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ABSTRACT: '¡t!edefine an exacdy soluble shell model by prescribing as

lIamiltonian a polynomial in (he genera(ors of a l.ie Algebra,

and by choosing the algebra to b~ sufficiently simple that dia-
gonalizations carried out by computer can be interpreted as

(he solutlon for a. large system of Fermions. Up to now models

based on SU(2) I SU(2) I ••• , and R(5) have beco srudied most
eueo<;ive1y. The maio interesr of rhese srudies is the excep-

tionally pure foem inowhich such s}'stems manifest collective
degrees of freedom, interpretable in limiting cases as vibrarions

and (otations. Consequentl)', the aim of much work on these
modeIs is the comparison of various widely employed app(oxi.

mate rheories of collective motion wirh the exact solutions. In

addifion te {he abo\'e. our major interest has been rhe de\'elop-
menr of a distincl scheme which has its genesis both, in the

equarions of mor ion methods of modero many body theory, and

Based on a lectu(e prepared for the ;oinr meeting of CON ACYT and AAAS in
Mexico Ci'r, June 20-Julr 4 (1973).
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111 lhe ('nets of the "curren! algcbra" approach ro elementary
particlcs. In thi.<; mcrhod hoth kincmarical and dynamica~

commUlators and othef al¡.;e-braic re1arions are curned ¡nlO sum

rules for ob~t.'rvabl('s. rhe whole consri{uring a c10sed ser of

inhomo~cncous non-linear l'quations defining rhe prop enie s
al a col1eccivc subsct of states al [he syst<'ITI studicd. Physical

si¡.;nificauce, ac('uracy, and r('lation to orher methods are il1us-
tra[cd

l. BACKGROlJ~[)

JUSI over a d{'cacle ago, A. Kerman ami rhe wencr introduced a oc\\'
method in rh{, theoer of collectiv<.' motino (O which we auached [he unprepos-
sessing name, Gencralizea lIarcree-Fock Approximadon. GlIF;\ 1, which was
latee amendcd lO rhe equally unauracri\'(' appellation. Self-Consistent Core-
Panicle Coupling \ledlOd2. Since da' work [O be described in dctail in the
prescnt paper is imcgral \\'idl this cariier .lpproach, and in particular. sinee
both are airncd at a solution, ultimatc1y. of the same class of probl~ms. let
us begin by stressing this unit)".

\l'e work with an undcrlying lIamihonian of the fmm

11 " t.:..1j3aaj3a{3 a (t
(1)

where aa(a:) are d('structioll (creation) operators for shell mudel orbitals and
11 may in principie be the complctc many body lIamiltonian (in which event t
is che kinecic eflergy and V thc observcd [vio ..bndy force), or elsc. and more
common1y in present day ,lpplicatiOlls. JI is a shell-model lIamiltonian as
this t('rm is understood in ('ither alOmic or nuclear physics.

In Fig. 1, we indicat<' ,"icht'matically a typical physical situauon
which \\IC clllicavor to study. Tht, low-Iying states of four neighboring nuelci.
[\\'0 ('\'cn ano t\\'o odd are de,"lOign¡.ltt'dby the symhols 1, J, K, and L respective-
Ir. and A is the number of particles. In addition lO the cnergics of thesc
stiltes. we ha\'e experimenr,l1 informa(ion about the matrix elernents of varlOUS
kinds of 0pCl<llOrS COllllclling lh('se "(a((:s. Thesc would ¡llelude, for cx-
arnple, "n.,rtical" or 1l1lclc\Hl lIlJlIlb{'r-t'OllSl'IVin~ ll;tIlSilion il.mplilu{i<:s uf rhc
form



<K'IOIK>=:::o <K'lata IK>.. ~ - aj3 a j3 Ia.j3
(2)
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which comprlsc e1cclfomagnctic and wcak decars. ;-":cighboring Iluclei are

conflceted by dircet singlc.particle pickup ano stripping [e<teliaos in which
such quantirics as

'j (aK)

(4 )

are measllfcd. fespccriveiy. In a t\vo.particle direct pickup rcaction one
mcasures such quantitics as

:::1'j3</la aj3IK>.a/3 a a (5)

K'-....... J

1:--:-;;: ~K

A-2 (even) A-) (odd) A

[

A+ I

Fig. l. Schematic represenrarion of rransirion matrix elements within a nucleus
or b("twecn neighboring nuclei.

