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ON THE PROPERTIES OF COHERENT STATES
Robert Gilmore

Physics Department, University of South Florida,
Tampa, Florida 33620

(Recibido: agosto 17, 1973)

ABSTRACT: Coherent states are obtained by applying a dynamical unitary
transformation to an extremal state in an invariant subspace
of a quantum mechanical hamiltonian. The properties of co-
herent states are completely characterized mathem atically.
In addition, we prove the following very useful theorem: A
physical system initially in a coherent state, or in particular
in its ground state, will evolve into a coherent state. We give

various examples of the utility of coherent states.

I. INTRODUCTION

A large number of quantum mechanical models have the following
properties:

1) The gross energy level structure is defined by a static hamiltonian;

2) Perturbations can be written as a linear superposition of shift oper-
ators;

3) The static hamiltonian and the shift operators close under commutation
and form a finite dimensional Lie algebra.
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We define coherent states with respect r.o a Lie group G, a stability
subgroup H, and an 1rreduc1ble representation e (G), as the state obtained
by applying the operator "™(G/H) to an extremal state (e.g., the ground
state of the unperturbed hamiltonian) in the invariant subspace of G charac-
terized by the quantum numbers A.

Such coherent states have all the usual properties of the field co-
herent states. Baker-Campbell-Hausdorff formulas, depending only on G
and not on [’ ", can be constructed and used to simplify calculations.
The coherent states themselves are non-orthogonal and overcomplete
within any invariant subspace. Under an arbitrary perturbation, a system
which is initially in a coherent state, or in particular in its ground state,
will evolve into a coherent state.

These statements are valid whenever the dynamical transformation
group G is compact, or if G is noncompact, whenever [ is semi-bounded.

In §I1 we describe the forces motivating the search for generalization
of the coherent state concept. This is directly related to the extreme useful-
ness and the widespread applicability of the field coherent states. The
properties of these states are reviewed in §1II. These mathematical mecha-
nisms are applied, in §IV, to the construction of the atomic coherent states
for an ensemble of 2-level atoms. The extreme similarity between the field
coherent states described in §III, and the atomic coherent states described
in §1V, is made manifest by a group contraction procedure in §V. In this
process the Bloch sphere (describing atomic coherent states) is contracted
to the phase plane of the harmonic oscillatar (describing field coherent states)
In §VI we illustrate the utility of the atomic coherent states by indicating
how they have been used to solve non-trivial problems.

In §VII we return to a general discussion of the properties of ccherent
states, and in particular we prove the theorem stated in the abstract. Finally,
we apply this farmalism in §VIII to obtain a swift solution to a particular
model of a superfluid system.

II. BACKGROUND AND MOTIVATION

What are now called the field coherent states were first discussed by
Schrodinger!® in connection with the semiclassical limit of the quantum mecha-
nical harmonic oscillator. They were later used by Bloch and Nordsieck? to
treat the “infrared catastrophe.” The properties of these states were then
formalized by Schwinger.® Finally, Glauber* ® introduced these states under
the name “coherent states,” into Quantum Optics.
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Because of the intimate relationship between coherent states on the
one hand, and the output of a laser cavity on the other, field coherent states
have maintained a central position in the development of Quantum Optics
since their introduction by Glauber in 1963.

Quantum Optics involves the description of the interaction between N
atoms and an electromagnetic field confined to a cavity of finite volume. A
suitable model hamiltonian for such a system is

. i
H= fﬁwh“k“fr AE’_Z‘.lssm +
. « 1
* E‘flgkak‘gﬂj) exp (¢k* x’.)"' ghaks-(j) exp(-ik- x!.) ’ (2.1)

In this expression, al and 4, are the Bose creation and annihilation oper-
ators for photons in the field mode k, and S3(f) ; St(;‘) are the angular momentum
operators describing the atom located at position x. as a 2-level system.

Equation (2.1) has not yet been solved in general. In particular, the
operators appearing in this equation do not close under commutation, and as
aresult do not form a finite dimensional Lie algebra. As a result the pro-
cedures described in the introduction are not directly applicable to this
hamiltonian.

