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ABSTRACT: Within the framework of a previously developed algebraic ap-
proach to relativistic dilatation physics, bilocal wave equations
for arbitrary spin are set up. The principal result of this study
is that, despite dilatation invariance, particles can have non-
zero restmass. A canonical formalism is developed and various

currents are studied.

[. INTRODUCTION

At the Philadelphia conference in 1972, we suggested a new rela-
tivistic dynamical group! which contains dilatations in a natural manner.
The best way to visualize the genesis of our group is to think of hadrons as
excitable blobs of matter and to imagine that, in the average, the excitation
is more or less localizable within the blob. Thus, to characterize the hadron?,
we need its c.m. coordinates x* and the coordinates f‘u' of the ®exciton”,
relative to the c.m., as illustrated in Fig. 1. Since x* and £ are kinematically
independent, we have the reladvistic Poisson brackets?
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bl =16, 63 =0, {=.8) =g, (1.1)

where the bracket is defined In the usual way,

{4,B}, = BpAépB -6,49°B . (1.1a)

fo

FIG. 1
HADRON MODEL

Here, and in the following,

9 =0/3x", 6,=3/3&° . (1.1b)

Thus, we are led to a quasi-phase space structure M(x, &) and it is natural to
ask about a nontrivial group of *canonical transformations” that leaves (1.1)

invariant. We find that the simplest nontrivial set of canonical transformations
is the following 17-paramerer group Hs :

x * A xP
ro up )

J. (A: Lorentz matrix) (1.2a)
- P
f;t Anpg ’
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. P}u : (a'uL real) (1.2b)
E~%
X .
B Tp
H'u: (b’u real) (I:2c)
~ £ +
.6, 18
t#" xﬂ-of}u R
5
£~ E , (-2 <o < ) (1.2d)
X g ,
M L ;
G (=0 <a<+w) (1.2e)
£+
£,~& +ax,,
x = e'x s
b = (=00 <A< + ) (1.2f)
K
£~ ee

The P and ] transformations represent independent translations in the ex-
ternal and internal space and their generators can be interpreted as totdl (c,m,)
momentum and exciton (relative) momen tum, respectively. § and C are “dy-
namical transformations” inasmuch as the change in the external coordinates
depends on the internal coordinates and vice versa, Now, it is important to
observe that after § and C have been introduced, we do not have a group unless
we adjoin the dilatations D. Hence the latter arise in a very nawral way.
The Lie algebra is found to be as follows:

el 5o = Y Cuplue ~8upluo 80l ,y Yeyolp,) i (L3a)

I

.l.-
(¥]

)

e Bl =g, P, “8uoPe) s g L) =itg, T ~g Ti ),

(P, p] =(I1.00] = LB ] =8 (i.3b)
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[S,P#] =0, [s,H#] =iP, , [C,Pp] = -iH#, [C,HP] =0

(1.3¢c)

[p,p]=-ip,, [D]=dl ; (1.3d)

[s,c]=éip, [s,p]=2is, [D,C]l=2C; (1.3€)

(700 80 = []r €1 = [, BI =B (1.3f)
Equation (1.3e) shows that we have an SU(1, 1) subgroup, generated

by

L=%, 1,=%Cts), I,=%(C=-9, (1.4)

with I being the compact generator. Thus, the physically so important
dllatauon occurs in our group not in isolation, but rather as a member of a
semisimple subgroup. The whole group structure can now be read off*:

TH}- (1.5)

= (stz,0f xsu, '} o (1] % T,

|
Since the dynamical SU(1, 1) commutes with the kinematical SL(2, C)],

we are able to set up a classification scheme. If we consuier finite di-
mensional (non-unitary) representations of the SU(1, 1) dynamical subgroup,
then observables will form tensor or spinor operators relative to this classi-
fication. The usual scale quantum number d of X will be detemmined by
[D,x] =idX. Thus, a two-component SU(1, I)I spinor operator has a
d=+t1landad= -1 componentand 0 Bl Similarly, sets of fields will
be classified according to their SU(1, 1) transformation behavior. This will
permit us to consider wave equations for dilatation covariant multicomponent
fields.

