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THE BRASHINSKET AND ITS COMPUTATION*
T. A. Brody**
Instituto de Fisica, Universidad Nacional de México

(Recibido: mavo 15, 1973)

ABSTRACT: The principal computational schemes for obtaining the harmonic
oscillator transformation bracket (or brashinsket) are briefly
described and compared as regards speed. The technique of
building a table of already calculared values for reuse is then
discussed; when used with a recursive computational scheme,
this technique is better by a factor of 10 or more in an extensive

calculation.

The nuclear shell model is useful only to the extent that explicit
calculations can be carried out. One of the most convenient forms of doing
this is to expand the model wave functions in terms of harmonic-oscillator
wave functions, because these have the remarkable property that a two-parti-
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cle funcdon is a finite sum over products of centre-of-mass and relative-
coordinate fanciions which are again harmonic-oscillator functions. (The
gioup theory bliond this property has been extensively discussed by Moshinsky?!).
Since the iosidual interactions between the particles may always (by means
of fractional-parentage coefficients or other methods) be expressed in tems
of two-particle interactions, this property now yields a great simplification
in the calculation of a matrix element: after the transformation to centre-of-
mass and relative coordinates, one can integrate immediately over the first;
this avoids having to expand the potential in terms of Legendre polynomial s
and then compute the Slater integrals of the expansion coefficients - which
may be all but impossible in nuclear physics.

The advantages of postulating a harmonic-oscillator well as common
potential in the shell model were first pointed out by Talmi?; his ideas for
simplifying the evaluation of the Slater coefficients as found in the standard
methods of atomic spectroscopy? were later supplemented by Thieberger's
tables*. But the real advantages of Talmi's idea began to show up once it
appeared that the Slater coefficients could be bypassed altogether, - thar in
fact the harmonic oscillator permitted connecting the two-particle matrix
element directly to the integrals in terms of which Talmi had expressed the
Slater coefficients and which now bear his name. This step was taken by
Moshinsky®. He found explicit recursion relations for what he called harmonic-
oscillator transformation brackets by means of which it was possible to
tabulate them numerically® 7. e technique was completed by the B coef-
ficient® for expanding the reduced matrix element of the two- -body force in
terms of Talmi integrals. In other words, we can write the matrix element
(in LS coupling) of any residual interaction as a finite sum

<ndmd Na|VIn/tin 1IN > = S Gy, - (1)

Here Ip ts the Talmi integral,

lp = f v(r) e-r2r2p+3dr (2)
r(p-!rs 9

The neat contraction “brashinsket” for Moshinsky's transformation bracket was
suggested by Dr. J.M. Lozano, and will be used here,
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in which v (r) is the radial dependence of the potential V. The coefficients
Cy(p) depend on the natre of the potential, but not on v(r), and are in their
turn finite sums over products of the brashinskets and the B coefficients, of
a form that can be computed quite systematically. Thus for a central force
we have

Cy=C (nlllnziz,n / n212,)\ ?)

_ by ] [ o
= o)‘?\: rmﬁNl n ln / )\|n1NL)\> B(nl,n'l,p) <n lNL?\]nlll n, 12>\>

(3)
and for other types of force there are similar but somewhat more complicated
expressions. (A small table of the central-force coefficients has been com-
puated explicitly.”?) These topics are pursued and the details of the notation
explained in other publications'7"®; in this paper I propose to discuss the
techniques of numerical computation of the brashinskets, without which the
theory remains sterile.

The concept of the brashinsket has had a wide range of applications
both inside and outside nuclear physics, and it is natral that it should have
received various formulations, some of them based on group-theoretical con-
siderations. A brief sketch of the more important formulations will provide
the background needed for the discussion of the computational techniques.