If the “atomic part” of the system described in (2.1) behaves classically,
so that the operators 53(1.) . St(j) can be replaced by c-number driving fields,
then the resulting hamiltonian can be solved explicitly and exactly.* 5 If
the system is originally in a vacuum state of the electromagnetic field, then
it will evolve into a field coherent state. We conclude from the quantum -
classical hamiltonian (2.1) that a classical current, when applied to a vacuum
state of the electromagnetic field, will produce a coherent state of the
electromagnetic field, and that such a coherent state is in some sense the
closest possible quantum analog of a classical electromagnetic field.

It is instructive to ask whether these results can be dualized. That
is: is it possible to replace the electromagnetic field operators appearing in
(2.1) by c-number driving fields and then solve the resulting hamiltonian? The
resulting hamiltonian then describes the interaction between a classical electro-
magnetic field and an ensemble of N identical 2-level atoms. This hamiltonian
can be solved exactly in three cases of extreme physical interest :

i) point laser (cavity length <<)\);

ii) single mode traveling wave laser;
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iii) traveling electromagnetic wave in an aplifying or absorbing medium.

In any of these cases, if the atomic systemis originally in its ground state,
it will evolve into a coherent atomic state.

Although the hamiltonian (2.1) cannot be solved exactly, the semi-
classical hamiltonians arising from (2.1) can be solved exactly. The semi-
classical hamiltonians are obtained by assuming either that the atomic system
is classical and the field system is quantum mechanical, or that the field
system is classical and the atomic system is quantized. In either case, if
the quantum mechanical system is originally in a coherent state, or in par-
ticular in its ground state, then it willevolve intoa coherent state. Inboth
instances the coherent state is the closest possible quantum analog of the
corresponding classical state. These remarks are summarized in Fig. 1.

Matter Field
Classical Classical Classical
States Current Field
/ |
i \
Quantum Coherent Coherent
States Atomic State Field State

Fig. 1. Interacting atomic and field systems may be considered as dual
to each other. If either quantum system is driven by its dual
classical counterpart, a coherent state results (diagonal arrows).
The coherent state is the closest possible quantum analog of the
corresponding classical state (vertical arrows).

II. REVIEW OF FIELD COHERENT STATES

We summarize here the properties of coherent states for a single mode
d the electromagnetic field.*-7
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1. Model Hamiltonian: a model hamiltonian describing the interaction of a
classical current with the electromagnetic field is

N = Wyt W
3:[0 =iicuaTa

I 1
Jn[pm =xda +N (Ha . (3:1)

- ; T
Here a'a is the single mode photon number operator, and @' and a are the
photon creation and annihilation operators for a single mode, respectively.

2. Commutation Relations: the hamiltonian described in (3.1) is a linear
superposition of operators that close under commutation. These operators
obey the commutation relations

[n,a'] = +d' [r, 1] =0
[r,8] =-a [d,1] =0
Lad'] =#1 lad) =1 . (3.2)

The four operators » =afa, aT, a, and I span the Lie algebra b4 , called the

harmonic oscillator algebra.

3. Diagonal States: the eigenstates of ‘Ho contain a fixed number of photons
in each field mode

Hln> =twn|n> . (3.3a)

The normalized eigenstates can be obtained by applying the creation oper-
ator to the ground state | 0> n successive times:

L]

|n> = (@' s1) %|0> . (3.3b)

These diagonal field states are called “Fock” states.®
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4. Ground State: the ground state is defined uniquely, up to a complex phase

factor of modulus unity, as the eigenstate of 1{0 with lowest energy eigen-
value:

]

X o>

o E. |0>,

mmn
E. =0. {3.4a)
man

It can equivalently be defined as the state annihilated by the shift-down
operator a:

0>=0 or expal0>=]0> (3.4b)

5. Unitary Translation OTerator: under the influence of a classical driving

current, the ground state | 0> will evolve under a unitary operator U(a) :

Ula) = exp (a.aT -a*a)
Ua) |o> = |a> . (3.5)

In general, a(¢) is a time-dependent complex number, and a(#) is related to
A(#) through the equations of motion which are derivable from (3.1).