OUt basic approach is to ask if we can develop a direct calculus for
observable rnatrix elernen!s of ,he 'ypc exernplified by Eqs. (2) -(5) and if in
rhe formulation of such a scheme, sorne conc('pt of collectivc malian will
play <In essentiallolc. Toward this end we employ a completely quan(um
mechanical and abstraet definir ion of eolleetivc motion which we can illus-
trate for tbe fixed nucleus A of Fig. l. Let I K~l >. __ 1 Kp > be a chosen set

of s[ates and let ºl-' -Qv be a set of operators of (he type (2)(for cxample)
and v «p- Then wc assume that sum rules involving matrix e lements of
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produces oí [he operators Q taken between st<Jtcs oí the ser K> are sensibly
exhausted within [he same ser, thus

<KIQpQ"IK'> = L <KIQpIK"><K"IQ"IK'>
K"

(6)

Thar ¡s, we have closure within a subspace of [he many-body spacc. In [he
developmcnt oí [he theories [O be dcscribed, oc alluded [O belowJ we have
shown thar in suitable limiting cases chis definition implies [he classical
concept oí collective motion as the coherent modoo oí many parrie le s de-
scribable by a few dcgrees oí freedom (translation, rotadon, vibradon).

For quite a long time OUT view, as developed bctween 1962 and 19671,
was thar [he basic calculus should be foc the quantities Uf and uj of Eqs.
(3) and (4) which in nuclear physics are called (single particle) coefficienls
of fractional parcntage (CFP). (For cxample the quantity u. (al) measures
the "parentage" (;::;overlap) of the odd-nucleus state 11> io the antisyrnmetrical
direct product state a~ll >. Our reasoos for emphasizing mese quantities
was two-fold. First, al! other quantities are, in principie, expressible in
terms of these by mcans of sum rules. For example, we ha ve

L {i.(j3K) "J' (aK')
. I
I

(7 )

and by an cxtcnsion of the definition of collective motioo, it may be supposed
that for a suitable choice of indices a,{3 the number of states 1 J > that
contribute meaningfully to (7) is-also sharply limited. af course the cheoreti.
cal dcvclopment that ensucs, can apply only if the experimental evidence
from observcd transitions is cansonant with the assumptions rnade, but this
is widely crue.

A sccond rcason for prefcrring these quantities is that in avoiding
the explicit construction of antisymmetrized wave functions, we must never-
thelcss ,,"("fify, ¡nsofar as it is possible, chat the amplitudes (2) -(5) that we
compute by approximation schcmes are not in contradiction with [he Pauli
principIe. Wc have, for instance, che sum rule

(8)
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whieh must be imposed on any solutlon or sati:;fied by ir.
We cannot give any details of [he seheme of calculation for [he CFP

whieh emerged from these eonsiderations, but,it is importan[ to summarize
as elemen[s which are both dynamical and kinematical:

(i) From rhe equation of morion

(9)

using sum rules, we obtain non-linear equations for the CFP. These can be
shown ro be eigcnvalue equations for the cnergies of the sta[es of an odd
nueleus, provided rhe energies of the assoeiated even nucleus are known.
The laner, however, can also be expressed by means of equations which
give a second dynamical aspect, namely [he conditions

•..

(la)

By applying sum rules ro the right hand side of [hese equations, the diagonal
elements provide a dejinition needed in the evaluation of (9), whereas the
off-diagonal elements, where they are not automa[ically satisfied because of
angular mornenturn conservation or sorne such symmetry property, provide
additiona/ non-linear dynamical equations. Ir can ...be shown thar by satisfying
(9) aod (la) ooe is diagooaliziog the Hamil'ooiao withio the subspace of
stares considered.

(iii) The kioema,ical constraiots provided by Eqs. (8) guarantee ,ha,
we ha ve a theory of (approximatc) ferrnions.

(iv) Additional useful relations follow from expressing the relevanr
cons[anrs of the motion as sum rules.

