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We define an exactly soluble shell model by prescribing as

Hamiltonian a polynomial in the generators of a Lie Algebra,

and by choosing the algebra to be sufficiently simple thar dia-
gonalizations carried out by computer can be interpreted as

the solution for a large system of Fermions. Up to now models
based on SU(2) x SU(2) x ..., and R(5) have been studied most
extensively. The main interest of these studies is the excep-
tionally pure form im which such systems manifest collective
de'grees of freedom, interpretable in limiting cases as vibrations
and rotations. Consequently, the aim of much work on these
models is the comparison of various widely employed approxi-
mate theories of collective motion with the exact solutions. In
addition to the above, our major interest has been the develop-
ment of a distinct scheme which has its genesis both, in the

equations of motion methods of modern many body theory, and
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in the tenets of the “current algebra” approach to elementary
particles. In this method both kinematical and dynamicatl
commutators and other algebraic relations are turned into sum
rules for observables, the whole constituting a closed set of
inhomogeneous non-linear equations defining the properties
of a collective subset of states of the system studied. Physical
significance, accuracy, and relation to other methods are illus-

trated.

1. BACKGROUND

Just over a decade ago, A. Kerman and the writer introduced a new
method in the theory of collective motion to which we attached the unprepos-
sessing name, Generalized Hartree -Fock Approximation, GHFA®', which was
later amended to the equally unattractive appellation, Self-Consistent Core-
Particle Coupling Method?. Since the work to be described in detail in the
present paper is integral with this earlier approach, and in particular, since
both are aimed at a solution, ultimately, of the same class of problems, let
us begin by stressing this unity.

We work with an underlying Hamiltonian of the form

H = Et,eala t432 aﬁysalagaaay,-. (1)

where aa(al) are destruction (creation) operators for shell model orbitals and
H may in principle be the complete many body Hamiltonian (in which event ¢
is the kinetic energy and V the observed two-body force), or else, and more
commonly in present day application’s, i is a shell-model Hamiltonian as
this term is understood in either atomic or nuclear physics.

In Fig. 1, we indicate schematically a typical physical situation
which we endeavor to study. The low-lying states of four neighboring nuclei,
two even and two odd are designated by the symbols [, J, K, and L respective-
ly, and A is the number of particles. In addition to the energies of these
states, we have experimental information about the marrix elements of various
kinds of operators connecting these states. These would include, for ex-
ample, “vertical” or nucleon number-conscrving wansition amplitudes of the
form
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<Kk'|g|k>= 20 <k'|alag|k>, (2)

a8
which comprise electromagnetic and weak decays. Neighboring nuclei are

connected by direct single-particle pickup and stripping reactions in which
such quantities as

gJ]((lK):<j'da’K>, (3)

*

witan =<jlall1>, (4)

are measured, respectively. Ina two-particle direct pickup reaction one
measures such quantities as

<] K>=3 <1l B,
|p| Py |a,4,| K (5)
[ K'
- J
\ 4[_—
AK
A-2 (even) A-1 (odd) A A+

Fig. 1. Schematic representation of transition matrix elements within a nucleus
or between neighboring nuclei,

Our basic approach is to ask if we can develop a direct calculus for
observable matrix elements of the type exemplified by Egs. (2) -(5) and if in
the formulation of such a scheme, some concept of collective motion will
play an essential role. Toward this end we employ a completely quantum
mechanical and abstract definition of collective motion which we can illus-
trate for the fixed nucleus A of Fig. 1. Let K] = iKp >be a chosen set
of states and let Q,---Q, be a set of operators of the type (2) (for example)
and v <<p. Then we assume that sum rules involving matrix elements of
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products of the operators Q taken between states of the set K> are sensibly
exhausted within the same set, thus

<k|,0,|k"> = <k|g |k"><k"|gy|K"> . (6)
K

That is, we have closure within a subspace of the many-body space. In the
development of the theories to be described, or alluded to below, we have
shown that in suitable limiting cases this definition implies the classical
concept of collective motion as the coherent motion of many particles de-
scribable by a few degrees of freedom (translation, rotation, vibration) .