The transformation U(a) is a unitary representation (¢ x o matrix) of
the coset representatives® of H /U(l elU(1), which is isomo.phic with the
phase plane of the harmonic osc:llator The states |a> are called “coherent”

states and for the particular case of the electromagnetic field they are called
“Glauber” states.* 579

6. Coherent State Eigenvalue Equation: the coherent states obey an eigen-
value equation easily derivable from (3.4b):

{U(@)a U (@} U@)] 0> =(@-a)|a> =0 . (3.6)

7. Baker-Campbell-Hausdorff Formulas: these formulas allow for rear-
rangements in the ordering of exponential operator products. They are
extremely useful for dealing with the properties of coherent states. A useful
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BCH formula for the Lie group H, is

e:q:»(r.l.aT t+Ba) = exp (-4 af) exp (SBa) exp (ad")

=exp (% af) exp(aat)exp (Ba) . (3.7)

8. Expansion of Coherent States: the coherent states can be expanded in
terms of the eigenstates (3.3b) of Ho, since these form a complete set of
orthonormal states. This expansion is facilitated by the BCH relation (3.7):

|a> = U(a)| 0> =exp(-%a‘a) exp(aaf) exp (- a'a){ 0>

* = T” -1
exp(-%a*a) Z(ad ) !y 0>
0

I

« = ” %
exp(=%a*a) S(a) (n!) *|n> . (3.8)
0
9. Non-orthogonality: the field coherent states are non-orthogonal:
<alp> =<o0|v' (@) v 0>
=exp(a’B - 4("a+8°3) (3.9a)
2 2
|<alp>| =exp(-la-8]) . (3.9b)

10. Over—completeness: the coherent states are overcomplete. The reso-
lution of the identity operator in terms of coherent states is not unique. A

useful resolution is

f|a>(d2a/w)<a|=l=§;|n><n| : (3.10)

11. Uncertainty Relations: the creation and annihilation operators are not
hermitian, but their “real” and “imaginary” parts are:
)
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(a+at)/\/§

Y
Il

[p,q] = ~i
= (g=q /i3 (3.11a)

=
|

The non-commuting hermitian operators p,q have minimum uncertainty within
a coherent state:

2 2 2
(Ap) (Agq) =1(%)

(Bg) =<altg-<g>)'|a>

<g> =<algl|a> . (3.11b)

12. Generating Functions: in correlation experiments it is often necessary
to compare correlation data with matrix elements of the form:

T m n
normal form LoD ‘ {a') (a) |o'.>
2 ”n T m
anti-normal form <a|(a) (a ) |a>
i ”n T m
symmetrized form <a|S {(a) (a') }|a> s (3.12a)

Such matrix elements are most simply obtained from a generating function:

<al(a) (@) |a> =(3/39)(3/38)" <a|exp (va) exp (8a')|a>] :
y=3=0

(3.12b)

I'he generating function is simple to compute:
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<a|exp(ya) exp(8al)|a>

= exp(~ a’a)<0| exp(a*a) exp(ya) exp(3a') exp(aa’)|0>

= exp(-a’a) <0 exp ((a+ 8 a)exp ((a®+y)(a+8)exp((a®+y)a)| 0>
=exp(-a*a)exp((atd)a’+7y)) . (3.12¢)

Other generating functions can be obtained as simply.

IV. ATOMIC COHERENT STATES
We now “dualize” the treatment given in the preceeding section.

1. Model Hamiltonian: if the electromagnetic field operators appearing in
(2.1) are replaced by their (macroscopic) classical average values using the
analog of a mean-field approximation scheme, the hamiltonian simplifies
greatly. Inthe case of a single mode traveling wave laser, it is

H =N+
pert
N
¥, =AE Elsm.)
!
N N

L - =’y(t)jElSﬂj)exp(ik-xi)+7'(!)j§15_(’.)exp(—ik-xj) .

(4.1)
2. Commutation Relations: the single-atom operators are kinematically inde-

pendent and cbey the usual SU(2) commutation relations:

etc.

[Ss(j)’sf'(;")] - S+(,-')5ff' J

The many-atom operators



152

Gilmore
N
Iy = ’.5153(:‘)
N
J, = j§15+(j) exp (ik 'xj.)
N T
Jo= B S e bk gy =,
obey the usual SU(2) commutation relations
e ) =1, (5, 71=0
[JS’I'] = _J'_ []+1 ]0] =0
[]__a j+}=-2]3 []_r]0]= 0 . (4.2)

The operator ] is a multiple of the identity within any irreducible repre-
sentation.