Considerable efforr has beeo devorcd to the development of [he se heme
outlined above. Ir was shown eady on, thar ir contained as limidng cases
many widely used approximations such as Hartree-Fock, BCS, Random Phase
Approximation, [he Cranking Model for Rotations and the various semi-phe-
nomenological core-parricle coupling schemes applied [O [he analysis of the
spectra of odd nuclei. Even this part of the program is not really complete,
though ir has not been pursued recently.

We may remark parenthetically, that in [he special case tha[ the
lIamil[onian 11 is a polynomial in the generators of a Lie AIgebra, then [he
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scheme fOf calcularing a set of CFP connecdng irreducible
So far, ho\\'("',:('r, \Ve han' llcn:r fol1owcd through 011 (his

GIIFA proyiJcs a
re pre se ora t ions .

observation.

Finally w(' ser ours{'lv('s [he [as1..: of applyin~ rhe scheme numcrically
[Q real nuclci. This pro~ram has had limitcd success3 out has not beco

pursucd [('cendy. \\'(:' '¡~r('. ho\\"('\'('r. on eh<.' \'crge of picking ir up a,gain in

consequcncc of rhe d{'n:lopIlleflr of IH:W in .••ighrs and nel,\' optimismo based
on rhe experienc(: gaincd in rhe inlCf\'cning pefind with rhe ideas rhar form

che main burden of dlis"preseJl(acioll.

2. TIIE ALGEBRAIC ~lETIIOlJ FUR E\'E:-: MieLEI

\\'e W('fC k.J ro seck a l1lodified approach. by our con\'!("cion rhar
[('choiea1 difficuhies CllcOUIl(("[cd in rhe (;111"1\. s(('rnmed from rhe need to
dcal simultaneously wilh rhe propt'nics of c\'cn and of oJd nuclci. and thar
we would do bencr ro Jeal fir ...•t with the eH:n prohlem. This srrong dcsire
stimulated rh(: realiz;lrion {har {he need (O s;Irisfy rhe Pauli principk is. a{
leas( superficialIy. no impediment (() slIch ;l pro~ram. Th(, previous remark
will be obvious to group theori.'oHs. Thus as long as we deal only wirh pairs
of Fermion opc:ratllrs al a/3 • or aa(JjJ' (J: (J~ or huth. then (he general
Itamiltonian (1) can be \\'riuen. in more [han one way. a.'i a polynomial in a
sui[able Lie AIgebra. Tht.'n [he specificatioll of th{' Casimir invarian(s of
rhe algebra comple[e1y specifies the tepre.'H:IH;l(il:m, including of course its
Fermion character. Unfortunately, rhe transformariotl of chis realizacion into
a practical scheme of calculacion for [{'al nuck-i, where che Lie AIgebras
ar(' formidable, was nO( immedi;Irely e ••..iJl.llt. Thus, although we have ap-
plied rhe GHFA. albeit in a mos( imperfecr form, co rhe properties of many
isoropes of ~1l,3 (he new merhod has bect! applied (.'illccessfulIy) mainly to
coy models easily s(udied (.xactly by computer. For these {.xactly soluble
modcls we have ob(aineJ impressiv(' results. In (he long run, we believe
(hat we shall be able tu apply our fTIethods ro "real nucIei".

Lec us now summarize rhe e1cmeJlts of our se heme jusr as we did for
(he GIIFA. This will provid(' Illl{ (111)' a useful cumparison with the former,
but also summarize our experil'nce (O date \Vith a growing Se( of exactly
soluble models. The problcm is ro find a set uf algebraic equations de.
((:rmining matrix elements of operacor pairs, among the chosen collective
sta(es of neighboring even Jluclei. For th('Jl we can compute 4111 transition
matrix elements among (he states in qut."s(inn. anJ a fortiori. from rhe manner
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In which the scheme will be developed, also i:he energies.
To realize this aim let Xp be the aboye ser of fermion pair operarors,

which either conserve the number of fermions or change rhe number by two.
IJ can be considered a polynomial in (he Xp' in general, in man)' ways. \l'e
ass.~me that rhis choice has been made. (For simple models wirh separable
interactions, such as the conventional pairing plus quadrupole-quadrupole
interaction model, ir is the obvious one ). \Ve rhen wish ro diagonalize the
Hamiltonian, wirhin rhe subspace of collective stares, and find its eigen-
values and "cigenvectors". But we do nor follow the conventional road of
sening up a basis of antisymmerric srares, and rhen diagonalizing the
Hamiltonian within this basis.