For quite a long time our view, as developed between 1962 and 19677,
was that the basic calculus should be for the quantities v, and 4} of Egs.
(3) and (4) which in nuclear physics are called (single particle) coefficients
of fractional parentage (CFP). (For example the quantlty u" (al) measures
the “parentage” (= overlap) of the odd-nucleus state ]> int {1
direct product state aa| 1> . Our reasons for emphasizing these quantities

e antisymmetrical

was two-fold. First, all other quantities are, in principle, expressible in
terms of these by means of sum rules. For example, we have

<K'\aLaBlK>f-Zv]-(/BK)U:,(aK'), (7)
i

and by an extension of the definition of collective motion, it may be supposed
that for a suitable choice of indices a,3 the number of states ]] > that
contribute meaningfully to (7) is"also sharply limited. Of course the theoreti-
cal development that ensues, can apply only if the experimental evidence
from observed transitions is consonant with the assumptions made, but this

is widely true.

A second reason for preferring these quantities is that in avoiding
the explicit construction of antisymmetrized wave functions, we must never-
theless verify, insofar as it is possible, that the amplitudes (2) -(5) that we
compute by approximation schemes are not in contradiction with the Pauli
principle. We have, for instance, the sum rule

+a |K> O

<K|[ af8 kK"

“s

= Evj(ﬁx')v:‘,(ax)w“%uL(ﬁK)uZ(aK'), - ®)
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which must be imposed on any solution or satisfied by it.

We cannot give any details of the scheme of calculation for the CEP
which emerged from these considerations, but-it is important to summarize
its elements which are both dynamical and kinematical:

(i) From the equnation of motion

[aa’H] = EtaBaB+I/ZEVaﬁ‘ySa;a5'a7’ (9)

using sum rules, we obtain non-linear equations for the CFP. These can be
shown to be eigenvalue equations for the energies of the states of an odd
nucleus, provided the energies of the associated even nucleus are known.
The latter, however, can also be expressed by means of equations which
give a second dynamical aspect, namely the conditions

(i) W8 r=<K|H|K'>. (10)

By applying sum rules to the right hand side of these equations, the diagonal
elements provide a definition needed in the evaluation of (9), whereas the

off-diagonal elements, where they are not automatically satisfied because of
angular momentum conservation or some such symmetry property, provide

additional non-linear dynamical equations. It can_be shown that by satisfying
(9) and (10) one is diagonalizing the Hamiltonian within the subspace of
states considered.

(iii) The kinematical constraints provided by Egs. (8) guarantee that
we have a theory of (approximate) fermions.

(iv) Additional useful relations follow from expressing the relevant
constants of the motion as sum rules.

Considerable effort has been devoted to the development of the scheme
outlined above. It was shown early on, that it contained as limiting cases
many widely used approximations such as Hartree -Fock, BCS, Random Phase
Approximation, the Cranking Model for Rotations and the various semi-phe-
nomenological core-particle coupling schemes applied to the analysis of the
spectra of odd nuclei. Even this part of the program is not really complete,
though it has not been pursued recently.

We may remark parenthetically, that in the special case that the
Hamiltonian H is a polynomial in the generators of a Lie Algebra, then the
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GHFA provides a scheme for calculating a set of CFP connecting irreducible
representations. So far, however, we have never followed through on this
observation.

Finally we set ourselves the task of applying the scheme numerically
to real nuclei. This program has had limited success? but has not been
pursued recently. We are, however, on the verge of picking it up again in
consequence of the development of new insights and new optimism, based
on the experience gained in the intervening period with the ideas that form
the main burden of this"presentation.