The two Casimir invariants of .}Is are found to be

C, = (PI)* - P211% (1.6)
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C,=%J*R,, +s*+cp’-pPIl (1.7)

where

R’_ws- P#ﬂv - PVH# 5 (1.8)

Finally, we succeeded in classifying all unitary irreducible repre-
sentations of ﬂs . For these results and for other demils, cf. Reference 1.

In our subsequent work, M. Lorente, P. L. Huddleston, and I en-
deavored to construct a simple (first quantzed) field theory, which is invari-
ant under ﬂs . The rest of this report sketches our findings.

Il. GENERALITIES ABOUT THE WAVE EQUATIONS

Since we have two sets (x ,& ) of coordinates, we clearly shall have
a bilocal theory. Naturally, we need a non-vanishing orbit-equation. This
forces us to select one particular class of representations which is dis-
tinguished from the others by the fact that Cx #0. However, for this class
the lictle group is just the identity, so that we have no natural “intemal labels”
for the SU(1,1) characterization, nor even for ®intrinsic spin”. In addition,
it later turned out that for this class C2 =0. It is therefore necessary to
shift our interest from the representations of the global group to those of its
Lie algebra. There is another reason for this,too. One readily sees that
finice transformations generated by § and C can destroy causal order. Thus,
it is necessary to confine oneself to the corresponding infinitesimal transfor-
mations; i.e., to consider realizations of the Lie algebra rather than those
of the group.

If we take a space of sufficiently well-behaved functions ¢ (x,&)
over M(x, &), we easily find the following realization of the Lie algebra
(1.3a = 1.3f) :

P=43 , I = 56# ; (2.1a)
Jpp =i(x,3,-x3 + §#6v - §y6#) ¥ (2.1b)

$ = -i§“8ﬁ+§‘, (2.1c)
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LY

C=£x#6#+r; ' (2.1d)
N 1
D -t(x'ua _5#6 Y+ A . (2.1e)

Here the ]  are the familiar spin matrices, and similarly, X, [, A are
(coordinate independent) matrices obeying the same commurtator algebra as
§,C,D. Thatis,

[2,'] =iA, [2,A] =23, (A, T] =2l . (2.2)

Using this realization, the equation for the second Casimir operator
(1.7) becomes?

C,¢(x &) = {451""(@,6,-3,5,)-30,-TD, +43,6%} (&),
(2.3)
and for the first Casimir operator

C,dx &) =1{3,6",6"-0,0,) o) . (2.4)

To start with, we concentrate on the fundamental two-dimensional
non-unitary spinor representation of the internal SU(1,1) algebra. Then @
is a two-component spinor

8, 5,8)
(]5(&‘, g) = ’
3,5, )

and an explicit representation of %,[,A is

e )

(2.5)
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Apart from (2.2), in this representation we also have the additional proper-
ties:

M=o, 3*=0, &*'=-1, (2.6a)
Fra+4'=0, ZA+AS =0, TZ+El'=1 ; (2.6b)
rf-x, s'=r, a'--a. (2.6¢)
The dilatation transformations are represented by the matrix
e)\ 0
TR0y = e (2.7)
0 e’ 3
so that the two SU(1, 1), basis spinors
) 0
(f)+z and ¢_= , (2.8)
0 @

2

(which are eigenstates of iA\) are dilatation eigenstates with scale quantum
number d = + 1 and d = - 1, respectively.

Higher representations of SU(1,1) will be briefly considered in Section V.