3. Diagonal States: the eigenstates of Jio are essentially angular mome ntum
eigenstates

N 10y = nEmliy . (4.3)

The normalized eigenstates can be obtained by applying the shift-up oper-

i ) :
ator to the ground state | ’,> (j +m) times

-5 jtm
; . (J,) .
Y - (.2;) = 1D (4.3)
jim (jtm)! 1

These diagonal states are called “Dicke” states.”’ 1°
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4. Ground State: the ground state is defined uniquely, up to a complex

phase factor of modulus unity, as the eigenstate of ﬂo with lowest energy
eigenvalue:

11 =g, |_;_> (4.42)
Paig = - jBE

It can equivalently be defined as the state annihilated by the shift-down
operator J_:

. = r X i - Yy ]
Ll_;) 0 o ep(f_)l_;) |_’> (4.4b)

5. Unitary Transformation Operator: under the influence of a classical driving

field, the ground state | ’) will evolve under a unitary operator”" ? U(G¢):
=7

U(Bp) = exp (L], - L J)

L =%0exp (-ip)

vp)| 1y = 14, (4.5)

In general {(#) is a time-dependent complex number, and {(#) is related to
¥(t) through the equations of motion which are derivable from (4.1).

The transformation U(6¢) is a unitary representation (2j +1x 2j +1
matrix) of the coset representatives of U(2)/U(1) @ U(1), which is isomorphic” ®
with the sphere . This sphere is often called’"? the “Bloch sphere” since
it was introduced by Bloch!! for the discussion of the nuclear induction ex-

periment.? The states l;¢) are called “coherent” states, and for the

particular case of two-level atoms, they are called “Bloch” states.” %11
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6. Coherent State Eigenvalue Equation: the coherent atomic states obey
several “eigenvalue equations” easily derivable from the eigenvalue equations

defining the ground state | i
=1

g sl ] s B j
(o) I*v™ o1y vep)| 1y =iGnl )

1
-] |9¢>

{U(o) 1,U ()} U(BSP) | _;)

|
o

(o) J_U" (6¢)} UE9) | _:) (4.6)

These equations do not have the classic structure of eigenvalue equations
since the operator {U(8¢) @ U™'(9¢)} on the left hand side of each equation

depends explicitly on the parameters (6¢) serving to label the coherent
(eigen) states.

7. Baker-Campbell-Hausdorff Formulas: a large number of BCH formulas
can be derived for the Lie group SU(2). These have been preated in detail

elsewhere.”"'* Some particularly useful BCH formulas for current purposes
are given in (4.7):

exp({J,- L J) =exp(7],) exp(ln (1+ 7°7) ]3) exp(-7"J)
=exp{-'r*]_)exp(—ln(l'i"r"r)]s) exp(7 J,) (4.7)

where

L =exp(-ip) %6

T = exp (- id) tan %56

8. Expansion of Coherent States: the coherent states can be expanded in
terms of the eigenstates (4.3b) of ﬂo’ since these form a complete set of

orthonormal states. This expansion is facilitated by the BCH relation

(4.7):
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ng‘é) = U(qu)l _ ;> = exp(7],) exp(ln (1+ 7 7) ]s)exp(_.,.']_)l ) ;)

=(1+7*n' 3 (T]+)”(n!)'ll_’:>
n =0 7

e ' = - -
= X l’) { )la(cos %9)’ m(exp(—icﬁ) sin '/29)1 (4.8)
;m itm

m=-—j

9. Non-orthogonality: the atomic coherent states are non-orthogonal:

<f'|;‘>
e'¢p' 6 ¢

' 2j
=[cos 40 cos 46 + exp(i(qb'-qb)) sin 56" sin %0 Sﬁf (4.9a)

o . 2 = 5 i
i i _ ]+n(ﬂ')‘n(ﬂ)} B . 4.9b
[ Corgilp, ) | = {azie i )

In the later expression, 7(Q) is the unit vector from the center to the point
(6¢) on the surface of the Bloch sphere.