That the evaluation of the Slater coefficients could be avoided was
implicit in Talmi’s work?, and thus it was natural that Moshinsky and his
group in Mexico were not the only ones to hit on the idea of obtaining ex-
plicitly the coefficients of the transformation from the centre of the potential
well to the two-particle centre-of-mass and relative coordinates. Within a
vear of the appearance of Moshinsky’s first paper®, three other grou ps had
found almost identical results'® ' . None of them had obtained anything
analogous to Moshinsky’'s quite general recursion relations; they derived
spacial values and certain fairly limited recursion relations. However, Balashov
and Eltekov!' introduced a useful generalisation: they antisymmetrised the
total wave function of the two particles, so that their transformation coef-
ficients depend on the total spin and isospin as well. The same idea is
mentioned by Arima and Terasawa'?, though it is not fully worked out. A
clear discussion of the use of the Balashov-Eltekov coefficients and their
relation to the brashinskets will be found in ref. 13, vol. II, ch. 6. None of
these authors studied the remaining problem of expressing the relative-coor-
dinate matrix element in terms of Talmi integrals, which gave rise to the B
coefficient.
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The brashinskets make possible the transformation to relative coordi-
nates for particles of equal mass only; yet in many cases it is necessary to
do this for particles of unequal massés.  The generalisation to unequal
masses was introduced by Smirnov 4. several versions of a closed expression
15, 16, 17

for the unequal-mass brashinsket have been given It may also be

expressed in terms of the equal-mass ones ®, which vields a convenient compu-
tational procedure. The final step was taken by Kramer' who both found a
simple closed formula for the unequal-mass brashinsket and extended the
concept rather neatly to more than two particles.

Such developments became possible once the group-theoretical basis
of the brashinsker was better understood.  For two particles, the harmonic-
oscillator Hamiltonian has the symmetry group U(6) ; if we consider that the
particle index (with values 1, 2) defines a two-dimensional space, then this
group has a §U(2) subgroup which acts on the particle-index space®?! .
The transtormation from centre-of-well to centre-of-mass and relative coordi-
nates then corresponds to a rotation in this group; the brashinskets, as the
transformation cocfficients of this rotation, are thus seen to constitute an in

general reducible representation of SU(2). characterised by © and A, where

=N

( :lrt“r/l+2n,+lj 2 1+ INHL (

and A is, of course, the total angular momentum: 11]111121'2 and nINI. are the

(composite) row and column indices. For two particles only rotations ina
plane are meaningful; if we write the Fuler angles as (0, S, 0), then for
7~ 7/4 we have the equal-mass brashinskerts, and in general the mass ratio

s

of the two particles is tan?/3.  Apart from giving rise to the developments

already mentioned, this approach allows one to deduce the symmetry relations
of the brashinskets in a unified form? 22 as well as to find a series of sum
rules often useful cither for checking purposes or to simplify cumbersome
algebraic expressions?,

In what follows I will first of all briefly discuss several computing
schemes o be found in the literature, of which the first two employ recursion
relavons, and then describe a technique [ have adapted to the computation
of the brashinskets which gives the two recursive methods a considerable
advantage over the closed-formula type in extensive computations.

Since this paper is to appear in a special number of the Revista Me-
xicana de Fisica in honour of Prof. Marcos Moshin sky, a historical note
may not be out of place: It was Marcos’ merit to have recognised that the
concept of the brashinsket was a most useful one which other research

workers would dm-ciop“ if we did not, and it was his infectious enthusiasm
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which enlisted the help of many others in the theoretical group in Mexico for
an enterprise which began with the brashinskets and in a few years ramified
into the most diverse applications of group theory. Fortunately Mexico’s
first electronic computer, an IBM 650, had recently been installed at the
University, and was still not saturated with work. After a hectic period of
programming and formula checking, we could therefore take up over 200 hours
of machine time to tabulate the brashinskets’. Even so, we had to work
nights for several weeks, and during that time I still remember with great
pleasure how Marcos would appear at half-past one in the moming bearing
sandwiches and encouragement, while we were coaxing a recalcitrant com-
puter with a few kicks in strategic places... The machine served us so
well that by the time a second edition of the tables became necessary
(published by Gordon and Breach in 1967), no errors had been detected -
only a card dropped out before printing. Not many later machines could
show such a record of reliabilicy.

I1

: s : 5

The method originally developed by Moshinskv” to compute the
brashinskets is based on a recursion relaton in the two quantum numbers n,
and »_ . namely

1,
)
<nINLA 0+ Un d A> = [(n + Di(n +1 +34)] "

- L

x 5 <niNLANL i rl2 ‘ a'l'N'L'Au><n't'N'L'A n, !]nq/j A

(5)
and the analogous relation in 7. This recursion is much simpler to apply
than appears at first sight, because the indices of the sum in (5) are re-
stricted by the constancy of the energy, €q.(4), and the selection rules for
angular momenta, so that at most six different terms survive; for these the
matrix element of - rf in (5) can be evaluated quite easily by means of the
well known recursion for the Laguerre polynomials?

