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DEFORMATIONS OF LIE ALGEBRAS AND GROUPS

ABSTRACT:

AND THEIR APPLICATIONS*
Charles P. Boyer
CIMAS, Universidad Nacional de México

(Recibido: julio 19, 1973)

The concept of deformations of Lie algebras has had appli-
cations in both physics and representation theory. Despite
this, little is known about the general classification of the
possible deformations of a given Lie algebra and its repre-
sentations. We present here a general survey of what is known,
along with its application to representation theory and physics.,
The paper is essentially divided into two parts, In the first
part we discuss two prominent physical examples of deformations
namely the deformation of the Galilei algebra to the Poincaré
algebra and the deformation of the Poincaré algebra to the de
Sitter algebra. In the second part, we concentrate on what are
called first order deformations, by applying a well-known
algorithm to various inhomogenizations of semi-simple Lie
algebras. A discussion is given indicating which representations

can be deformed to which algebras. We also discuss the corre-
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sponding deformations of the group and their connection with
multiplier representations and the [wasawa decomposition.
Tables are presented giving a classification of the main re-

sults,

INTRODUCTION

It is the purpose of this article to give a review of deformations of
Lie algebras, and provide some what of a synthesis between the physics and
mathematics literature in a way easily accessible to physicists. This paper
is then arranged in essentially two parts. First, after stating exactly what
a deformation is, we discuss two important physical examples of deformations.
In the second part we concentrate on what are called first order deformations, giv ing
an idea of what is more or less the range of validity of such deformations, and then
discussing the important connection of these deformations on the group level with
multiplier representations and the [wasawa decomposirion. There is no attempt to
be rigorous, although some points concerning rigor are discussed. For the details
we refer the reader to the literature. Also in sections 3 and 4 some material is
presented for the first time especiaily that concerning the deformations
i so(n)®solk) —>so(n,k) which has not appearcd in completed form.

The procedure of deforming a Lie algebra (inwitively in many cases
the inverse of contraction') has had several applications to physics. Its
most natural setting is when one is given an invariance algebra, which is
valid in some limited domain, and one wants to consider possible gener-
alizations giving a new invariance or symmetry algebra, which yields in some
parametric limit the original invariance. Two prominent examples come
readily to mind: passing from the nonrelativistic invariance algebra (Galilei)
to the special relativistic algebra (Poincaré); passing from the special
relativistic algebra to a possible general relativistic algebra, e.g., the de
Sitter algebra. Indeed the latter is exactly how deformations first appeared
in the physics literature?. There have been, however, other applications,
for example, it has been used to obtain relativistic position operators® and
has provided a means for building non-compact generators* to obtain spectrum
generating algebras.

On the other hand in the mathematics literature, deformations were first
discussed in the context of cohomology groups on Lie algebras®. The hope
here being that one could possibly classify all nonequivalent deformations,
by placing them in a one-to-one correspondence with the members of certain

cohomology groups. Some resules have been obrained®:? , however, it turns
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out that in general the above correspondence is not valid®7. Recently, progress

8, 9,10 of various

has been made in finding certain first order deformations
inhomogeneous Lie algebras. While a complete classification is still lacking,
we have a pretty good idea of which representations of which algebras can
give rise to first order deformations and which can be obtained through first
order deformations. These techniques have various applications to the repre-
1, In essence

it allows one to describe the properties of the deformed algebra or group in

sentation theory of Lie algebras and the corresponding groups

terms of the inhomogeneous ones. This fact is particularly important where
multiplicity problems arise since it is easier to handle them in the case of
the latter.

1. DEFORMATIONS OF REPRESENTATIONS

We are interested in the general question: When can a given repre-
sentation of a Lie algebra be deformed into another representation of a (in
general) different Lie algebra? Since we are interested in representations,
we want our definition of deformation to be representation dependent.

Definitions: An expansion of a representation ¢ of a Lie algebra Q is
a mapping @ = @3 , such that the ¢ form a repre sentation of another Lie algebra
G'. If the conditions

A=

$y —> ¢ ¢1=<%+>\¢1+)\2q52+...

are satisfied the expansion is called a deformation. If for some subalgebra
¥ c(}, the deformation is trivial, i.e. ¢, (¥) = () ,the deformation is called
relative to ¥ and the subalgebra ¥ is said to be stable. It is emphasized that
although ;\b}‘ {i)s a representation of 3', ¢ is the original representation of (},
since ¢y —= Q’)O, i.e. dJO = ¢. A deformation with qbz = qbs =...=0is called
a first-order deformation.