2. THE ALGEBRAIC METHOD FOR EVEN NUCLEI

We were led to seek a modified approach, by our conviction that
technical difficulties encountered in the GHFA, stemmed from the need to
deal simultancously with the properties of even and of odd nuclei, and that
we would do better to deal first with the even problem. This strong desire
stimulated the realization that the need to satisfy the Pauli principle is, at
least superficially, no impediment to such a program. The previous remark
will be obvious to group theorists. Thus as long as we deal only with pairs
of Fermion operators al @g,o0rd dg, al ajs or both, then the general
Hamiltonian (1) can be written, in more than one way, as a polynomial in a
suitable Lie Algebra. Then the specification of the Casimir invariants of
the algebra completely specifies the representation, including of course its
Fermion character. Unfortunately, the transformation of this realization into
a practical scheme of calculation for real nuclei, where the Lie Algebras
are formidable, was not immediately evident. Thus, although we have ap-
plied the GHF A, albeit in a most imperfect form, to the properties of many
isotopes of $u,> the new method has been applied (successfully) mainly to
toy models easily studied exactly by computer. For these exactly soluble
models we have obtained impressive results. In the long run, we believe
that we shall be able to apply our methods to “real nuclei”.

Let us now summarize the elements of our scheme just as we did for
the GHFA. This will provide not only a useful comparison with the former,
but also summarize our experience to date with a growing set of exactly
soluble models. The problem is to find a set of algebraic equations de-
termining matrix elements of operator pairs, among the chosen collective
states of neighboring even nuclei. For then we can compute all transition
matrix elements among the states in question, and a fortiori, from the manner
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in which the scheme will be developed, also the energies.

To realize this aim let X  be the above set of fermion pair operators,
which either conserve the number of fermions or change the number by two.
H can be considered a polynomial in the X , in general, in many ways. We
assume that this choice has been made. (For simple models with separable
interactions, such as the conventional pairing plus quadrupole -quadrupole
interaction model, it is the obvious one ). We then wish to diagonalize the
Hamiltonian, within the subspace of collective states, and find its eigen-
values and “eigenvectors”. But we do not follow the conventional road of
setting up a basis of antisymmetric states, and then diagonalizing the
Hamiltonian within this basis.

Our basic tool is the sum rule (6) applied to the generators X
themselves. But these sum rules cannot be true in a realistic model for all
choices of generators X, since if they were, the entire space spanned by
the X  and the collective space would be synonymous. The latter is true,
however, for our exactly soluble simplified models. We shall assume, in
what follows, that the Hamiltonian has been expressed in terms of a subset
of the X which permit the straightforward application of sum rules. We now
proceed in analogy with the listing given for the GHFA:

(1) The first dynamical condition, the analogue of (9), is that the
eigenvalues of H be correctly given in the collective subspace. We have
found that there are three convenient, more or less equivalent expressions
of this condition. For example, let § be any polynomial in the generators
X , which commutes with all the operators (other_than H) specifying IK >.
Tﬁe relation

<k|[s,u]|k>=0, (11)

leads, upon utilization of (6), to a sum rule which may be viewed as our
version of the Schrodinger equation. On the other hand, if § is of the form

S=ZIT; ; (12)
1

where ¢ is an appropriate tensor index and T, may be a generator, we may
use instead of (11), the “equations of motion”

<K|IT;,H]|K'> = [WK") - W] <K|T, |K'> . (11")
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It is not difficult to show that (11) is a consequence of the set (11’). That
(11’) brings in new variables, the energy differences [W(K")-Ww(K)], is not
necessarily a disadvantage, since we want these numbers anyway. The
third form of this condition consists in the computation of the eigenvalue
W(K) in the obvious manner, by use of (6)

WK) = <K|i|K>=w[K';<K'|x,{k">] . (13)

The Rayleigh-Ritz principle is then applied under the assumption that the
<K I X ’K' > may be considered variational parameters. We thus use the

condition

WIK; <K'|x,|k">] =0 . (14)

We have utilized all these conditions in one application or another.