By means of (5) and 1ts ", analogue, one reduces the computation of
any brashinsket to that for the case = n =03 for this Moshinsky was able

quite straightforwardly to derive a closed expression,
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<mINLA|OL 0L A> = C2 AWM Lx) ‘ (6)
172 . 172 |
.

where C is a normalisation factor and A is a quantity the evaluation of which
involves a single sum over a finite number of terms.

For the tabulation of the brashinskets, the use of (5) and (6) was
quite convenient. First of all, an extensive table of the brashinskets with
" =Wy = 0 was computed and checked by means of the symmetry and orthogo-
nality relations; then the tables for n and n ) greater than 0 were successive-
ly computed. For n tmn,> 1 more than one path leads to the desired value;
this fact served as a check and was also exploited in order to reduce the
accumulated rounding errors by averaging cver the different resules.

The situation is, however, quite different when one does a machine
computation of matrix elements, where the brashinskets are usually needed
in an order that is both difficult to foresee and impossible to arrange so that
the earlier values can be used later on in the recursion relations. As a re-
sult, machine time can become very large; for instance, 6.1x 10* multiplication
times would be neceded on the average for ”, and %= S. Even on a fast
machine, a more or less complex shell-model computation needing, perhaps,
3000 brashinskets could thus take nearly an hour: not an economic proposition.

A first attempt to circumvent this difficulty is due to Baranger and
Davies?®, who developed recursion relations in /. For / = 0 they obtain (I
have adapted their notation somewhat)

< pONI) Inlfl-nzi?;\ = (,'aEkR(rzlilnzianak) P 1 Lak) 8)’ , (7)

il

C is again a normalisation factor, P is a complicated but straightforward
product of factorials, while R contains a double summation. For [/ > 0 they
develop a recursion relaton similar to an earlier one'? in /. Itis essential-

v of the form (removing some trivial errors in their expression (4.1))
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<pl + INLA|n tn il A>=e3 (2N +1) x
D K .
3 L » A

x [@(\Y<aINLN |ndm= 1L+ 1N >+ 6(N) <nINLN |n dnd = IN'> +

¢ (()\')<nlNI,/\'|nI— 1/ +1na N > +d(?\_')<nINL?\'|nl!1— I LA ]

(8)

where the coefficients a, b, ¢, d each involve a 6f coefficient. Eq. (8) is very
convenient for / = 0, since then only one term appears in the sum, A' = A;
but for higher values of /, they prefer to derive a closed expression rather
like (7), though with 2 much more complicated function Q instead of P the
summation involved is ninefold.

When one works with short-range forces, only small / values enter;
but for other types of forces the computation time rises again quite rapidly:
for / = 5, Baranger and Davies give data that correspond to approximately
4.25%x 10* multiplication times. I have found average times some 16% higher,
since 1 allowed /1 and 12 to range over larger values than they did. Both
the methods described so far can thus consume excessive computer time.

An entirely different computational scheme, due to Brink?, therefore
becomes of interest. He noted that most of the complexity of computing the
brashinskets is due to the fact that the two kets In !ml > and |n l'm > must
be coupled to give a total angular momentum A and _~,1m11‘1rl) on thc other side

for <nlm| and <NLM | . Making this coupling explicit by means of Clebsch-

Gordan cocefficients, we have

<nINLA| ndnd A><llmm, | x>

Y <nlm,NLM nlllml, 71212701 ><ULmM | A > . (9)
mM

To compute the “uncoupled™ brashinsket on the right-hand side of (9), Brink
uses the complex form of cylindrical coordinates (x + iy, x =7y and z): if
M. f = *.=0, are the creation operators in these coordinates, then a one-parti-

cle ket mav be written
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1,
ipqr > = (plglsl )" 1By | 0>
(i L

and the transformation bracket to spherical coordinates is defined by

| nim > ::‘_'<pqr!n!m >|pqr>,p:2n+/-m—2r. g=m*tr.,

r
(10)
The uncoupled brashinsket in (9) then becomes
<nlm,NI.M |u]!1m‘, ?1212”;'2 > =
= X <pgr|nlm ><POR|NLM>< pgr, POR | b, b,
rRr r S
12
[o. i
x <p1qlrl!nlflml><p2(/2r2;n‘)12m2> ; (11)