Before proceeding to some physical examples we give a brief result
from cohomology theory® 7. Rigidity Theorem:

If (} is semisimple and ¢ acts in a finite dimensional vector space,
all deformations of (j are trivial.

This follows essentially from Whitehead’s Lemma!? and agrees with
the intuitive picture of deformation as inverses of contractions. The problem
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is that this result is not true when the representation is infinite dimensional
and an example will be the first order deformation we discuss next.

2. PHYSICAL EXAMPLES

In this section we discuss the two examples of deformations mentioned
in the introduction, namely Poincaré —s de Sitter and Galilei —» Poincaré.

Poincare =—>de Sitter

This represents the prototype of the first order deformations, which
will be considered more thoroughly in section 3. Physically, of course, it
represents the deformation of a flat space-time manifold to one with a constant
but nonzero curvature. Consider then the Poincaré Lie algebra spanned by
the generators of the homogeneous Lorentz group M’W and translations P,u

Ly Mool = 8,8 o™ EupMye = EroMyp t 8ueMy,

[M“V,PpJ T Pﬂ- gﬂva (2.1)

[P“,Pv]=0.

erh,uvop—0123andthememcg Sillly By 1 =t= By ™ "™ R
Now it turns out that one can perform the desnred nontrwxal deformation for
all representations!® such that P?= F'MP’u # 0. If we now construct

N,=%[o,p]+7P, (2.2)

where @ = M vM"'w, the second order Casimir operator of the homogeneous
Lorentz algebra o(3, 1), we find that the N’s and M’s form a representation
of one of the de Sitter algebras, viz.

[N# N = PZMW (2.3)
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One notices from (2.2) that all the information of the de Sitter algebras is
contained in the inhomogeneous Poincaré algebra.

Before discussing further this construction a brief historical digression
is made about Eq. (2.2). It seems that this equation has been propagated
in the literature as “the Gell-Mann formula”; however, it first appeared in
articles by Melvin? and was later discovered independently by Sankaranarayanan?
and Dothan, Gell-Mann, and Ne’emann*. I think it therefore, should be called
the Melvin, Sankaranarayanan, Dothan, Gell-Mana, Ne'emann (MSDGN) relation.

Now it can be seen from (2.3) that there are three distinct cases:

i) P?>0 iso (3, 1) =>so (4, 1)
i) P2<o iso (3, 1)=> so(3,2)
ii1) Pi=0 deformation is trivial

To make the deformation and contraction p;ocedures manifest, we first construct

the properly normalized generators!* (p?)” N and then multiply by a parame-
ter €, i.e. consider

|
2

€ 2.~ | e S
= = €
N,u. €(P) Np, %€(P )

NN

Y

[®.P,] +u(P®) ‘P, (2.4)

where 4 = €7. Then the Inonu-Wigner contraction® limit is given by € — 0,
T = > such that €7 = 4 a constant. We see that we can deform a repre sentat ion
(u, s)(P2 =u?> 0) of the Poincaré algebra into a representation (T,s) of the
de Sitter algebra so(4,1). We notice a few things about this deformation:
1) it is relative to the homogeneous Lorentz algebra 0 (3, 1), i.e.0(3,1)
remains stable; 2) it is a first order deformation; 3) the spin label s remains
the same for both is0(3, 1) and so (4, 1). This last point reflects the fact that
on the group level for both 1300(3, 1) and 500(4, 1), the spin label s is induced
by the “little” group SO(3), and this algebra remains stable through the defor-
mation. Indeed, it will be seen later (heuristically atleast)that there is a
close connection between these first order deformations of the algebras and
Mackey’s theory of induced representations for the corresponding groups.

In the preceeding discussion we have “swept under the rug” a very
important point, namely that a Lie algebra representation is more than just a
set of formal operators, it is an algebra of operators together with the vecror



104 Boyer

space upon which these operators act. This is all the more important since
not only is is0 (3, 1) noncompact but also the stable subalgebra so(3,1) is
noncompact. In fact in order to obtain an integrable Lie algebea®® for so (4, 1),
we must start from the reducible representation (u, s, }B >0)e(u, s, Pa <0),u>0
of the Poincare algebra iso(3, 1), i.e. we consider both particles and anti-
particles together. We will obtain in de Sitter space an energy operator which
is not positive definite 1,

Before proceeding to the next example we mention that by adding to
Eq. (2.2) a term of the form pP  we can pass from a representation (T, s)to
an inequivalent representation (7 + 0, s) thus providing a counterexample
to the rigidity theorem for semisimple Lie algebras mentioned in the previous

section.

