2N g 2y
(p-k, +dm?)(p-ky+dm?) =k by . (6)

The constants Al, Bi. Az, 52 are restricted only by the relation

1 Bn 2
AL (p -k tdm) =k A,
(7)
B, (g, —k +dm’) = B’
m ‘m 11 12 m

Turing proposes that microscopic fluctuation phenomena are sufficiently
varied to ensure that, even when the initial state of the system is the steady
state, subsequently any of the coefficients C ; can become non-zero
ll¢ then concentrates attention upon those value-; of m for which p_, p have
the largest positive real part. It is these particular solutions that grow most
rapidly with time, and may therefore be expected to dominate the behavior of

the system after an initial induction period.

1. CLASSICAL SYMMETRIES OF THE LINEARIZED EQUATIONS
- kgs. (3) will be said to be invariant under the transformartion u® Tk,
&f TP if they retain the same form when expressed in the new variables
the constants & . .d_ being understood to remain unaltered.

ol ‘pp arent that the equations are nof invariant under time reversal

2
! =yl = though they are invariant under the space inversion o xi==-x2
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- . - l 2 . .
They are not in general invariant under the exchange u" «*4* but are invari-
ant under the reflection u! — - ul, u? = - 42 In the classical theory of the local

symmetry of differential equations (3) one considers transformations

=4t €§i(x,u) ;
x= (x!, x?) b = (ul,uQ) : (8)

2k = ks Enk{x,a) 3

where € is an arbitrarily small parameter, and the quantities x, u are treated
as independent variables.® The simplest way to apply the classical method
to a set of second order equations, is to convert the set to a canonical set of
first order equarions by defining auxiliary variables. We therefore let

43~ Ou' ut = ou?
oxT 7 oxT '
(9)
1 2
L W= 0
dx* Ox
whence egs. (3) become
ul =k u'+k _u?+d ou’
i 12% L i ’
(10)

6

B _ 1 2 Ju
= + +

u k.mzx kzz” d2 -

The classical method applied to the six equations (9, 10) then leads to a set
of six determining equations for the Lie generators:

(11)
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Solving these equations one obtains the following linearly independent gener-

ators:

) _ 9
QT T
(12)
0. = }E uk_i = ';1 vk l 3
=3 R=h —duk' o op=1 ok

where v! and v? satisfy the same equations (3) as u' | u?, respectvely, and

3 ou! 4 _ dv? s ov! 6 _ ov?
= . = L L WP o HE ST (13)
- S T 24 P

These are the only classical generators that are admitted by the equations
) The generators Q1 R Q2

are the generators of time and space translations. The operator Q, generates

(3) for arbitrary values of the constants & . ..d

dilatations of the variables u*, and of course commutes with Q , Q.. In the

% . . 2 2
remaining generators Q  the functions v! (x!, x?), v¥(x', x?)
%)

may be chosen
from the non-denumerable infinity of solutions (¢!, v?) of the original equations.

Each of these operators may be exponentiated)to yield a one-
parameter subgroup which leaves the ey ations invariant. The condition
u(8) = u(0+27) requires that Q_ generates SO (2). If further boundary con-
ditions are imposed, the remaining Herators may no longer generate one-
parameter subgroups.

In Turing’s theory of morphogenesis  microscopic fluctuation phenomena
are held responsible for the transformation ot » steady state into a state in-
homogeneous in time and/or space. These fluctcation phenomena may be
said to set the initial conditions at ¢ = { pertinent to a given problem. Thus
while it is wue that for all 7, uk (t +7,60) is a solution if uk (t,0) is a so-
lution, uk(.' + 7, &) does not in general represent the actual chemical state of
the system for £ + 7 <t . It may also not represent the chemical state for
times £ +7 > ¢ % &t if the non-steady state stimulated is not one that ampli-
fies the perturbation rapidly, so that further microscopic fluctation phenome-
na are effectively setting up new initial conditions with macroscopic conse-
quences.

Finally, it is important to note that the only group operators that can
convert the steady state u' = 0, u?=0 into any other solution. are the oper-
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ators obtained by exponentiating the Q, - Unfortnately, knowledge of oper-
ators of this type presupposes a knowledge of solutions of the original
differential equations whose symmetries are being studied.

IV. NEW SYMMETRIES

Recently it was discovered that partial differential equations may
posscss larger continuous groups of symmetries than those considered in the
classical theory.” These arise when one allows infinitesimal transformations
of the form

- l
prid -_—x3+€§ (x‘u‘"i‘“ij"") ,

;I—k?—'ﬂk'i' Enk(xyuyui'ul.fs-") ? (14)
.J}k:uf + ET]f(X,ﬂ,U,w“,'j"") 4

where as before x = (x!, x?), u = (u!, 4?) and

S du,

= — . #= _" . Bt (14a)
9 x!