Our basic rool is the suro rule (6) applied to the generators Xp

rhemselves. Out these sum rules canno{ be (rue in a realisric model for al1
choices of generarors X , since if {hey were, {he en{ire space spanned by
rhe Xp and rhe collecti:e space would be synonyrnous. The lancr is rrue,
however, for our exacdy soluble simpliEied rnodcls. \Ve shall assurnc, in
whar fo11ows, that {he Hamiltonian has been expressed in terms oE a subset
oE the Xp which permir the straightforward application oE sum rules. \l'e now
proceed in analogy wirh ,he lisring given for ,he Gil FA:

(i) The Eirst dynamical condition, rhe analogue of (9). is that the
eigenvalues oE H be correcdy given in the co11ectivc subspace. We have
Eound that there are (hree convenient, more or less equivalent expressions
oE rhis condirion. For example, Jet S be an)' polynomial in rhe generators
X which commutes wirh a11 the opcrators (other_.than 11) specifying I K >.
The relation

leads, upon utilization oE (6), to a sum rule which may
version of (he SchrOdinger equation. On rhe other hand,

s = 'i TJi
•

(Il)

be viewed as our
if S is of the form

(I2)

where í is an appropriate tensor index and Ti mal' be a generator, we mal'
use instead of (11), the "equations of motion"

< K I [Ti' HJ I K' > = [W (K') - W(K)] < K I Ti I K' > . (I1')
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lt is nor difficult to show [har (11) is a consequence of che set (lIt). That
(ll')brings in new variables, rhe energy diHerenees [W(K')- W(K)], is no'
necessarilya disadvantage, since we want .tpese numbers anyway. The
third form of (his condidon consists in (he computadon of [he eigenvalue
W(K) in ,he obvious manner, by use of (6)

(13)

The Rayleigh-Ritz principIe is (hen applied undee (he assumption thar (he
< K Ixl K ' > may be considered variational parameters. We (hus use [he

d" p
con ItlOn

We have utilized all (hese conditions In ane application oc another.

(ii) Theeondi,ion

(14)

K * K' (5)

remains part of (he scheme bue naw is a polynomial In {he matrix elements of
,he Xp ra,her ,han of ,he a a ,a1

(¡ii) Th( kinematical constraints are oE [WO kinds. We have suro

rule~ uased on (he cornmutators

(6)

and we ha ve specification of (he representarion by means of the Ca5limir re-
lations

< K I e I K' > = 8KK, A. , (I7)

where e is one of the Casimir invariants and A is its eigenvalue for the repre-
sentation of interest. An alternative to (I7).is ~also being utilized and may
prove useful for practica1 cases: Thc X may be divided ioto two sets {y ,2 }.p p o-
From the Y p we may construct the basis, and pass from allY basis vector to
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any other. It follows rhat the remaining Zu are expressible as polynomials
in the y and it may happen that for a subsel of all the s[atcs, these poly-
nomialsPcontain a coovergcoce factor so that a few low urder terms suffice
for a goo<.lnumericaI approximation to matrix c1ements of Zu' Altogether
instead of a set of non-linear equations foc rhé single pacticle CFP, we have
equarions foc the matrix elements of the X

p

3. EXAMPLES

This method has bcen applicd [() a numbcr of models, which \ve shall
describe briefly, giving representative results.
(a) The modcl of MGL ~.5. In rhis 1I10d('l, which is of two equal but nonde-
generate shells. the lower is one completely filled in the independen[ ¡:urticle
limit. Thc residual inrcracrion is monopole-monopole force. The fIamiltonian
io rhis case is a quadratic polynomial in the generators of SU(2), so rhar [he
model is almosr icceducibl}' simple. Nevcrtheless it is rich enough lO contain,
in rhe limil of a large ou;nber of particles, a phase transition from a monopole
vibrational spectrum for weak inrcracrion, to a nearI}' degenerare doublct
srructure in rhe strong coupling limiL Wc have an algebraic solution which
gives accuratcly rhe propcuics of the firsr four s[a[es for any value of rhe
coupling streogth.

