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ABSTRACT: The nucle: in the nuclear table are considered as a realization
of »n ensemble of Hamiltonians, and the distribution of spacings
o1 between the ground and first excited state is analyzed. We
show that, once nuclei with a systematic So1 behaviour are
eliminated, Sop» measured in units of its average, follows a
Poisson distribution,

[. INTRODUCTION

Statistical properties of nuclear spectra have always been studied
considering for a given nucleus a stretch of highly excited energy levels! 2,
The properties analyzed can be divided into two broad classes: local and
global properties. The global properties, a typical example of which is the
level density o, vary with the excitation energy E ; on the other hand, the
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local properties, for example the spacing distributions, correspond to the
fluctuations in the spectrum and if necessary are corrected for the energy
variation

Fluctuations have been analyzed using random martrix theory, in
which an ensemble of random Hamiltonians is introduced, as a mathematical
device, to compute among other things the k-th neighbour spacing distributions
p(k;s), thatis, the probability of finding two levels at a distance s with &
levels in between. The predictions of random-matrix theory are well con-
firmed cxperimentzx]ly3. In particular, level sequences characterized by the
same values of the only good quantum numbers (total spin J and parity 77)
show in regions of constant density a nearest-neighbour spacing distribution
p(0;s) which is closely approximated by Wigner's surmise®

P, (0:5) = (11/2D)(s/D) exp [ - (1/4)(s/D)’] | (1)
where s = By ity and D is the mean spacing, related to the local level
density o by D = 7', Furthermore, if level sequences of many values of |

S

and 7 are mixed together”, the nearest neighbour spacings are distributed

according to a Poisson distribution

pp (0;5) = D' exp(-s/D) | \ (2)

which corresponds to a completely random sequence of levels.

As we mentioned above, the ensemble usually plays the role of a
mathematical device, used to compute fluctuations of the spectrum of a given
nucleus.  For example, in order to calculate the nearest-neighbour spacing
distribution, @ single spacing is taken for each spectrum and its distribution
throughout the ensemble is computed?; the assumption is then made that the
statistical properties of the ensemble coincide with those of “almost all”
spectra (ergodic property)® 7. In this paper we shall study a “realization”
of a sample from the ensemble, by considering all the nuclei in the nuclear
table. We shall thus take @ single spacing for cach nucleus and compute its
distribution throughout the nuclear table. In other words, the experimental
comparison will follow step by step what is done i1 the theoretical calcu-
lation and the ergodic property is not needed.

Specifically, we shall discuss the distribution of the energy differ-
ence s between the first excited and the ground state of all nuclei in the
nuclear table, without taking into account their J7 values. This is to be
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Fig. 1.

Diagram of the first-excited state energy S

8 <A <200. Notice the erratic behaviour, except for nuclei in
the deformed region.
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contrasted with the usual applications of statistics in nuclear physics, where
only the highly excited region of the spectrum is analyzed.

In our problem, the equivalent of global properties would be those
which show a systematic variation with the mass number A.  This will be
studied in Section II for the energy distance s . In order to study local
properties, i.e. fluctuations with respect to this mean value, the systematic
behaviour of S,, Must be eliminated; this is done in Section III, where the
probability distribution of s is analyzed.

II. SYSTEMATIC BEHAVIOUR OF THE FIRST EXCITED-STATE
ENERGY

The variation of 501 the first excited-state excitation energy,
throughout the nuclear table was first studied soon after the birth of nuclear-
shell theory.  The values of s for even-even nucleir plotted versus the
neutron number N lie on a rather smooth curve®. This is not true, however,
if all the nuclei are taken into account, as i1s shown in Fig. 1, for nuclei
with mass number A, with 8 < A < 200. Here, s is plotted versus A
and the erratic behaviour from one nucleus to the next i1s apparent, except

for nuclei in the deformed region.

5o (wav)

Frg. 2. Diagram shewing the average of s as a function of A. Both the
0
“intermediate structure” (solid line) as well as the “gross structure”

curve (dotted line) = = 30/A are given,
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On the average, however, So1 clearly decreases with A. This is
shown (solid line) in Fig. 2, where for cach A the average value of e
for ten neighbouring nuclei is given. The peaks due to magic and semi-
magic nuclei show up clearly, as well as the valley corresponding to nuclei
in the deformed region.

We therefore have in Fig. 1 examples of the “fine structure” behaviour
of Sop? whereas in Fig. 2 the average of So1 still shows evidence of an “inter-
mediate structure”.  One could go a step further and obtain the “gross structure”
by eliminating the peaks and valleys appearing in Fig. 2. For this gross
structure we propose a function of the type

=¥ {3)

S
01

and determine a by a least-squares fit to 610 spacings s_, taken directly

01
from the nuclear tables®. The value obtained was @ = 30 MeV and the re-
sulting curve is plotted as a dashed line in Fig. 3

We are now prepared to tackle the problem of the fluctuations of s

01
which is the main object of this paper.