III. SPINLESS PARTICLES

We first study the case of spin zero, when I , = 0 in Equation (2.3).
We then find that the condition of solvability of (2-51) is

2 ; (3-1)
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We select a representation with C > 0. Then (3.1) tells us that C2 is pure
lmagmary FOI' Cmveﬂleﬂce we Set

C,=-iK, Kreal, (3.2)

2

Then (2.3) assumes the form

(FDX+ZD§-A3#6P-1'K)¢(::,§):{). (3.3)

If we operate on this with (I_'[jx ¥ &= AD 6% + iK), we obtain the equation
for the first Casimir operator, cf. (2.4), with

C =kK?. (3.4)

Thus, our basic wave equation is not the orbit equation, but rather the equ ation
for the second Casimir operator, given by (3.3).
In momentum space the wave equation (3.3) becomes

(Tp? +Zm? = Dpmr+iK) $(p,m) = 0 . (3-5)
Taking the basis state <,‘b+ (cf. 2.8) which has d = + 1, we find that
p2¢, =0, pm, =-Kp, . (3.6)

Consequently, this state has zero mass, M = 0. However, taking the basis
state ¢_ which has d = = 1, we obtain

mip. =0, prd = K$_ . (3.7)

Thus, m this case p? need not vanish even though 7% = 0. In fact, writing
M2 = p and going to tre rest frame p = 0, the second relation in (3.7) gives

2 2
M=K /Ry = C /Ry > 0 (3.8)
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for the mass. Here WOR stands for the energy of the exciton in the restframe
of the extended particle.

General states (which are not dilatation eigenstates) will not be mass- -
eigenstates. However, writing for an arbitrary state

|¢>.__a|¢+>+b|¢_>, 'a’2+|bI2=1s

we casily compute the expectation value

M= <l g [y> = (5] "M% +|a| M2 = !bizk"/(w;:,’?)2 . (3.9)
Thus, the admixwre of the d = = ] component provides a non-vanishing mass.
We have a dilatation invariant (in fact, §_ invariant) theory for massive
particles. The mass is determined by the energy of the exciton; i.e. , by
the force to which it is subject. OQur model, naturally does not provide this
force, so that the mass is not fixed, even if a fixed representation is used.

We now return to the general discussion of the wave equation. The
hermitean conjugate of (3.3) is

O,#"% +0,8'T+3 646" +ikg' = 0 .

Both (3.3) and this conjugate equation can be derived from the
Lagrangian

L=RFr e + f6”526“¢ %D A6"p - 5i6$nd% - k3

(3.10)
where the adjoint wave function ¢ (x,€) is defined as
¢ )=l x,-6)6 (3-11a)
with
0 -1
g = . (3.11b)
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The Lagrangian density (3.10) is not hermitean — in fact, it can be
shown that there does not exist any hemitean . However, “averaged”over
the £ -space®,

4
<(>= fd ff,
is hermitean, and so is the action

W=fd4x<f,>

We are now prepared to set the canonical formalism in action. If an

infinite simal symmetry transformation

xmxtOx, E~E+SE, G tdp, g t+sd  (3.12a)

is performed, we get

W= [d*xd"& [3,/4+6x , (3.12b)
with
i, 0, €) = [Lg,,-3,8,RL/AT ] 5x" -
-6¢,(3L/3%'¢,) 8¥ + (L' 8¢, | (3.13a)
and

b, (5, 8) = - 3,0, (3L/36 ) Bx +

+ [Lg,, - 6,4,(3/3674,)] 36" +(3L/36"¢,) &8, .

(3.13b)

As is standard practice in bilocal theories, we define the physical x-de-
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pendent currents by “averaging” over the internal &= space,
<j)>=[d'€i .
j(%)>=]dgj(x,&)
Since fd4§(6#'k“) =Jdo (&) ", Equation (3.12b) yields
oW =Ja*x3, <j*(x)> +[d's [do (&) k*(x,£) .

However, in consequence of the assumed suitably good behavior of ¢ at the
boundary of the & -space, the surface integral vanishes and we have

Sw = [d*x 3, <i" (x> . (3.14)

Specializing to various symmetry transformations, we then get the
following currents:

a) Electromagnetic current (from phase transformations):
<J, 0> =<gl3d - 5406 4> . (3.152)
b) C.m. energy momentum tensor (from c.m. translations) ;

I > = <iav51“a#¢> +z'a#‘?¢_>1“ay¢_}4;[a£a6’;¢ +6,03. +

tOPA6,P 6,400 ) - L> . (3.15b)
c) Exciton energy momentum tensor (from relative translations) :
n g . S Voos 2T : s
<T,,(®)> =< x'6vd>1"'a#¢ - ;a’;;brévqs -%i 6V¢>A6pq5 -%i 6#¢A6v¢ * §