But since 7, 7, and 7)_ commute with each other, the cylindrical brashinsket
: . j
in (11) factorises into three one-dimensional brashinskets which are all of

the same type:

<pqr.POR|pg,r . pyayr,> = <pPlpp,>< g0 q.q,>< R |11 >

(12)

These one-dimensional brashinskets are very easy to compute; they involve
only one sum, as do the wansformation brackets of (10). In (9) also only one
summation is nceded, since m tm, =M+ m. Putting together eqs. (9) to
(12), one obrains a closed expression for the brashinsket. (I have sim plified
Brink’s notation somewhat.)

This method is very elegant. Computationally 1t offers a definite
advantage when, as sometimes happens, one wants the uncoupled brashinsket

of (9 rather than the ordinary coupled one.*

This was rediscovered by Richardson, Shapiro and Malik®, whose coefficients «
and t; are simply the appropriate sums over uncoupled brashinskets and B coefficients
for central and tensor farces: they seem to have been unaware of previous work and
thus become involved in grear algebraic complexity by deriving the coefficients
directly in spherical coordinates,
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A quite similar method was used by Smirnov ™

in deriving uncoupled
unequal-mass brashinskets; however, he worked in Cartesian coordinates,
which has the computatonal disadvadtage that the transformation brackets
from Cartesian to spherical coordinates are real only when n_ is even.

For the coupled brashinsket, additdonal computing time is required in
Brink’s method to find the Clebsch-Gordan coefficients. Furthermore, one
must choose m, and m, such that the Clebsch-Gordan coefficient on the left
of (9) is not zero. This should always be possible. However, the computing
time depends on the choice ofm1 and m _, and it may also happen that the
accuracy of the result suffers from an unsuitable choice of these numbers. It
would be agreeable if a fast algorithm could be found for optimising this
choice.

Experiments carried out with Brink’s method have shown that com-
puting times for it fall roughly between those of the two recursive methods
described above. [ selected for these experiments a test set of brashinskets
by choosing combinations ofnl‘ 11, ", and 12 such that p = 0, 2,6, 12 and
computed all possible brashinskets for these combinations. The average
times for computing a brashinsket for the three computational schemes were
as follows (as approximate multiples of the machine’s floating-point multi-
plication time, which will be called 7 in what follows; this enables compari-
sons to be made between different computers) :

0 Moshinsky Baranger-Davies Brink
0 47 112 419
2 9760 9010 11700
6 22900 20300 29600
1:2 98200 115400 83300

This test is, in a sense, unfair to all three methods, because it does
not take Into account any of their peculiar advantages: but it shows that none
of them 1s satisfactory as a single, general-purpose algorithm .

A slight improvement on Brink’s method is to tabulate at the start
the transformation brackets of (10) and the one-dimensional brashinskets of
(12), so that the computation is reduced :0 carrying out the sum in (11) and
then recoupling with two Clebsch-Gordan coefficients, as before®. The tables
nceded for this purpose remain reasonably small and exceed 4k words in size

only when 0> 19 (on the supposition that one word is being used for the argu-
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ment values, another for the function value). A not very complete expert-
ment with this method suggests that the time saving is of the order of 25%
once the tables have been computed. Better table-lookup procedures might
improve this a good deal.

An entirely different compurational scheme has been proposed by
Talman and Lande™. They observe that, using as basis the relative-coordi-
nate wave functions “n/.\’i./\.:’ . the matrix that diagonalises the operators
hl. b fl;' and l'f — the single-particle Hamiltonian and angular-momenwm oper-
ators in the Urikgl.n.ll coordinates — is unitary and its elements are, apart from
phase factors, the brashinskets. By suitable choice of the four coefficients,

one can build an operator
H=ah tah +b1>+p 12
i 22 1 3'g

which has no degeneracies; Talman and Lande obtain explicitly its matrix
clements and then simply diagonalise numerically the resulting matrix so as
to get its cigenvectors, taking advantage of the fact that the cigenvalues are
already known. This method does, indeed; vield a considerable improvement
in speed so long as o remains relatively small. But for © > 20 the matrix
to be diagonalised may easily exceed 400 x 400. and quite apart from the
questions of machine time and memory size, the accumulation of rounding
errors tends to affect the orthogonality of the eigenvectors. To get satis-
factory results one must use the rather slower Jacobi diagonalisation method™
or calculate certain critical eigenvectors by inverse iteration®. Because
of these problems, I have not made any extensive experiments concerning
the computing times for this method.