10. Over-completeness: within any SU(2)-invariant subspace the identity
operator may be resolved with respect to either the diagonal or the coherent
states. The resolution of the identity operator in terms of coherent states
is not unique, since they are overcomplete. A useful resolution is

+j

Yy 2 +1 i B j f

Ll. Uncertainty Relations: the canonical uncertainty relations

BILA > (57 0F

become, after the unitary transformation by U(8¢):
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veP U, .1, 1,) v O8) =Ug I, Ip) (4.11a)
2 a2 (ol _
ATy BJ; 2 (5) Afc . (4.11b)

Within a coherent state, this uncertainty relation assumes the minimum allowed

value.

12. Generating Functions: these generating functions play the same role
in atomic physics that the functions (3.12) play for the electromagnetic field.
They are derived in substantially the same way. For example

<;9| exp(a_J_) exp(a,],) expla,],) ;qs)

= (eostie)” £ Hexp((r*+a) ]) expla,]) exp((m +a,) )] _;)

5 )

%6) (_;l exp (( )'I+) exP(a;]:,) exp (( )ff_)| -;)

= (cos

_ 2, 2§ L | * 2§
= (cos” 50) {exp(-%a,) + exp(%a,)(a_+T Ya, +7)} . (4.12)

All such generating functions can be expressed succinctly as the 2j~th power
of the trace of a product of two matrices, one of which depends only on the

parameters &, the other only on the parameters ai_.13

V. RELATION BETWEEN ATOMIC AND FIELD STATES

The field states described in §III and the atomic states described in
§IV have an extremely close formal resemblance. This resemblance is empha-
sized in Fig. 2, which indicates how the Dicke and Fock states are related
to the Bloch and Glauber states.

This resemblance is not solely formal. Nor does it come about
because the treatments followed in §III and §IV follow the same basic pattern.
Rather, it comes about for the following reasons:
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i)

i1)

ii1)

Field Atomic
System System
Diagonal Fock Dicke
State s
Coherent Glauber Bloch
States

Fig. 2. A Rosetta stone for the terminology of Quantum Optics

The dynamical group for the single field mode, which is H, , and the
dynamical group for an ensemble of 2-level atoms, which lS U(2), are
both 4-parameter Lie groups.

Field coherent states exist in 1-1 correspondence with coset repre-
sentatives H, /U(1) ®U(1), which is essentially the phase plane of
the harmonic oscillator. Atomic coherent states exist in 1-1 corre-
spondence with coset representatives U(2)/U(1) ® U(1), which is es-
sentially the Bloch sphere.

The groups U(2) and H, and their cosets, the Bloch sphere and the

oscillator phase plane, are related to each other by a group contraction
process .4 15

When the non-singular transformation (¢ # 0 in 5.1) is performed on

the generators ] of the group U(2), the new basis vectors b obey the
commutation relatlons given in (5.2).

- = - - - -

b, c 0 0 0 3

b_ 0 c 0 0 T_

bl o o 1 172

4, 0 0 0o 1 _]d (5.1)
(b, ,5,] =+b, (b,,5,] =0

(by,b_] =-5_ (b, ,5,] =0

(b_,b,]

|
bl
1
[
2
L]
)
L |
L8
-
ad
I
(=1

{(5.2)
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Although the transformation (5.1) becomes singular in the limit ¢—0, the
commutation relations (5.2) remain well defined. In fact, in the limit ¢ — 0,
the commutation relations for the Lie algebra v(2) become the commutation
relacions for the Lie algebra h_.

It is useful at this point to define the following limits:

y(£)/c = A()
AE ~da . (5.3)

% exp (=ip)B/c = a

In the limit ¢ = 0 the hamiltonian (4.1) becomes equal to the hamiltonian
(3.1) up to a constant additive term:

DEJ +y () ], +y ()]
= OE (by- (b, /2¢)) + (v (/) (c] ) + (' (/) (c] )
:-B.fwbsi-)\(t) b, + A () ‘Ea_-—(mi/zc");b0 . (5.4)

In addition, the BCH formulas valid for U(2) (4.7) can be contracted to the
corresponding BCH formulas, valid for H, (3.7).

Properties 1,2, and 7 of §III and §IV are the only properties described
that depend exclusively on the abstract group dr on its algebra. The remaining
properties (3-6, 8-12) enter into the discussion of the physical systems
through their unitary irreducible representations.