(3.15¢)
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d) Covariant angular momentum tensor (from Lorentz transformations):

P P. AL I
M, (0> = <x, T = x, Ty, ¥ 6T, = 6Ty, > (3-15d)

¢) S-current (from s-transfommatrion) :
<sixn)> =<ie¥ol > . (3.15€)
© Vi
f) C-current (from C +ransformation) :
<C{x)>=<fx"9H'> . (3.15f)
w Vi
g) Dilatation current (from D -transformation) :
<D fx)> =% x"evi- g”ﬁi> . (3.15g)
In the last three formulae,
6P 122 P L 11 I (3.16)

=T #¢ ~; @ =T+
VL Vi Vi

are “improved stress tensors”. Without quoting the detailed structure of ¢

and 11 we on ly mention that

Lo ,
FelP sep, Fell»=n,

vu Vi
[ derittn) €8 > =B [dot(x) &2l 3 =
J (s s ; 2 =% ;

so that the redefinitions (3.16) are permissible.
Noteworthy features of these resules are the following:

i) Al currents are hemitean (except < Tv,u.> which is antihermitean).
Thus, formal unitary representations in terms of the integrated currents can
be wricten down (disregarding questions of domain).
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i1) The electromagnetic current has scale quantum number ¢ = 3. As
is well known, this leads to “scaling” in deep inelastic scattering.

P... 3 ;
iii) T, is symmetric and has scale quantum number d = 4, as in a
canonical local theory.

tv) The angular momentum tensor, the §, C, and D currents are (combi -
nations of) moments of the energy momenwm tensors.

v) Translation invariance implies S-conservation.

. T i\ I

vi) C-conservation imposes the trace condition Tr& = 0.
o . ; i P
vii) D-~conservation imposes the trace condition Tr& =

Intere stingly, dilatation invariance does not imply § and/or C-conser-
vation, in contrast to the usual local conformal theory where dilatation-in-
variance (together with translation invariance) implies conformal invariance.
On the other hand, § and C conservation together imply dilatation invariance,
as can be inferred from Equation (1.3e).

IV. PARTICLES WITH SPIN 1

If we have spin %, then in Equation (2.3) we must put " = Li [, "],
Since SL(2, C) and SU(1,1) commute, the wave function will be the direct
product of an SU(1,1) and an SL(2, C)’ part. Using the representation

0 0 czk

U=

= = 0

~

=]

(4.1)

<
Il
S —
Y
x
e
>
>
.4
n
€
o]
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where %, and ¥ are two-component spinors corresponding to the subdivision

of the Dirac matrices. The first factor (¢b) is the now familiar two-component

SU(1, 1) spinor. We used the notation 5DA = ¢-1 X4 etc. in the last identity.
If we introduce the notations

(e, R, R )= B=px (4.2a)

L s )

e

23 ’

(Rm 1By, ’Ros) == BT =R (4.2b)

~

then the wave equation in the momentum space that arises from (2.3) can be
conveniently written in the split form

7 A A
YoR +:p'7'T—C2 '/gtczg t,[;l in? 0 1/12
+ =g
Y LYoR +ipm = - 2 -
5i0Q sOR +ipm - C, l,bl 0 i L/J2
(4.3a)
| - ( ) A A
% OR =ipm = %ioQ l,bz ipr 0 ¢;1
= = .
I/ztgg 50R tiprr- C2 v, 0 :p2 953
1
{4.3b)

We find that the condition for solvability for this homogencous linear set of

equarions 1s

2
2 2
Cz ==k (,,1 ; where &° = 5 or 5 . (4.4)

Thus, we have now a reducible representation. As in the spinless case, we
select a representation with Cl >0, so that then Cz must be pure imaginary.
We write

C,==iK, K real. (4.5)
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A compatible set of labeling operators is given as follows:

2 . .y ) . ”
a) C2 (generalization of the familiar “largé and small component
distinction),

1
1o 1
b) id = iA x = - . (dilatation operator),
0 1 %
10 grR 0 -
c)y Ni= x_1 =_.1_
|R] . IR 2R
0 1 0 -oR i i

(generalized helicity operator).