Galilei=pPoincare’

Owing to the somewhat greater complexity of the Galilei algebra!®
this deformation is more complicated than the previous case. Physically
the deformation corresponds to passing from a nonrelativistic domain to a
relativistic domain, i.e. from inertial systems with an absolute time, to
inertial systems with relative time. The composition of this deformation
with the previous one then allows us to pass from a flat space, absolute
time manifold to a curved space-time manifold. There are, of course, other
possible kinematics as considered in ref. (19), e.g. one could start with the
usual nonrelativist - Galilei algebra and deform it to one of the Newton !
algebras representing the automorphisms of a curved space with an absolute
time. We will not consider such cases here.

The algebra (} of the Galilei group is spanned by the generators of
rotation M; , space translation P,, time translation H, and inertial transfor-
mations K, ,

[Mf ) M]] = E,‘jk Mh {MI' B P’] = Effk Pk
E’H"K']zeﬁkkk [Pl"Pf}: [Kx"Kf]:O

(K. ,H] =P, [P.,H]=[ME,H]=[K'-,P’.]:0

1 - 1 1

(2.5)
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It is known?°, that none of the true representations of the Galilei group admit
a reasonable physical interpretation; they are not localizable?' . [n order to
obtain localizable representations one must deal with projective repre sentations,
or what amounts to the same thing true representations of a nontrivial central

20

extension®. We can make such an extension of (} by the replacement

(k;,B] =0—=[k , P]=nmd, (2.6)

Indeed the connection between this extension and quantum mechanics is ap-
parent. [Eq. (2.5) with this replacement yiclds the extended Galilei algebra

(G . We now consider the representation’® of a free nonrelativistic spinning

particle labeled by (m,U = 0, s) with nonrelativistic mass m, internal energy
U=H =-P*/2m, and spin s. Without loss of generality we can decompose

the angular momentum into orbital and spin parts,

- S ¢ s

where the §,'s satisfy and so (3) algebra and commute with everything else.
If we construct, following Inonu and Wigner!?,

7
S IS~ (2.8a)

P, =[d* +(P*/ €] ' = P

11

by making a scale transformation P, = €™ P,

P‘.' and K; = €K; which has no
effect on () and build??

-1 -1
N;=m P €K~ €., SiPy € /(P0 + ) (2.8b)

we find that P, Pi" N, =M, , M,-J. close on the algebra of the Poincaré group,
(2.1)-

If we now consider the contraction limit, we will find that it is P' not
B which has a finite contraction limit. Thus the deformation is a deformaotion
“up to a factor” in analogy with the Inonu-Wigner contraction! up to a factor.
In other words we replace B with PO' obtaining a trivial extension of the

Poincaré algebra P which upon contraction yields a nontrivial extension
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‘G of the Galilei algebra. The contraction is detailed as follows: take the
limic € = 0, u — * such that u€>=m of the operators

eg.'—-}:.
(2.9}

ENi ——-—K'.

which imposes P —p P /bn = H performed explicitly by considering the
power series expansxon of P

= ((P*/2m) - u~ (P*/8m?) + 0 (1/4%) . (2.10)

Hence, as # — ®_ we obtain the energy of a free nonrelativistic spinning
particle. In the appropriate units # — * implies the speed of light ¢ = >
which of course corresponds to the physical picture. It is also seen readily
from (2.10) that the deformation is of infinite order. Comparing this infinite
order deformation with the first order deformation (2.4), the virtue of the
latter can be seen. One can not simply truncate the series (2.10) and retain
the desired invariance properties. It is also seen that the Euclidian sub-
algebra M, P' remains stable under the deformation (2.8) ; however, given
the algebra P » N; M the Inonu—Wxgner contraction (2.8) is performed rela-
tive to the generators M P Apparently this deformation and the Inonu=
Wigner contraction are not stnctly inverse operations. The difference appears
to be the rescaling of P; . One starts with the extended Galilei algebra

Q rescales the momentum P; and inertial transformations K; and then deforms

Q to P which upon contraction yields the original unrescaled algebra.
The question of whether such deformations are unique has not yet been

answered; however, one can find inequivalent expansions of (} to . These
expansions look very similar to the above deformation and not at all like the
first order deformation of the previous sections. Indeed it seems improbable
that one could use an algorithm of the type (2.2) to go from the Galilei alge-
bra to the Poincaré algebra. Although these infinite order deformations are
somewhat complicated, it is certainly interesting that one can start with
quite general physical representations of the Galilei algebra and obtain upon
deformation physical representations of the Poincaré algebra.
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3. FIRST ORDER DEFORMATIONS

In this section we want to focus our attention on first order defor-
mations of the type given by the MSDGN relation (2.2), and try to provide an
answer as to which algebras it can be applied to yield a deformation. We
will not artack here the more general problem of the classification of all defor-
mations of a given Lie algebra or even the classification of all first order
deformations. We formulate the problem as follows: let { be a semisimple
Lie algebra, ( an abelian Lie algebra and consider the semidirect sum ¥ D (.