- Exacl
• Algebraic

6

3

•\
\.

•••••....e-._._._

o

• • • • •, •

2 X=G/llh

Fig. 2. Compari son o{ exact and al~ebraic method resulrs (or a two-Ievel pairing
modelo Thc levels are labelled p and q. Level q(unperturbed) lies 2 MeV
above level p and caeh earries j "'" (11/2). Resuhs are given as a fraedon
of the ratio ol the pairing suength to the sin~le particJe spliuing {or N = 8
parric1f"s. Number conservation and blocking have been earcfully taken
In[o account.
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(b) Several leve Is interaeting via a paÍring (~~ce, where the usual first treatrnent
<mploys th< BeS apptoximation. In rhis modd we have SU(2) x SU(2) x ...
(one for ea eh single particle leve!). In Fig. 2, we illustrate our best results6
fot a rwo.lev<l model and in Fig. 3 for a rhree level model. In rhe formet
instanee our states I K > are two in number, the supereondueting ground state
and the lowest lying exeited state of the same seniority. For the lattcr case
we utilize (he ground state and two exeited states. Correspondingly for n
levels, we eould eonstruet a theory of similar aeeuraey with n-l exeircd
states.

(e) Sorncwhar more amusing and novel than the previous rnodels is one
reeently proposed possessing the symmetry of the algebra R(S) whieh we de-
scribe in mOte derail. We consider 2(2p + 1) degenerare orbitals labeled
m, ::!: 1 (Fermion destruetion, ereation operators, a t ,a t t). In this

m, 1 m, 1
model, m plays the role of degeneraey labe l and ::!: 1 means a posicive or
negative unit of angular mornentum with respeet ro a fixed axis. Wirh Q = p + 1,
the following ten pairing and multipole operators span the algebra of R(5):

OBa)

Al = (A )1• • OBb)

(IBc)

1 % 1B. = (B_) = (20)"' ~a . a
m m,+ 1 m,-1

= .....[a1 a _al a]
;; m,+1 m,+1 m,-1 m,-1

OBd)

OBe)

N ~ [al a + al a ]
m+l m+1 m-I m-Im ' , , ,

(IBf)

The definitions imply that p is half-inregral. '1"he operarors A t creare two
particles and, aceording to subscripr, zero or ::!: 2 units of angular mo-
mentum, The remaining operators conserve panicle number, B+ raising the
angular momentum, In measuring it, and N measuring the paniele number.
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11 (I y)

which cornmures widl Jo. Exacr solutions are obrained s[aning frol1l a con-
venien[ !'ier of (llon.onhogonal) basis vecrors

m+"+llo=~N, m-n=1Jo' (20)

Fig.4 shows rypicaI spccua, ob[ained for f! = 24 and N = 12 panic!es. For
x = (F/4Gf!) = O, dIe specuurn is nearly harmonic llear th<.' ground s[¡}re. the
excitation energies depending only on rhe senioriry II

If -If =2Gíl[I-(v/2{l)]N,v+ 2 N,(I (21)

In rh<.'mher exuerne limir x.1 = P \\fe have anorher SLJ(2) group charactcrized
I "'2 1 I Iby ,be ,bree opera<ors fi = (2í!) lli' fo = '2fo am

(22)

where J is rhe maxllnum alloweu.value of Jo' Thus the value of J is rhe
maximum angular mornenrum to be found in rhe givl'1I band, higlH:r bands
.sraning wirh values of J Jiminished by multiple.s of fOUf. In ~eneral fUfx < 1,
rhe spectrum resembles rhar of a two-dimensiona I quadrupole \'ibrawr, For
x > 1 there is a rran.sition ro a series' of rmarional bands.