*

One could use the slightly more general form G_/A‘B to represent the gross structure
of o However, if one performs a least-squares fit with this function, ihere are
several sets of values of a and 2 which are equally good and nothing is gained. In

° B. Chen has shown! that the errors for a and 8 are of

fact, using the A.'l-statis;[ic
the order of 50%. One should then be guided by a simple model: consider the
problem of computing the level den sity of a noninteracting Fermi gas contained in

a spherical cavity of radius A A’3 . To first order in the wave number i, the single-
particle level density is proporuonal to KV, V being the volume of the caviry 2 Evalu-
ating the quantity at the Fermi momentum Kpos and taking into account spin and iso-

spin degeneracy factors, one obtains

1,

: = 25 3 Dy 2 -1
S = (31=/8) " (B Zmrn] A 5 4

leading to a value of 8= 1. Here mis the effective nucleon mass., Using a = 30 MeV
and m equal to the free nucleon mass, a value of r. = LOfis obtained. One should
recall thar for even-even nuclei the gross-structure behaviour of Sy Was analyzed

[hC‘OrEtH_"i”\. a long time ago using the collective model ¥, The result was a = 100 MeV

and 7 = 5/6; this, however, does not fit the experimental data.
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III. FLUCTUATIONS OF THE FIRST EXCITED-STATE ENERGY

To analyze the fluctations of - each of these energies 1s measured
in units 0f§61 as given by Eq. (3), thus eliminating the systematic behavior
as a function of A.

We have plotted in Fig. 3 the histogram of Sm/s_n , for all nuclei
corresponding to 8 <A < 200. The corresponding Poisson distribution, which

i

o078

0 80

Fig. 3. Histogram for x = 5, /5, for all nucler with 8 <A <200, compared to

the corresponding Poisson distribution. The histogram contains 505
points.
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would be valid for a completely random sequence of distances, is also shown
in Fig. 3. As is clear from this figure, the histogram does not follow a
Poisson distribution: one notices' the accumulation of values around
Sy~ 045 ands ~ 2. o . The bump around 0.4 301 , 1s due to distances
belonging to deformed nuclel As wasmentioned in the previous section,
and as is shown in Fig. 4, for these nuclei the s, 1€ too close to their mean value,
which in the units used in the histogram is approximately 0.4.
We have thus eliminated distances belonging to deformed nuclei; we
are left with the histogram shown in Fig. 5, which now resemb]es a Poisson

distribution, except for the bump around S5y = 2.5 s A X test ‘ihows
that this bump is stausncally significant: P(x?), the probablhty of X
of the order of 107° One should, therefore, seek for other sets of nuc[e:

that, like those beIongmg to the deformed region, show a systematic be-
havior of So1

At this point we have followed two different citeria: the first, we have
removed all singly and doubly closed-shell nuclei and in the second all even-
even nuclei.  The resulting histograms are shown for 8 < A < 150 in Figs. 6
and 7, respectively. For the case of Fig. 6 a value of P(X*)~ 0.04 is ob-

lnm

Fig. 4. Distribution of So1 for 108 nuclei in the deformed region, 150 <4 < 190,
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Comparison of the Poisson distribution with the resulting histogram of

Fig. 5.
once the nuclei in the deformed region have been excluded;

o1/ So1°
369 nuclei with 8 <A € 150 are taken into account.

pix1

Xiv g iy

Fig. 6. Histogram for the spacing S obtained after the rotational as well as
magic and semi-magic nuclei have been excluded. The corresponding
Poisson distribution is also shown. The mass number A ranges from
A =810 A = 150 and 308 nuclei were taken into account.
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Fig. 7. Histogram for sm/sm after spacings from even-even nuclei as well as
those from nuclei in the deformed region are eliminated; 264 distances
are left. The average ‘5701 is now represented by the form S = 18.7/A,

obtained from the data by least-squares fit.

Fig. 8. Histogram corresponding to the first nearest-neighbour distance Sy /.s i
obtained after the rotational, the magic and serm-magxc as well as the
even-even nuclei have been eliminated. The unit s lusecl is the same

as in Fig. 7. The mass number A varies from A = 8 to 4 = 150 and 232
nuclei are considered.
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tained, while P (x?) rises to 0.08 for the histogram shown in Fig. 7. Finally,
when both magic, semi-magic and even-even nuclei are taken out, the histo-
gram of Fig. 8 1s obrained, which follows a Poisson distribution with a

P(X*) ~ 0.50.

IV. FINAL REMARKS

We have shown that, once nuclei with a sy stematic L behavior are
eliminated, the energy differences S bct:ficen the first excited and ground
states, measured in units of the average So1? follow a Poisson distribution.
This statistical regularity show up only after three different sets of nuclei
are not taken into account: even-even, magic and semi-magic and rotational
nucler.

This is only the first step in the analysis of nuclear spectrum fluct-
ations in the ground state region, using the nuclear table as a realization of
an ensemble of hamiltonians. For instance, one should consider the next

few nearestneighbour distances s, s ... , as well as the next-to-nearest

127 T23

neighbour energy differences S8 ., again without regarding their jﬂr

247
values.

The aim of this analysis will be to gain greater understanding of the
relations among nuclei from the standpoint of random matrix theory. An im-
portant question arises from the fact that we have found a Poisson distri-
bution for the So1 ;this arises from the superposition of independent ensembles S |
each of which possesses internal correlations that lead to quite different
spacing distributions, and we must ask whether a classification of the nuclei
can be found that reveals such structure. For instance, distances between
nuclear levels belonging to the same | and 77 should be analyzed, and the

possible principles of classification should be studied.
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RESUMEN

Se constdera a los nucleos de la tabla nuclear como una realizacion
de un ensemble de Hamiltonianos v se analiza la distribucion del espaciamien-
to s, entre ¢l primer estado excitado v el estado base. Sc¢ demuestra que,
una vez que se han climinado nacleos con un comportamiento sistematico, ¢l
espaciamiento 4y medido en unidades de su promedio. sigue una distribucion

de Poisson.