Accordingly, to treat these remaining properties, we must contract
the representations of U(2) to the representations of H,. Here we encounter
a slight difficulty.”"® The group U(2) is compact,'® and has only finite di-
mensional unitary irreducible representations. The group H, is non-compact,
and so has no faithful finite dimensional representations. Therefore, we
choose a sequence of larger and larger representations of U(2)as c becomes
smaller and smaller. In this way(jTe as ¢ 10) we can construct a faithful
unitary irreducible representation of H_ from the well-known'® unitary irre-
ducible representations of U(2) .

We will take this limit in a way that is transparent from a physical

viewpoint, by insisting that all cnergies be measured from the ground state.
Then
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Lim bsf_;) Lim (7, +(J /2¢%) l_:)

Lim(-j+1/2c2)| ’) (5.5)
=

In order for the limit to be well defined, we demand j1> and c 10 as follows:

i = 1/22 (5.6)

In this limit all the remaining properties 4.3-4.6 and 4.8 -4 .12 for the atomic

system contract immediately to the corres ponding properties 3.3-3.6 and
3.8-3.12 for the field system.

As an example of this procedure we contract the non-orthogonality
relation (4.9a) to the non-orthogonality relation (3.9a):

‘ <f9,¢, |‘;¢)2 {cos %6’ cos 46 +(exp(—:'¢>') sin '/249')‘(exp(—iq5)sin '/219)}2’

2 1/c? ;
~{1-%c2|a' | =42 ’al2 tca'*a} © = exp (a’*a-%(a'"a' +a*a)) .

(3.9)

The remaining contractions proceed in an analogous fashion. This con-

traction mechanism is summarized in Table 1.

TABLE 1

Relation between the U(2) labels and the H4 labels
in the contraction of the Bloch sphere to the oscillator phase plane.

Group Operators

Coordinates Eigen Eigen Coherent
values states states
e e
u(2) el tiel. (0/2¢) exp(-ich) 2jé? lf) !j )
m 8¢
2
Iyt In/ZC itm Dicke Bloch
H t
4 a a a 1 n> ra>
a'a

n Fock Glauber
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VI. APPLICATIONS OF ATOMIC COHERENT STATES

The field coherent states (§III) and the >romic coherent states (5IV),
which are so closely related (§V), have a number of useful properties in
common. Since the usefulness of the field coherent states is firmly es-
tablished*™®, we present here some physically useful applications of the
atomic coherent states.

The two applications which we discuss involve the approximate so-
lution of the Hamiltonian (2.1), and the construction of thermodynamic par-
tition functions for a large class of spin Hamiltonians.

Both applications depend in a crucial way on the overcompleteness
of the atomic coherent states. Let G be an arbitrary operator acting within
an SU(2) invariant subspace of dimensionality % +1. Then G can be expressed
in terms of Dicke states (4.3), as

e=331) (.1el’) (1. (6.1a)

2
The (2j +1) matrix elements <m'|G ‘m> are in general independent.
The operator G <an also be expressed in terms of the coherent states

(4.5), as
3 2 I} i i f f
G =((2 +1)/4m) [ a0 jmlg,) ('Q,Icl_fg) AT

It is a remarkable fact that, because of the overcompleteness of the states

‘ ;2 the kernel in (6.1b) can always’ be chosen to be diagonal :

G =((2j+1)/4m) [dQ|Q>G@)<Q] . (6.2)
The kemel G(Q2) is a c-number function defined on the surface of the
unit sphere. As such, it can be expanded in terms of spherical harmonics.

00 +l

¢=3 3 4v@. (6.3)

I=0 m= -1

The function G(Q) defined by (6.2) is not unique. Any other kernel G'({)
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oo +] 1.1
G'@=3 I pY(Q) (6.3)

I=0 m= -]

2 it
defines the same operator G provided only that the lowest (2j +1) coefficients
appearing in (6.3) and (6.3’) are equal.”

~l§m&+1 0€1K2j 6.4)

Two kernels G({}) and G'(Q) differing only in their “Fourier coefficients”
with / > 2j describe exactly the same operator G. Such repre sentations of G
may be said to differ by a “gauge transformation”.

The importance of the coherent state representation to physical ap-
plications lies in this: For any operator G acting within an SU(2) j-invariant
subspace, it is always possible to construct a diagonal representation (G((2))
vithin a coherent state representation. Then all equations and manipulations
involving the operator G become simply c-number equations and operations
involving the function G(2).