We construct the following set of operators from the universal enveloping
algebra of ¥

n=%a,a +r0 (3.1)

where ® is the second order Casimir operator of ¥{ . First notice that

[¥,nh]cn (3.2)

which follows immediately from the semidirect sum structure of the original
algebra. The question is under what conditions do the /s close to form

some Lie algebra (}> A partial answer to this question has been given by
many *® and summarized by Gilmore®. Gilmore showed that if one starts
with a semisimple algebra (} and one makes a Cartan decomposition i.e.

G = ¥ + 1 where ¥ is compact, Eq. (3.2) is satisfied and

(h,nN]c¥ (3.3)

then Yl can be written in the form (3.1) if the Riemannian symmetric space 2
exp (1) is of rank® 1. The key to the proof is that these symmetric spaces
are spaces of constant sectonal curvature 2, Actually the fact that ¥ is
compact is not really essential, the procedure can be carried through for all
symmetric decompositions (i.e. ¥ is a maximal subalgebra of (} = ¥ + 1l with
Eqgs. (3.2) and (3.3) satisfied) such that exp (1) is of rank 1. Now in general
it urns out that (3.1) is not quite a deformation; however, by taking ¥ and
hence (} slightly larger so that [, 1] spans ¥ one does get a deformation.
This change allows us to separate expansions of the type (3.1) from much
more radical expansions which have very little to do with the process of
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contraction. One additional point here is that all realizations of Eq. (3.1)
yield hermitian representations of noncompact algebras. If one considers,
however, C;‘ =¥ + N*, where ' =i}, then Q‘ is compact and exp (') is a
compact symmetric space, yet no explicit realizations of this type have been
given despite the fact that the contraction procedure is very similar to the
noncompact case. Examples of rank 1 deformations are given in table 1.
Thus Gilmore's result provides a rather large class of algebras for
which the first order deformation procedure given by (3.1) holds. This class,
however, is not a necessary condition. One can find deformations given
essentially by (3.1) such that the rank of exp (/1) is greater than one. Such
deformations, however, may only be valid for certain representations of ¥ D (.
There are two new distinct classes of first order deformations of this type.
For example, let .(J be the Lie algebra of abelian second rank mixed
symmetric tensors with respect to the compact?* algebra ¥. Then the defor-
mation* 125 given by Eq. (3.1) can be carried through when one represents
( as a product of commuting vectors X;%is and ¥ only operates on this vector
space, i.e. one cannot build an additional vector space over this space.
More explicitly, let ¥ =so(n)and 0 be a commuting set of second rank
symmetric tensors with respect to so(n), then one represents so(n), by

0
M.=x. =  wx, 7 .
ij = i Bx’. %= (3.4)

and .0 by X % /x* and finds that

Nij = % [P, x; %; /x?] + T X % /x? (3.5)
satisfies
[N Ngd = 8 Myt 8 M + 8, My + 8, M, (3.6)

Thus for such representations we have the deformation iz so (n) = sl(n, R).
If we multiply N'.]. by € and take the limit € = 0, 7 — o, we obtain the original
representation of izso(n). We notice here the absence of the “spin” contri-

bution to M. This is not at all surprising since the principal series of
si(n, R) has no spin labels induced by a compact subgroup. This will become
clearer in the group theoretic context in the next section. But we can see
emerging what appears to be a general maxim for our first order deformation s
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and that is that our deformations can contain only one continuous label for
the representations, that is we can deform only along one continuous path at
a time. That the spin labels play an innocuous role will become more apparent
in the group context. In table 2 we have compiled a list of the first order
deformations of this type along with some properties conceming homogeneous
spaces and the allowed representations.