In rhi.s mode), we have applied8 the algebraic m('rho<l to the first (wo
laycrs of Srates comprising in rhe vibrational region [he ground statC Jo = O,
rhe olle phollon s[arcs Jo = t 2, and rhe rwo phonon S[;lreS Jo = :t 4.0 '. In
[h(' deformed region these bccome rhe lIlembcrs (l, 1:2, :t <1 of rhe ground srare
rmarional band ami O' rhe band head for rhe second rotariollaI bando Compari.
son of ('xaC[ and approximare rcsults for a s)'stem N = 22, n =44 is carrieJ
out in Figs. 5.6,7 fUf (he excitatioll energies and in Fig.s, 8.9 for the matrix
e1emcnrs and is, on [he whole, gratifying.
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Fig. 5. Exchation energy w20 oí [he first excited states of angular momen[um t 2

as a function of the relalÍve streng[h (F/2GQ)"of [he quadrupole to [he pairing
in[crac[ion fOf the system defined by Q =: 44, N ~ 22. The exact calculiuions
are compared with [he result of an algcbraic approximation. No[e here, as
in al! succeeding figures, [he change in scale about F~ 2GQ.

(d) \Vavefunctions. For this model artd by obvious extension for the others
we havc considered, we have constructed a class of statc vectors9 with which
it is quite practical to work, and which turn out tO b(., good approximations
lO the algebraic treatrnent, in the restricted sense of permitting treatment of
the ground statc bando The nominally three-parameter generating state

(23)

conserves neither particle number nor angular momenrum. Howevcr, two of
the parame[crs may be chosen to yield preassigned average N and Jo and
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lile third (O rninimiz(' rh<: cllcrgy. \Xl<-' have shown, reprcscnting rhe algcbra
uf g(S) by means of polynomials in rhe pararnctcrs and their derivatives, rhat

\\'(' can COllvcrt dIis calculation ¡!HO an approximate vcesioo oC [he algebrnic
t1l('[hod. This was shown hurh theon:tically and by numerical comparison.

11 al.o;;o suggests itsdf rhat wc should h<.' ahle [O approach more closel)' [O

Ihe r<:sults oC lhe algebraic TIlCdlOd (which ahec all can be carried out in a
flumber and angular momentum cons{'f'ving approximation), by trcating x, )'t

as gcncraror coocdin;:ucs afteT [hc Incthod of lIill amI Wh('cicr. This program
h~lS not yet bcen s[artcd. Th<.' (:chnique based on {23}, howcvcr.has proved
<:xlrt'IlH:ly uscfu! for studying, albei( io <l more approximale manncr than we
have hidH"rtll countenaoced, (he propertics of the ground s[atc band up to

hi,gh an~lllar 1ll0IlH:ntulll. For ('X,llllpl<.' , by considcring a dircct produc(
n(S) x l~('). w<: hav(' oiltained models of Ihe rhase transition which occurs
in (h<: ~rllulld .s(ate band at high angular momentum. This has bcen interpre-
[<:d .1S [he Corio!is couplinJ.: oe(w<.'('O a rO(<l(ing core ((rame) and a S(,( of

superfluid particks. e\'('fl(ually undoing the pairing correlation~ of the lauer.

This \\mk is stiJl in I'r0j.:f('.ss.
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Fig.7. Ca1culacion analogous (O chac of Fig. 6 for che scace O', the second
sUte of angular momentum .lero.

(e) The single-; shell model. The s,udy oí ,his model, utilizing a convention-
al pairing plus quadrupole-quadrupole in[eractÍon Hamihonian is [he e loses[
we have come to real physics. An exact diagonalization program succeeded
in producing exact results for systems of rnaxirnal size 10, j" =(21/2)6 which
proved extremely useful in assessing approximarions. Most of [his work
preceded [he work oo. R(S), an unfonuna[e temporal sequence from the point
of view of efficiency of development of ideas. 1be algebraic work has produced
[wo ideas which we are confident will stand up upon furrher development. \t/e
have both argued and showed by numerical comparisoo 11 that [here. is a valid
concept which we call the collective subalgebra: Although ferrnioo pairs
constructed from individual j's of large magnitude can couple ro very large
rcsuhant angular momencum, collective effcccs appear dominantly in che lo\\'
multipoles. We have shown, convincingly but perhaps not yec eogendy, ho\\"
ro incorporare this idea into [he algebraic approach. Secondly 11, we have
produecd a more accurate altcrnative to [he convencional [heory of nuc lear
shapes based on Hanree-Bogoliubov theory. In Fig. 10, [he pairing eorre-
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6 :A 12Ql
X :A 10g)

EXACT MATRIX
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Fig. 8. Sorne matrix elements foc [he ground state and f¡rsr .excited 5tate. The
continuous line shows che solutions Cor the four mauix elements as
provided by the algebraic procedure, whereas (he contiguous triangles.
etc., identified in che legend, are che exact values.