(ii) The condition

<K|H|K'>=0, K#K' (15)

remains part of the scheme but now is a polynomial in the matrix elements of
the X rather than of the a ,aJr .
p a’™B

(iii) The kinematical constraints are of two kinds. We have sum
rules based on the commutators

l=32g X . (16)

gt o . POET

and we have specification of the representation by means of the Casimir re-
lations

SR|C K" = Bept Xs (17)

where C is one of the Casimir invariants and A is its eigenvalue for the repre-
sentation of interest. An alternative to (17) is also being utilized and may
prove useful for practical cases: The X may be divided into two sets {Y A }
From the Y, we may construct the basis, and pass from any basis vector to
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any other. It follows that the remaining Z, are expressible as polynomials
in the Y_and it may happen that for a subset of all the states, these poly-
nomialsp(‘ontain a convergence factor so that a few low order terms suffice
for a good numerical approximation to matrix elements of Z_ . Alwogether
instead of a set of non-linear equations for the single particle CFP, we have
equations for the matrix elements of the Xp .

3. EXAMPLES

This method has been applied to a number of models, which we shall
describe briefly, giving representative results.
(a) The model of MGL* >. 1In this model, which is of two equal but nonde-
generate shells, the lower is one completely filled in the independent particle
limit. The residual interaction is monopole -monopole force. The Hamiltonian
in this case is a quadratic polynomial in the generators of SU/(2), so that the
model is almost irreducibly simple. Nevertheless it is rich enough to contain,
in the limit of a large number of particles, a phase transition from a monopole
vibrational spectrum for weak intcraction, to a nearly degenerate doublet
structure in the strong coupling limit. We have an algebraic solution which
gives accurately the properties of the first four states for any value of the
coupling strength.

6 = Edact

-

® e Algebraic

\0

\.
\.\..-
3 e—t— Ny (00)
» 9o ® 6 00 o Np(gl)
0 | 1
1 2 X=G/Ah

Fig. 2. Comparison of exact and algebraic method results for a two-level pairing
model. The levels are labelled p and g. Level glunperturbed) lies 2 MeV
above level p and each carries 7 =(11/2). Results are given as a fraction
of the ratio of the pairing strength to the single particle splitting for N =8

particles. Number conservation and blocking have been carefully taken
into account.
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(b) Several levels interacting via a pairing force, where the usual first treatment
employs the BCS approximation. In this model we have SU(2) x SU(2) x ...
(one for each single particle level). In Fig. 2, we illustrate our best results®
for a two-level model and in Fig. 3 for a three level model. 1In the former
instance our states | K> are two in number, the superconducting ground state
and the lowest lying excited state of the same seniority. For the latter case
we utilize the ground state and two excited states. Correspondingly for n
levels, we could construct a theory of similar accuracy with n-1 excited
states.

(c) Somewhat more amusing and novel than the previous models is one
recently proposed possessing the symmetry of the algebra R(5) which we de-
scribe in more detail. We consider 2(2p + 1) degenerate orbitals labeled
m, * 1 (Fermion destruction, creation operators, Ay i am’_“T ). In this
model, m plays the role of degeneracy label and * 1 means a positive or
negative unit of angular momentum with respect to a fixed axis. With Q=p + %,
the following ten pairing and multipole operators span the algebra of R(S):

Al = (4 = COMHIE S A (18a)
al =, = z(n)“%i(—l)p'”a;,“aim,“, (18b)
al =) = %(9)‘%5(-1)"'%;,_14,”,_1 ; (18¢)
B, =B) =) E“L,h“m,_l , (18d)
Iy = % [ajn,+1am,+1 '“I,,,_l “,,,,_1] ) (18e)
N =% (4], 414y oy tal o, 1. (18f)

The definitions imply that p is half-integral. The operators AJr create two
particles and, according to subscript, zero or t 2 units of angular mo-
mentum, The remaining operators conserve particle number, B, raising the
angular momentum, J, measuring it, and N measuring the particle number.
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Fig. 3. Same results for a three level model. Level g lies 2M-V above p and
2 MeV below level r. Also _:'p =(23/2), j;= ¥ = 11/2 and N=8. The

approximation is number conserving, but does not include blocking.
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We study the Hamiltonian?
B f y C
H=-260 AA, -F{B,,B_}, (19)

which commutes with J. - Exact solutions are obtained starting from a con-
venient set of (non-orthogonal) basis vectors