In the last type of deformation® to be discussed, the above discussion
becomes even more apparent. As an example of this type of deformation we

take ¥ to be so(n) ®so(k), 1<k<nand ( to be & direct sums of abelian
(k)

; 1
n=vector operators, i.e..( = CT(n ‘e, .. e.On where .O(”) transform as n-vectors .
There are two ways to construct deformation s both of which are representation -
dependent. We choose the identity representation of so (&), an arbitrary

representation of so(n) and rake Gi) tobe a set of k& orthonormal spheres (one
has n-orthonormal spheres available from the group manifold §O (n)). It is
then found that the operators

NP = 5 [0, 9] +7a(® (3.7)
1
(
Mog =5 ([0, (), <P} ; x@ 0 _ 5 (3.8)
withi=1,...,n;a,8=1,.. -» k close along with M, to form a repre-

sentation of the Lie algebra of so(n,k); hence we have the deformation

i so(n) ®@so(k) =—> so(n,k). By multiplying Nfa) and Ma}9 by € and taking
the limit €= 0, 7 = » We arrive back at the original representation of the
original algebra. Now if we had started with M;; asa representation of so(n)
obtained as the infinite simal generators of the group S0 (n) acting on itself
say from the right, then the generators (3.8) would be nothing more than the
generators of the 50 (k) subgroup of $0 (n) acting from the left. Starting from
this prescription one can see that the & n-vectors of ( also transform under
so (k) as n k-vectors (not all independent of course). Inthis case? we obtain
via (3.7) the same representations of so(n, k). The contraction is performed
by only multiplying Nfa) by €. Again the general maxim is that we can deform
only along one continuous direction, i.e. 7 must be a constant independent
of 7 and a in order that the algebra close. Thus we find in general only cerrain
degenerate representations. For example so(n, k) has rank? [(4 +£)/2] of
which & parameters are continuous for the principal series; hence for so(n, 1)
we get all the representations of the Principal series as before, however, for
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so(n, k) 1<k<n we get those labeled by [(n —k‘)/Z] discrete parameters and
one k-fold degenerate continuous label. Thus for k ==z -1 orn, we get a
“most degenerate” representation labeled by the continuous parameter 7.
Notice the number of discrete labels is just the rank of the algebra of the
little group SO (n -k). In table 3, we give the first order deformations of
this type with compact stable subalgebras along with some properties of the
homogeneous spaces and representations.

4. GROUP DEFORMATIONS

Deformations of representations of Lie groups have been discussed
by Hermann!?, by considering cohomology theory over groups and establishing
a relation with multiplier representations, although he has not given explicit
forms or discussed the connection with the Iwasawa decomposition. Indeed,
it is an interesting and important property of the previous first order deformations,
that these generators are exactly those obwmined from the group by considering
certain multiplier representations which are closely related to the Iwasawa
decomposition. In this section we want to explore this connection.

The deformation process of algebras has a natural generalization to
the deformation of the group. However, explicit but general realizations
analogous to Eq. (3.1) on the group level are hard to obtain by the straight-
forward integration of (3.1). One obstacle is that expressions which appear
very similar on the Lie algebra level, like (3.1) for so(n, 1) and sl(n, R) have
very different actions on the group level. Even so, all of these actions
exhibit the common feature of having a strong connection with the [wasawa
decomposition. The deformation process on the group can be roughly stated
as follows: consider a representation of the inhomogeneous group K D A,
K compact? A abelian where K acts as a transformation group over a homo-
geneous space X which is closely related to the space ¢ (@) of hermitian
representations ?® of the algebra (, and the action of A is not effectve

T (A) f(X) = exp [i¢ ()] f(X) (4.1)

A deformation of this representation of the group K ® A corresponding to the
deformation of the algebra is a map

T(A) —=T7 (g) (4.2)
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where g = exp (¢1) such that

T (g) f(X) = uT (g, X") f(X") (4.3)

A
where the group action X Lo X' and the multiplier 1" (g, X) must satisfy
certain limit conditions, that is, they must give back the original representation
of the original group. This contraction limit (Lim) is given by the Inonu-
Wigner! procedure of taking a sequence of representations labeled by an
index 7 (in our case continuous) and letting 7 = = while at the same time
taking a sequence of neighborhoods of the identity of the group {g,} and
letting ¢ = 0 in such a way that #7— £ a constant. Thus we demand

Lim T (g,) f(X) = Lim u"(g, X) f(X;) = exp [id(0) £] /(X)

(4.4)
Accordingly it follows that
Lim 17 (g,,X") = exp [ip(A) £] (4.5a)
Lim X, = X (4.5b)

It is understood here that the subgroup K remains stable under the deformation.
We take for the functions f infinitely differentiable functions over X, where
in general we allow f to be vector-valued and we have suppressed transfor-
mations in this vector space in the foregoing discussion. In the three first
order deformations discussed, the space X turned out to be a sphere or a
product of spheres. Had the stable subgroup been non- compact, as in the
case of the deformation of the Poincaré group and algebra, the homogeneous
space X would have been hyperboloids and we would take infinitely differ-
entiable functions. of compact support.