In order to make contact with quantum optics experiments, it is
necessary to know the implications of (2.1). This does not mean that it is
necessary to solve (2.1). Rather, it is only desirable to determine the densi-
ty operator O(t) for a system governedby (2.1). The construction of the
density operator from its equation of motion '

(¥, 0] =i#90/0t (6.5)

is facilitated by the coherent state representation for the field system and
for.the atomic system.
This comes about for the following reasons:

If the atomic system behaves classically, so that (2.1) simplifies to
(3.1), then the system evolves into a coherent state (cf. Fig. 1). Asa
result, the density operator becomes a delta function in the field coherent
state representation. If the atomic system is nat “too quantum mechanical”
in nature, then we should expect the field to evolve into a superposition of
coherent states containing only a “small” number of coherent states.

Conversely, if the field behaves classically, so that (2.1) simplifie s
to (4.1), then the system evolves into a coherent state (cf. Fig.1). Asa
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result, the density operator becomes a delta function in the atomic coherent

state representation. If the field system is not “too quantum mechanical”in
nature, we should expect the atomic system to evolve into a superposition

of coherent states containing only a “small” number of coherent states.

As a result of these intuitive considerations we would expect the
coherent state representation to provide a useful mechanism for treating the
master equation (6.5).

The density operator 0 can be described in many representations. In
the diagonal representations (3.3) and (4.3) it is given by

p=2|n'm'><n'm"p|nm><nm| (6.6)

Since experiments are usually designed to treat only the field part of the total
system, or only the atomic part of the total system, it is more useful ta con-

sider reduced density operators treating only the field subsystem or only the

atamic subsystem. These reduced density operators are obtained from (6.6)

by taking the trace over the uninteresting subsystem. Thus

£ (D) =Trgp(r) =X X |m"><m'|p|m><m]| ,

where (6.7A)

<m'|plm> =3 <am'|p|om>
/]

Pp(8) =Tr pr) = 2 % ln'><n'|pln><n]|
n n

where

(6.7F)

<n'1,0|n>=2<n'm|ptnm>
m

As might be expected, the reduced density operators are not unrelated.
In the superradiant regime!” they are related through the moments of their
respective shift operators according to
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Trp (a' )'aspF (1) = (- ig/ﬁx)‘f( - ig/bx)s Tr, I ]f,oA(t) (6.8)
1>k = 2/c

where k™' is a photon transit time in a superadiant cavity of length /.

In many instances® the reduced density operator is essentially assumed
to be diagonal in the Fock of Dicke representation, and then the time de-
pendence of the diagonal elements PE pn () or pA’mm(I) is determined. While
this approach provides a useful first approximation, the dynamical information
contained in the off-diagonal matrix elements is lost.

Under a large variety of conditions, ! it is possible to choose the

reduced density operator pp (¢) as a diagonal matrix within the coherent state
representation:

pp(t) = [@*a/m)|a>Ria;H<al . (6.9F)

We have seen above that it is always possible’ to choose the reduced densi-
ty operator 0, () as a diagonal matrix within its coherent state representation:

£ ) =25 +1)/4m) [aQ] 51} P(OB;0) (6; : (6.9A)

Under these diagonal ansatze, the operator equations of motion for
the reduced density operator become simply ordinary c-number partial differ-
ential equations. In fact, they become Fokker-Planck equations. For the
reduced density operator pp, (¢) we find

9R(a,a*;1)/3t= [((3/3a) a+(3d/3a*)a*) {(K—’)fl)'i' y”la‘a} +
+ 49 (3/9a"X3/9a)] R(a.,a®; 1) (6.10F)

where the parameters 7, s ¥n1» and g describe the linear gain, the nonlinearity,
and the fluctuations in the atomic system, respectively.?”® For the reduced
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density operator o, (#) we find?!

3Q(8;1)/3t = [(3/36) (j sin@ + % sin H(1 + cos O ') +
+(3/36%) 5 (1-cos9)] Q6;1) , (6.10A)

where we have assumed an azimuthal symmetry and have set
Q(6;1) = sin wadcﬁ P(Gp; t).