For completeness’ sake I may mention that there exist at least two
further approaches which have yielded very similar closed formulae for the
uncqual-mass brashinsket.  One is due to Bakri'®, who points out that the

wave functions nl! rz,,lz."\ > transform into centre-of-mass and relative coordi-

i
nates exactly as the much simpler functions

2n +l 2m_+1 ” n
Plror)=Amd YAt Yr. P Ve 2 2[y (r Yy, (r.)]
J 11 Z 3 3 II 1 12 2773

1 2 %)

o

do; he then obtains by algebraic transformations the tran sformation brackers
v P . g " e 4
for these functions. The other approach (Kumar! and, independently, Buck ')
I+t '

2

: ; . c e 2%, o S i
isthe use of generating functions for the polynomials 7 L. (r°): simple re
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lations between these generating functions may be derived, which lead to
closed expressions for the brashinskets. These do not, however, seem to

offer any special advantages over the formulae already discussed.

111

In recent years the size of computer memories available to research
in physics has greatly increased, and beyond the growth in physical capacity
the development of effective swapping monitors has put almost unlimited
virtual memory space at the disposal of the programmer. This alters the
tradeoff balance between execution time and program size, and [ have ac-
cordingly reprogrammed the computation of the brashinsket as a memo-function®
in other words, a procedure which keeps a table of function values computed
carlier, updates it dynamically, and does a table look-up rather than recom-
pute the function whenever a repetition of earlier argument values is called
for.

In order to identify correctly which function value is needed (or to
decide that it 1s not yet in the table), both arguments and corresponding
values must be stored. Of the 9 arguments the brashinsket has, one is re-
dundant, because of relation (4). The remaining 8 can, in most machines,
be packed into one computer word. If one of the angular momenta is elimi-
nated, a reasonable choice would be ., which leaves 4 radial quantum numbers
and 4 angular momenta. [ have found it convenient to require the angular
momenta to be less than a limit K, and the radial numbers to be less than

another limit M ; [ then define a packing function
[ = MIM(K(K(K(K(Mn + N) + 12) + 11) 85+ 1) +n!) +n2 : (13)

For a 36-bit machine, M = 18 and K = 28 are suitable limits if the sign bit
can be used; this may mean that the packing routine must be coded in machine
language. but since just one added bit increases the limits by about 20%
this is well worthwhile. On the Burroughs 6500 (which is a 48-bit machine
but usesonly 39 bits to represent integers) | have used M = 23 and K = 37,
and so far the Mexican group has not needed a brashinsket beyond these limits.
The size of the table may be adjusted as needed in a full Algol system
4

which has dynamic own array s? unfortunately this feature is often not

implemented. Where it exists, the monitor will usually need to swap the
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program out onto discs and remap on swapping back; hence one should in-
crease the table size in fairly block s — Y%k words, say — so as to reduce the
overhead.

Where fixed-size tables must be used®, it may be useful as an indi-
cation that the Mexican group has usually found a table of 2k arguments
(packed according to (13)) and 2% function values to be sufficient for shell-
model calculations up to about A = 100.

A considerable reduction in the necessary table size is achieved by
making usc of the known symmetries of the brashinsket (see e. g tef. 5).
They permit exchanging the arguments until a standard order is achieved,
for instance that defined by the inequalities

twn, <ntN
n , < N

Since a linear table search is rather time-consuming, I decided to use
a hash-coded table look-up® %, The hash code (i.e¢. the index of the first
place in the table that is examined) is obtained as the modulus of the packing
function with respect to the largest prime number smaller than the table size:
if the value at this point ts not the required one, successive table entries
are examined until either the value is found or an empty place is detected,
which indicates that the arguments looked for are not in the table. The table
Is used in a circular fashion.

This scheme makes it necessary to start with a fairly large table
size, since the efficient use of a very much expanded rable would mean re-
mapping it — a time-wasting opcration. After some experimentation, | have
used a rable size of 2048, hash-coded modulo 2039, for some years now.