The outstanding question now is how does one ascertain the action
of the group over X and the multiplier " (g, X)? The problem is that as of
yet no nice prescription analogous to Eq. (3.1) has been found. Although one
can express the infinitesimal generators (3.1) in terms of the derivatives of
the action and the multiplier, the inverse procedure of integration has not been
found in general. We can exhibit some properties possessed by the defor-
mations of the group (4.2). In the deformations of the algebra the space X
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was compact and homogeneous; thus there exists a subgroup K, of K such
that

KEA/KOEAR: K/K0 ResX

Furthermore, this space does not change under the deformation although the
measure on X is “deformed” (i.e. is not G-invariant), so one has a deformation
of the K® A=>G and of its stability subgrbup' K,®» A ==>H such that
G/H % K/K % X. This homogeneous space can be illustrated via the Iwasawa
decomposition®® G X K AN, H & K,AN. We can check that the subgroup H
does indeed exist. It is, however, not unimodular and thus the measure over
X is not G-invariant; hence, one needs multipliers to get unitary representations
of G over X.

Finally, we give explicit forms for the three types of first order defor-
mations presented in the last section. Again for simplicity we give details
only for the case of real groups. The complex and quaternionic cases are
similar and some of their properties appear in the tables. In each case it
canbe checked that the infinitesimal generators of the corresponding repre-
sentation are exactly those obtained through the algebra deformation procedure
in the last section.

1)G=SOO(n,1) X={x.:x‘.x.=1 f=1,...,n}

x5 = (5 %; ¥ 81080 % ¥ By ) (46)

The action is just the projective transformation of the sphere X onto itself.

The stability subgroup of the point x, =1, ¥ =...=x__,= 0isthe subgroup
composed of those transformations which satisfy

21 -1 -1 -1

wd o i .
Eom T80 = 8un T Eny 8in "‘g,-; =0i#n (4.7)

It can be shown that such transformations are just those of the subgroup
S0(n-1) AN of 50,(n, 1). The multiplier is given by

o
nex") =g ;% + gy (4.8)
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where 0 = = (n=1)/2 + 7, which will give rise to unitary representations
when 7 is pure imaginary. Now the subgroup SO (n -1) is the centralizer of
A (one-parameter subgroup generated by one of the boosts) in $0(n), thus
the representations of H are direct products of the representations of SO(n -1)
and the characters of A. The representation of 50, (n,1) described by (4.8)
yields the principal nondegenerate series induced by the representations of
H. The multiplier (4.8) is just enough to offset the transformation of the
measure under G, so that for 7 pure imaginary the representation is unitary.

2) G = SL(n,R)

X is the same as in 1). The action of G on X is

P r -1
i by b
L
r -1 -1 2
b = [x,-g,-,- ik xk] . (4.9)

I'he stability subgroup is again given by those transformations which satisfy

|
-1 -1 =1 % ik

2 - i
Epn = (gjn gfﬂ) v Eip T 0 iFn . (4.10)

Actually the second of these equations implies the first. Again it canbe
shown that this subgroup is just SO (n -1) AN. Of course the subgroups A and
N are here quite different than in 1). A is the subgroup of diagonal matrices,
whereas N is the subgroup of lower triangular matrices. In this case §0(n -1)
is not the centralizer of A. In fact the centralizer of A in K is discrete.
As a consequence only a most degenerate series of representations of H over
X can be induced to representations of SL(n, R). This is just labeled by
one of the characters of A. The multiplier in this case is

w (g, x)=(r'/n7 (4.11)

where 0= - (n=1)/2 + T, T pure imaginary for unitary representations. Again
the multiplier just cancels the change in the measure under transformations
inG.
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3) G =50,(nk) {x;: xf“’xfﬁ’ =8pi=l...,n;a,B8=1,...,k}

The work presented for this case is not yet in completed form®. This situ-
a
(l. ) canbe
represented as nx k rectangular matrices and the action is a generalizatio:

of the projective transformation (4.6).

ation is somewhat more complicated; the orthonormal spheres x

_ (@ oy
= B gt Bura,mep) (5 8 Y Bpap,)  (412)

The nxn submatrices §0 (n) of SOo(rz,k) parameterized by g;; act as rigid
transformations from the right whereas the kxk submatrices SO(‘) of SO _(n, k)
are written as g . . .and act as rigid transformations from the left. The
stability subgroup of the point xfa') — 5(“. yi=1,...,k x; =0fori>k, is
the subgroup of those transformations which satisfy.