In summary, a basis set of solutions of the wave equation can be labeled as
2

k
Yy " and we have

2 2
(C;/C1)¢:"=-f¢2¢:”, k2=%0r?; 3 (4.6a)
2 2
iﬁw:”:d‘p:", d=t+lor-1 ; (4.6b)
2 2
N¢3"=n¢§", n=tlor~1. (4.6¢)

If we now substimite a d = +1 basis srate Y into the wave equation
(4.3b), we immediately see that it is an eigenstate of p? belonging to eigen-
value zero. Thus, such states are massless, Mf =0. However, taking a
basis state y_ which has d = - 1, Equation (4.3a) tells us that now 772 has
zero eigenvalue, but p2 need not vanish. In fact, writing M? = p? and going
to the restframe p = 0, we get from (4.3b) with (4-2a), (4.2b), (4.5) and with
some calculation"conceming the condition of solvability,
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4 if K2 =%
2 B JRLE
M_ =m*K /(‘TTO ) , where m? =
e 12
% itk =%

‘ (4.7)
As in the spinless case, we see that d = - 1 basis states can have non-
vanishing mass, but now we also have fwo distinct mass values which corre-
spond to the two possible values of C But, as expected, the mass does
not depend on the “helicity” n. General states, once again, are not mass

eigenstates, but they will have a nonvanishing mass expectation value.
As in the spinless case, we can find a slightly modified Lagrangian
and work out a canonical formalism. Since, however, no new features emerge,

we omit here the details.

V. ARBITRARY SU(L, 1) AND SL(2, C) SPIN

We now wish to indicate the generalization of our major results when,
instead of the n = 2 dimensional defining representation of SU(1, 1) we allow
for an abitmry n = 2j +1 (G =%,1, % .. ... ) dimensional representation,
and when we consider arbitrarily high ordinary spin s.

The matrix representations of A, ¥, and [ for arbitrary finite n can

be calculated from Bargmann’s paper’. We find that

-2]?
=2 #2

+2f

Ajvf']‘

fe1,4=2

4
Il

=y dsT
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Ay 3
21y Bf WA

where
Agy = [1/a=8) 1 [{G+a) G -0)1}/{G+byrG-an}]

‘Conceming higher SL(2, C) spin, we found it convenient to use the

Bargmann-Wigner formalism®, where, for spin s = 4,1, %

s %1+ +.. We have

2s

7 o B2 Zly“(r)'yy(r) ;
r=

with

’)f‘u'(r):lx].x,,_x ’yp'x]_x_,,x]_

?

the Dirac ’)/’u standing in the r-th place.
When we now write down the wave equation in momen tum space, a

lengthy but elementary calculation shows that the condition of solvability
is

0w~k = ~20 , (5.1a)

where

k=2 +a Y¥seliwy=H=35 . (5.1b)
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To find the possible mass values, we substimte different basis states
into the wave equation and obtain the following results:

i) Basis states with dilatation quantwum number d = j have p? =0,
e = 0_

ii) Basis states withd=j=1,j=2,..., ~jt1have both P =0
and 7% = 0.

iii) The only basis states that can have non-vanishing mass are those
which have d = =j. Then 7% = 0 but p? =0, and going to the restframe we
find that

M2 = w2k /R (5.2a)

where now

2 ; -2 : =2 : -2
m’=2j-s) , (2j=s*+1) ,...,(2f+s) . (5.2b)

R

Thus, we have a finite, discrete mass-spectrum? for any fixed value of LA
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RESUMEN

Se establecen ecuaciones de onda bilocales para espin arbitrario,
dentro del marco algebriico desarrollado previamente para fisica relativista
de dilatacién. El principal resultado de este estudio es que, a pesar de la
invariancia de dilatacién, las particulas pueden tener masa no-nula. Se de-
sarrolla un formalismo canénico y se eswdian varias corrientes.