For linear equations it is simplest to treat only the x* as independent varia-

bles and suppose the generators of the transformation to be martrix operators
T ;

that act upon the vector U = (u!, uz) . Thus we write

d 2 0
TR ks (B AR
dx dx
2 2 ~2
b8 g2 B L ow F (15)
Ll Tpey 0 & = Ty :
(3x1)’ Ox’ Ox (9x2)

where g's are 2% 2 matrices whose elements are, in general, functions of
x'. x? | The invariance requirement then reduces to
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wou - if WU =0 , (16)
where
k k. d 0 1. O
2 p 1 U 1
W Kl -1_- : K= N = . —
(3x?):  Ox k. k 0 d 0 1
& 21 22 %y
{16a)

Using methods described previously’, one derives the following determining

equanonsford1eq's,ifdeﬂvaﬁves(ﬁlndcrnolnghcr[hnntun are allowed:
;0 ~0g 0 0 s 7
(I\q—qh}+Dq22—q]—2q21\—U,
- 2_72 2 2 2 ﬂ:
(Kg2-72K) + Dy, -4 +2Dg) =0 ,

(Kq'-q'K) +Dq,, - qll + 2(‘2;’22 —}'j;? K)+(@7°-4% =0,

(17)
(Kg?-q"K)+Dg)l-q+ 20g) +(g%-4) =0,
do Flpt = g1=0
g2 -q" =9
Here
£ 0 0 -
({‘; : .q}..q_I  etc.; g°=Dg"D', ete. (17a)
dx

Solving these one obtains, for arbitrary k”. . ..d2. (a’2 = dl) the following

1 enerators
&
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i _ 9 amy W
Qn = 1 Qi o ]—,-:‘x** y Q;) = ——(:j-;? 3
0 a 0 0 8
Qy = ) - e Q,=0,0,, & =(,+t20)0,,
8 ¥ 0 1
, ) 0 0 5
x 1 1 1 1 _ _
% =3 {(d+7)g3+d(g’_y”}+ * 10, *20,~ 1) i
1 2 1 0 1
(18)
where
4 o) 4, d] 4,
'liz_d IZ’FEd—d 2[’7;;_dk22-3_d 11
1: o 1 2 1 2 2
(18a)
(The operators Qyveve Q, can be converted to a more symmertrical form by

adding to them mﬁltiples of Q, 9,09, but this complicates their commutation
relations).  We note first of all that while Q. Q,: Q, each have their analog
in the classical generators, the same is not true of Qs’ Q, 9,9, The in-
finitesimal operators obtained from the generators (5 PEe Q, all have the
property of being able to convert ene solution U (x!, x?) into ancther solution
U (5% 8% % Ole' 85", 2% % 28 b Thear Io. Widis wliect is 068 ong induced
by a linear transformation of the independent variables. Furthermore none
of them commute identically with the operator W, though they do so on the
space of solutions U,

The operators Qn .Q1 , Qz’ 0
commutators involving the operator Q6 do not close on the algebra Q0 R Q6 .
The algebra containing these six operators is an infinite parameter Lie alge-
bra: So also is the algebra containing 2,9, Q,,Q,, and Q-

502, :-q. mutually commute. However,

Jecause Q.. Q,, 0  commute with the time translation operator Q ,
they cannot convert a solution, constant in time, into one varying in time:
Because they commute with 0, . they cannot convert a solution that isspatial-
ly isotropic into one that is anisotropic. Neither of these statements is true
of O _, however.

&2
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V. SOME REMARKS ON THE GENERATOR Q6

It is evident from the preceding that the generator Q plays a central
role in the Lie algebras and Lie groups admitted by eqs. (3). Acting upon a
solution U, it gives

= -
1 g 1 1 1 1 1 1 2
u E{—‘.1’_(’)/14—ut)+(f7-i-J)a.u?}4-!(—')/:416*ZZCL::‘:H+:46l‘)
1 1- 2
Q. =
2 g 1 1 i 1 3 3 2 2 2
u L_E {(071+ ‘72)[3:: +a_r_2(7u - U, )}+t(2,8ué—ugt+’)fu6)—u9-
(19)
where
1
ul = é‘_ ; Etcq (19a)
8~ 38

In establishing the connection between diffusion in solution and diffusion
between cells. Turing equates d; to ,ul./nz, where (1. is the permeability of
the cell membrane to component 7, and n is the number of cells per radian.
We may suppose that prior to cell differentiation, #» continues to increase
without making much change in the chemical kinetics. This is equivalent to
saying that the d; decrease while the k:‘j are kept constant until the cell differ-
entiation takes place.

In the limit 7 = oo (i.e. d =0, d, ~0), the original equations (3) re-
duce to the f-independent equations which can give rise to temporally-organ-
ized solutions but not spatially-organized solutions.® Thus the cell differ-
entiation must take place long before the system approaches this limit.

Some interesting features may be seen in'the other limitn — 0 (i.e.
dl - d2 — o ). In this case we have

-y 2a 1 0 0 0
Q— {1 + i - i , (20)
28 vy 0 -1 o 0 1 EL

while all the other generators retain the form given by eqs. (18). This limit-
ing form of the Q, operator commutes with all the other generators on the
space of solutions U, thus forming a completely closed Lie algebra on the
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solution space. The acuon of this operator on the - independent solutions
is destructive. However. even at the earliest stages of the growth of the
system, chemical species can never attain infinite diffusibilives. This, of
course, means that the Lie algebra containing Qe. is never really closed, bur,
most importantly, the presence of Q, allows it to generate (-independent
structures, which 1s the condition essential to cell differentiation . Although
the non-zero solutions U are necessartly functions of £, one can see in eqs.
(19), that new ¢-dependent structures should be generated if O-dependent

structures are developed.
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RESUMEN

Se investigan las propiedades de simetria de las ecuaciones diferen-
ciales parciales de segundo orden acopladas, usadas por A.M. Turing para
describir la cinematica de las reacciones quimicas, que pueden llevar al rom-
pimiento de la simetria geométrica en los embriones vivos. Se muestra que
las ecuaciones tienen algebra mucho mas rica en simetria que la que se pue-
de encontrar en las extensiones usuales del trabajo clasico de Lie. Se dis-

cute el significado de algunas de las simetrias,