-1 -1 =1 =1
sa.z' - ga.,rH—ﬁgﬁi +ga.,n+ﬁgn+,8,l' +gn+a.,n+ﬁgﬁi +gn+a,n+ﬁgn+ﬁ,i

It can be shown that this subgroup is just H = [SO (n k) sS(ﬂk)]A N, where
Soffk) indicates that this is the subgroup 50" (k) @ SO (k) of matrices of

50 (n)®50(k), r and [ designate action from the right and left respectively.
The homogeneous space G/H is then isomorphic with the product of spheres

(n-1) (n-k) T : ; y ;
s ®...85 which is isomorphic with X. The centralizer of A in
50 (n)® S0 (k) is $O(n -k) and representations of this subgroup along with a
degenerate continuous representation (characrer) of A can be induced to repre-
sentations of SOO(n,k) in correspondence with the discussion given at the
end of the last section.

In conclusion again we emphasize the close connection between the
deformations of Lie algebras and groups presented here and the theory of
multiplier representations developed originally by Bargmann3?, and Gel’fand
and colaborators3 . and elaborated into the theory of induced representations
by Mackey® . Many of the multiplier representations can be constructed by
considering the space of homogeneous functions over a manifold of higher
dimension realized by removing the subgroup A or part of it from the stability
subgroup H. See, for example, Gel’fand and Graev3®. It remains to be seen
whether all multiplier representations can be obtained from the deformation of
appropriate representations of some inhomogeneous group.



120 Boyer

ACKNOWLEDGMENTS

I would like to thank Dr. Kurt Bernardo Wolf with whom much of the
work in sections 3 and 4 was done, and Professor Y. Ne’eman for a helpful
discussion. Ialso gratefully acknowledge Dr. Tomas Garza for the hospi-
tality provided for me at CIMAS.

REFERENCES

1. E.Inonuand E.P. Wigner, Proc. Natl. Acad. Sci. U.S. 39 (1953) 510;
E.]. Saletan, J. Math. Phys. 2 (1961) 1.
2. M.A. Melvin, Bull. Am. Phys. Soc. 7 (1962) 493; ibid 8 (1963) 356;
. Sankaranarayanan, Nuovo Cimento 38 (1965) 1441.
- Sankaranarayanan and R.H. Good Kr., Phys. Rev. B140 (1965) 509.
- Dothan, M. Gell-Mann, and Y. Ne’eman, Phys. Lett. 17 (1965) 148;
- Brander and C. Itzykson, Rev. Mod. Phys. 38 (1966) 330; (1966) 346;
- Wolf, Suppl. Nuovo Cimento S (1967) 1041; C.P. Boyer and
. Fleming, Pennsylvania State Univ. ‘preprint; L. Weaver and
- Biedenharn, Nucl. Phys. A185(1972) 1; L. Weaver, and
. Biedenham, and R.Y. Cusson, Ann. Phys. 77 (1973) 250;
- Boyer and K. B. Wolf, Lett. Nuovo Cimento 8 (1973) 458.
. Gerstenhaber, Ann. Math. 79 (1964) 59.
- Hermann, Commun. Math. Phys. 2 (1966) 251; 3 (1966) 53 ;
3 (1966) 75; 5 (1967) 131; 6 (1967) 157 ; 6 (1967) 205.
7. M. Levy-Nahas, J. Math. Phys. 8 (1967) 1211; M. Levy-Nahas and
R. Seneor, Commun. Math. Phys. 9 (1968) 242.

8. J. Rosen and P. Roman, J- Math. Phys. 7 (1966) 2072; J. Rosen,
Nuovo Cimento 46B (1966) 1; ibid J-Math. Phys. 9 (1968) 1305;
A. Chakrabarti, J. Math. Phys. 9 (1968) 2087; A. Sankaranarayanan,
J- Math. Phys. 9 (1968) 611; J.G. Nagel and K. T. Shah, J. Math. Phys.
11 (1970) 1483; J.G. Nagel, J. Math. Phys. 11 (1970) 1779; ibid Ann.
Inst. H. Poincaré 13 (1970) 1; E. Weimar, Lett. a Nuovo Cimento, 4
(1972) 43.
9. R. Gilmore, J. Math. Phys. 13 (1972) 883.
10. C.P. Boyer and K. B. Wolf, J. Math. Phys. 14 (1973) 1853,
11. K. B. Wolf, J. Math. Phys. 12 (1971) 197; 13 (1972) 1634; C. P. Boyer,
J- Math. Phys. 12 (1971) 1599; 14 (1973)
12. N. Jacobson, Lie Algebras (Wiley, New York, 1962).
13. We take the liberty of denoting a representation of an algebra by the
same letters as the abstract algebra when it causes no confusion.