F

2GA

: Aa (2~)

:A (4V
: 8 (24)
:A 12Q)

o '1

J
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Fig.9. The same comparison as in Flg. 8 foc a selecred ser oC matrix clements
connecting the (¡rsr excircd 5tate aod [he second layer oí excited states.
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ladon and intrinsic quadrupole moment are CQmpared with the exact answers
for ¡" =(21/2)6 and with ,he corresponding results of the conventional theory.
More work remains to be done on this model.

2.0

(j)
I .5

A'lO,Ol

n."'11,N"6

CD EXACT
@ VARIATlONAl

1.0 ~ EFFECTlVE

C?)

a2 (2,Ol
(j)

0.5

G)

0.0
0.5 0.00.0 0.5 1.0

X 5Gil.
5Gil X

Fig. 10. eomparison berween exacr, algebraic, and BeS approximations ro rhe matrix
elements AO (0, O) and B2 (2, O). The configurarion is (21/2)6 of rhe single
; model wirh rotarional invariance in rhree dimensions.

(f) Ground state correlations at closed shells. We merely allude to related
work on rhe theory of long - range (random phase approximation type) corre.
lations in the ground state wave functions of <;.losed shell nuclei12. Some
advances in formalísm can be claimed, but no applications have been at-
rempred.
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,j.OUTLOOK

\\'ork continues for the (ime being on .IDodels which havc rotational
symme"y about a rixed axis, incluJing R(5) as Jesctibed, R(5) x R(5), and
still more ¡nvolved algebras whi( h contain (hese as subalgebras. The airo
is to obtain a decpee Uhderstanding of (he concept of colleetive subalgebra
which proved useful for (he single-j model. T.~ere1 (he choice of (his col-
leeche subalgebra was kincmacically obvious. In the oc\\-' e_xamples, the
subalgebra will be dynamically determined: the le.son. to be 1earned .hould
chen be applicable [O (he case of complete rotacional invariance. Technically,
(he experience gained in solving sizeable sets of na1~linear algebraic equarions
should prove useful in improving the previous studies described in our iorro-
ductor)' remarks. Finally con(act has beco made with other methods in the
theory oí collective motioo, such as boson expansions and generator coordi-

nates.
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RESU\IEN

Se define un modelo de capas con so!ución exacta, prescribiendo co-
mo lIamiltoniano un polinomio {'fl los generadores del álgebra de Lie yesco-
giendo un álgebra suficientemente simple para que la diagonalización. 11<,'\'a-
da a cabo por computadora, se pueda interpretar como la solución de un sis-

(ema grande de (ermiones. Hasta ahora los modelos basados en SU(2),

SU(2) x SLJ(2)( ...• y R(S) se han ('sludiado exhaustivamente. El principal
interés de ('.'iros estudios ('S la forma exc('pci6nalmente pura en la que tales

sistemas manifieslall grados de lihertad colecti\'os, interpretabh:s en casos

límites como vibraciones y rotaciones. Consecuentemente, el obj<.'w de los
trabajos en ('stos modelos ('., la comparación de varias de las más usuales

teorías aproximadas dl' movimiento cokcti\'o, con bs soluciones l'Xí\ctas,

Además de lo anterior, nUl'srro mayor interés ha sido el desarrollo de un cs-

quema difl'rentl' que [ielll' su origen tanto en los métodos de ecuaciones de

mo\'imiento dl' b teoría moderna de muchos cuerpos, como en el ~nfoque del
",ilgebra dc corriellte, ..•••de la tcorÍa de partículas elementales, En cste rné-

[0<10, tanto los cOllluladore ...•Cilll'lll¡íricos como los dinámicos y OCfilS reL.lcio-

lles algcbráicas Sl' cOll\'iertell en regLts de suma para observables, donde el

toral constituye un COlljUllto cerrado de ecuaciones inhomogéneas, no linea-

les (fue {k finen las propiedades de un subconjunto colcctin} de estados para
el sistema estudiado . ."e IIllJ( ..•.•tra su si~nificado físico, exactitud y relación
con otro"" método"