Looking at table entries beyond the firse one is necessary o resolve
the collisions that may occur between different argument sets in this method
(known as open addressing). If the table is less than two-thirds full, a hash-

coding procedure that effectively randomises the search argument, will require

-
It is worth noting that on the PDP=10 dynamic own array s have heen implemented

. & _'15
not only in Algol, but also in Fortran,
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on the average only one more entry to be looked at™®.

Better search methods are now known (see references given in ref.
37); the able-search time is however sufficiently small compared to the compu- -
tation time that [ have not felt it necessary to improve in the search technique.

Of the three computational schemes described in section II, the two
recursive methods are clearly better than Brink’s for use with the memo-function
technique, since they permit saving time in the calculation of a new brashinsket
by looking up in the table those brashinsket that are needed in the recursion.
The modification by Chasman and Wahlborn® of Brink’s method can also be
made to work along the lines described; two memo-functions would be involved,
however, and since the sums in eqs. (9) and (11) would still have to be carried
out, the time saving is not as considerable as one might hope. [ have done
some preliminary experiments which confirm these ideas.

Of the two recursive methods, Moshinsky’s is now marginally better
than that of Baranger and Davies. This is because with the memo-function
technique what dominates the total time for calculating a representative set
of brashinskets is no longer the recursion depth but rather the time for a
single level of recursion; and in Moshinsky’s procedure fewer 6j coefficients
need be computed. (Baranger and Davies's one-step recursion from any /
value to / = 0 turns out to be slower than the use of eq.(7); I have therefore
compared this with the speed yielded by eq. (4).)

It is not possible to compare directly the timing for a memo-function
with any of the previous data, because it depends on what calculations have
been called for earlier. Instead [ used the entire test set mentioned above
and eliminated all the argument sets that were redundant under a symmetry
of the brashinskets; after the first occurrence these would merely be looked
up. The remainder .were then placed in a random order. The set of 2112
brashinsket calculations which resulted represents a rather worse case than
would usually occur during, say, a shell-model calculation. The values
were calculated, once with the memo-function and once with the table look-
up inhibited. The results were as follows:

Average Time for No Table Look-up With Table Look-up
firse 200 ---- 67600
last 200 ---- 816

all 2112 69900 6440
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The average times are in units of 7, the floating-point multiplication
time, and are averages for the computation of one brashinsket. The timing
with table look-up is higher than i$ suggested by the data in section II,
because in the test set used here high values of o predominate.

The improvement in speed by a factor of better than 10 is striking
and amply justifies the use of the memo-function technique. Provided the
value of A has already occurred in earlier calculations, the use of recursion
relations allows great savings in time even for new argument sets. It is
thus the combination of recursive computation with the meo-function method
which brings about the improvement. It is worth not that here Algol shows
up to great advantage compared to Fortran; it incorporates a machine-
language coded mechanism for carrying out the recursion and in some machines
uses special hardware operations not available to the Fortran programmer.

The gain in speed due to this method should not blind one to the
need for careful programming. Much time may be lost, for instance, in the
¢valuation of the factorials; I have found it very convenient for the compu-
tation of the brashinskets (and other coefficients derived from group theory)
to set up at the start a table of square roots of factorials (and sometimes of
double factorials as well), divided by a suitable constant to the power of
the argument — thus saving much time in the evaluation of square roots;
where a ratio of products of factorials is needed, the powers of the constant
tend to cancel, and the squaring is carried out only once. The table of fac-
torials should in most machines be calculated in double precision, else the
higher factorials show excessive rounding errors.

The program that uses the brashinskets also requires care, and some
thought should be given to reducing the number of brashinskets needed, since
their computation — even with the technique just described — can still take
up to 30% of the total time. Among other useful ways of cutting time, the
use of the known symmetries® and sum rules® has the added advantage of

improving numerical accuracy,
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RESUMEN

Se describen brevemente los principales procedimientos computacio-

nales para obtener los paréntesis de transformacion del oscilador armonico

(o brashinsket) v se comparan en cuanto a su velocidad de ejecucion. luego

sc discute la técnica de construir una tabla de los valores ya obtenidos para

volver a usarlos; cuando se emplea esta técnica combinada con un método re-

cursivo de computacion, sc¢ obuene, en un calculo extenso, una reduccion en

tiempo por un factor de 10 o mas.