W

ey ) 2

o
FEOFFORZ <> >



Deformations of Lie algebras. .. 121

14. Since P? is a multiple of the identity here we can treat it as a number.

15. C.P. Boyer and F. Ardalan, J. Math. Phys. 12 (1971) 2070; S. Strom,
Arkiv Fysik 30 (1965) 455.

16. T.O. Philips and E. P. Wigner in Group Theory and its Application ,
Vol. 1, E.M. Loebl, Ed. (Academic, New York, 1968).

17. R. Hermann, Ref. 6 Part V.

18. ]J.-M. Levy-Leblond, J. Math. Phys. 4 (1963) 776; ibid in
Group Theory and its Applications, Vol. 2, E.M. Loebl (Academic,
New York, 1971).

19. H. Bacry and J.-M. Levy-Leblond, ]J. Math. Phys. 9 (1968) 1605.

20. V. Bargmann, Ann. of Math. 59 (1954) 1.

21. E.Inonuand E.P. Wigner, Nuovo Cimento 9 (1952) 705.

22. S. Helgason, Differential Geometry and Symmetric Spaces
(Academic, New York, 1962).

23. The rank of a symmetric space en‘ is equal to the dimension of XN 1|
where ¥ is a Cartan subalgebra of (}.

24.  Actually this construction goes through when the subalgebra ¥ is non-
compact, but we choose it compact for simplicity as well as facili-
tating the discussion on the group level with the Iwasawa decompo-
sition.

25. This type of deformation was first considered by Y. Dothan,

M. Gell-Mann, and Y. Ne’eman and appears implicitly in their paper
in Ref. 4.

26. C.P. Boyer and K. B. Wolf (to appear). This type of deformation was
first suggested by Professor Y. Ne’eman.

27. These two deformations are inequivalent since they have different
stable subalgebras; however, they yield equivalent representations of
SOo(n,k) - Inthe first, however, the representation of the original
algebra is not faithful.

28. Here [x] means the greatest integer less than or equal to x.

29. K acts as a group of automorphisms over the algebra.(. For type 1)
deformations the space X is just an orbit of K in (. i.e. spheres.
For type 2) X is again an orbit of K, but only for certain degenerate
representations of (I does one get spheres X. Again for type 3) one

has to specify that the subalgebras G" be orthogonal.
30. K. Iwasawa, Ann. of Math. 50 (1949) 507.
31. See the readable account in G.W. Mackey, Induced Representations of
Groups and Quantum Mechanics , (W. A.Benjamin, New York, 1967).
32. V. Bargmann, Ann. of Math. 48 (19 47) 568.



122 Boyer

33. I.M. Gel'fand and M. A. Naimark, Unitare Darstellungen der
Klassischen Gruppen (Akademie Verlag, Berlin, 1957);
I[.M. Gel’fand, M.I. Graev and N. Ya. Vilenkin, Generalized Functions,
Vol. 5, (Academic Press, New York, 1966); 1.M. Gel’fand and
M.Il. Graev, Am. Math. Soc. Transl. (Series 2) 37 (1964) 351.

RESUMEN

El concepto de deformaciones de algebras de Lie ha tenido aplica-
ciones tanto en fisica como en la teoria de representaciones. A pesar de
esto, se sabe poco sobre la clasificacion general de las posibles deformacio-
nes de un algebra de Lie dada y sus representaciones. Presentamos aqui un
estudio general de lo que se sabe, junto con sus aplicaciones a teoria de re-
presentaciones y a fisica. El articulo se divide esencialmente en dos par-
tes. En la primera, discutimos dos prominentes ejemplos fisicos de defor-
maciones, la deformacion del dlgebra de Galileo al algebra de Poincaré y la
deformacion del algebra de Poincaré al algebra de de Sitter. En la segunda
parte, nos concentramos en lo que se llaman deformaciones de primer orden,
aplicando un algoritmo bien conocido a varias inhomogenizaciones de alge-
bras de Lie semi-simples. Se discute e indica qué representaciones se pue-
den deformar a qué algebras. También se discute la deformacion correspon-
diente del grupo y su conexion con representaciones multiplicativas y la des-
composicion de Iwasawa. Se presentan tablas dando una clasificacion de
los principales resultados.