" ”
N Jym, > = (4,7 aD)"(al)o o>
m+ﬂ+r}0:|/2N, m—rz=/2]0- (20)

Fig. 4 shows typical spectra, obtained for ) = 24 and N = 12 particles. For
x = (F/4GQ) = 0, the spectrum is nearly harmonic near the ground state, the
excitation energies depending only on the seniority v

Wn,ve2 = Wy o =260 [1-(v/20)] . 21)

In the other extreme limit x™! = 0 we have another SU(2) group characterized
7
by the three operators j; = (20)) % B j; = '/2]0 and

W],JO=—(I’/BQ)[](J+2)—]§] , (22)

where [ is the maximum allowed value of Jo- Thus the value of J is the
maximum angular momentum to be found in the given band, higher bands
starting with values of J diminished by multiples of four. In general for x <1,
the spectrum resembles that of a two-dimensional quadrupole vibrator. For
% > 1 there is a transition to a series of rotational bands.

In this model, we have applied® the algebraic method to the first two
layers of states comprising in the vibrational region the ground state J =0,
the one phonon states = 12, and the two phonon states I, = 24,0 s
the deformed region these become the members 0,*2, +4 of the ground state
rotational band and 0'the band head for the second rotational band. Compari-
son of exact and approximate resules for a system N = 22, () =44 is carried
out in Figs. 5,6, 7 for the excitation encrgies and in Figs. 8,9 for the matrix
elements and is, on the whole, gratifying.
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N =44
N
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gl \. o
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s

Ll 1 1 ]

0 2 4 6 8 108 6 4 2 0
F 26 0
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Fig. 5. Excitation energy @ of the first excited states of angular momentum + 2

as a function of the relative strength (F/2GQ)%f the quadrupole to the pairing
interaction for the system defined by Q= 44, N=22. The exact calculations
are compared with the result of an algebraic approximation. Note here, as
in all succeeding figures, the change in scale about F=2G Q.

(d) Wavefunctions. For this model and by obvious extension for the others
we have considered, we have constructed a class of state vectors® with which
it is quite practical to work, and which turn out to be good approximations
to the algebraic treatment, in the restricted sense of permitting treatment of
the ground state band. The nominally three-parameter generating state

t t
¥yy.> =exp [xad +y, Ai+y_A_] lo> (23)

conscrves neither particle number nor angular momentum. However, two of
the parameters may be chosen to yield preassigned average N and J, and
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Fig. 6. Excitation energy of the first states t 4 calculated both exactly and by
an algebraic approximation. Cf. caption of Fig. 5.

the third to minimize the energy. We have shown, representing the algebra
of R(5) by means of polynomials in the parameters and their derivatives, that
we can convert this calculation into an approximate version of the algebraic
method. This was shown both theoretically and by numerical comparison.
It also suggests itself that we should be able to approach more closely to
the results of the algebraic method (which after all can be carried out in a
number and angular momentum conserving approximation), by treating x, y,
as generator coordinates after the method of Hill and Wheeler. This program
has not yet been started. The technique based on (23), however, has proved
extreme ly useful for studying, albeit in a more approximate manner than we
have hitherto countenanced, the properties of the ground state band up to
high angular momentum. For example, by considering a direct product
R(S) = R(5), we have obtained models of the phase transition which occurs
in the ground state band at high angular momentum. This has been interpre-
ted as the Coriolis coupling between a rotating core (frame) and a set of
superfiuid particles, eventually undoing the pairing correlations of the latter.

This work 1s still in progress.
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Fig. 7. Calculation analogous to that of Fig. 6 for the state 0, the second
state of angular momentum zero.

(e) The single-j shell model. The study of this model, utilizing a convention-
al pairing plus quadrupolequadrupole interaction Hamiltonian is the closest
we have come to real physics. An exact diagonalization program succeeded
in producing exact results for systems of maximal size ', j® =(21/2)° which
proved extremely useful in assessing approximations. Most of this work
preceded the work on R(5), an unfortunate temporal sequence from the point
of view of efficiency of development of ideas. The algebraic work has produced
two ideas which we are confident will stand up upon further development. We
have both argued and showed by numerical comparison?! that there is a valid
concept which we call the collective subalgebra: Although fermion pairs
constructed from individual j's of large magnitude can couple to very large
resultant angular momentum, collective effects appear dominantly in the low
multipoles. We have shown, convincingly but perhaps not yet cogently, how
to incorporate this idea into the algebraic approach. Secondly!!, we have
produced a more accurate alternative to the conventional theory of nuclear
shapes based on Hartree-Bogoliubov theory. In Fig. 10, the pairing corre-
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Fig. 8. Some matrix elements for the ground state and first excited state. The

continuous line shows the solutions for the four matrix elements as

provided by the algebraic procedure, whereas the contiguous triangles,

etc., identified in the legend, are the exact values.
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Fig. 9. The same comparison as in Fig. B for a selected set of matrix elements
connecting the first excited state and the second layer of excited states,
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lation and intrinsic quadrupole moment are cqmpared with the exact answers
3 6 . . .

for ]” =(21/2)" and with the corresponding results of the conventional theory.

More work remains to be done on this model.

Fig. 10.

2.0 T T T
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0.5

1 | |
0.
00.0 0.5 1.0 0.5 0.0
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560 X

Comparison between exact, algebraic, and BCS approximations to the matrix

elements A (0,0) and B2 (2,0). The configuration is (21/2)6 of the single
j model with rotational invariance in three dimensions.

(f) Ground state correlations at closed shells. We merely allude to related
work on the theory of long-range (random phase approximation type) corre-
lations in the ground state wave functions of closed shell nucleil?. Some
advances in formalism can be claimed, but no applications have been at-

tempted.
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4. OUTLOOK

Work continues for the time being on models which have rotational
symmetry about a fixed axis, including R(5) as described, R(5) x R(5), and
still more involved algebras which contain these as subalgebras. The aim
is to obtain a deeper understanding of the concept of collective subalgebra
which proved useful for the single-j model. There, the choice of this col-
lective subalgebra was kinematically obvious. In the new examples, the
subalgebra will be dynamically determined: the lessons to be learned should
then be applicable to the case of complete rotational invariance. Technically,
the experience gained in solving sizeable sets of non-linear algebraic equations
should prove useful in improving the previous studies described in our intro-
ductory remarks. Finally contact has been made with other methods in the
theory of collective motion, such as boson expansions and generator coordi-
nates.
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RESUMEN

Se define un modelo de capas con solucién exacta, prescribiendo co-
mo Hamiltoniano un polinomio en los generadores del algebra de Lie y esco-
giendo un algebra suficientemente simple para que la diagonalizacién, lleva-
da a cabo por computadora, se pueda interpretar como la solucién de un sis-
tema grande de fermiones. lasta ahora los modelos basados en su(2),
SU(2) x SU(2)* ...,y R(S) sc han estudiado exhaustivamente. Fl principal
interés de estos estudios es la forma excepcionalmente pura en la que tales
sistemas manificstan grados de libertad colectivos, interpretables en casos
limites como vibraciones y rotaciones. Consecuentemente, el objeto de los
trabajos e¢n estos modelos es la comparacién de varias de las mds usuales
teorias aproximadas de movimiento colectivo, con las soluciones exactas.
Ademas de lo anterior, nuestro mayor interés ha sido el desarrollo de un es-
quema diferente que tiene su origen tanto en los métodos de ecuaciones de
movimicnto de la teoria moderna de muchos cuerpos, como en el enfoque del
“algebra de corrientes” de la teorja de particulas elementales. En este mé-
todo, tanto los comutadores cinemdticos como los dindmicos y otras relacio-
nes algebraicas se convierten en reglas de suma para observables, donde el
total constituye un conjunto cerrado de ccuaciones inhomogéneas, no linea-
les que definen las propicdades de un subconjunto colectivo de estados para
el sistema estudiado. Se muestra su significado fisico, exactitud y relacion
con otros métodos