It is clegar from inspection of (6.10F) and (6.10A) that the drift coef-
ficients 2Re a {(k-%) +7%,;a"a} and {jsin 6 + % sin 6(1 + cos 6)""}
drive the distributions R(a; ¢) and Q (F;t) over the surface of the oscillator
phase plane and the surface of the Bloch sphere, respectively. The diffusion
coefficients 4 and % (1- cos &) are responsible for the broadening of the
respective distributions.

The coherent state representation has also been used by Lieb? to
compute upper and lower bounds for a large class of quantum mechanical
partition functions. The thermodynamic partition functions for which this
technique is useful all involve the socalled spin Hamiltonians. These are
Hamiltonians for N separate particles which interact only thtough their associ-
ated angular momenwum aperators ]1 (f=1,2,...,N). These Hamiltonians
need not be linear in the various spins, nor must they involve spins in only
pairwise combinations. This class of Hamiltonians includes, as special
cases, the Heisenberg model,? the Ising model, ** and the Spherical model.”

In this particular application of the atomic coherent state representation,
let G be an operator that acts within an sv (2) j-invariant subspace. Two
kemels g (1) and G({)) are of interest

g =<ql¢la>

G =((2j+1)/47) [a0]|Q>G6Q)<Q | (6.11)

in particular, we have that

Te 6 = Te ((2 +1)/47) [dQ|Q > 6@Q)<Q| = ((2] +1)/47) [dQ G(Q).
(6.12)
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When G is an operator of the form (v *J) , then g(€}) and G(Q2) are
remarkably closely related. To highest order in powers of j they are given
by

@ =(|v]y "+ 6" (6.13a)

@) =([v])' G+ + 6 Gy . (6.13b)
Thus, for example 2

s20@) = j?cos® B+ 47 (1~ cos?0) = j? cos? 6

S2@) = (j+1) cos® B- % (j+1)(1- cos? 8) — (j+1)Y cos’6 . (6.14)

The quantum partition function is

M
ZQ =Trexp (~8H) . (6.15)

This can be expressed

N

[ [(dQ,/4m) <Qy | exp(- A1) |y >

i=1

7
=Tr exp(=BH) = Tr lim (f—(l/n)ﬁH) ; (6.16)
ntoo

For the first term in this equality, we have

N N
1 J@Q;/4m)<Qy | exp (-p) Q>3 T [(@Q, /4m) exp(-B<Qy |H|Qy>)
1= =1
(6.17)

by the Peierls-Bogoliubov inequality (<¢| exp(X)| > > exp(<p| x| p>) .
The term in the exponential is
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<QHIQy> =5 Qy) 6 (6.18)

and under the replacement (6.13a), allowable by the assumption that H is a
spin Hamiltonian, we have that the right hand side of (6.17) is simply the
classical partition function

N
0 [(dQ/4m) exp (~Bp@y) = 2% G 1 iy oo v i) (6.19)

i=1

to highest order in each value of j, .
On the other hand, for the third term in (6.16), we have

N n
: . B s ) i - <
Tr Lim(1-(1/m) fH) =Te T [(4Q; /4m) 1;_1‘::{[9,”>(1 (1/n) BHS ) <Qy |}

n —+o0

N 7
STe T JdQ/4m {| Q> Lim (1-1/m) BHQ ) <Qy [}
t=1 n—too

(6.20)
by the Schwartz inequality. The limit in the last term in (6,20) is erivial and

leads to the classical partition function

N
Te 11 [(dQ,/4m)|Qy> exp (-BH@y ) <@y =

=1

N
= 0 [@9,/4m) exp (=BHQ) = 27/ G+ 1,7,+1,.. iy +1)
i=1
(6.21)
to the highest order in each value of j; .

As a result of the inequalities appearing in (6.17) and (6.20), we

have

N N
Iﬂlj(a’ﬂi,/frn)exp(—ﬁb(QN))<Tr exp(-BH) < [T [(dQ,/4m) exp (-H(Qy))
1= i=1

(6.22a)
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2%, i) €2 < 2% 41, iy D) (6.22b)

When each operator IJ'i in z2 is replaced by the corresponding normalized

operator Ji/(Ji «J¥)® as.in various Spherical model Hamiltonians, and each
J; 7>, the left and right hand side of (6.22) become equal, giving a precise
value for the quantum partition function.

VII. DEFINITION AND GENERAL PROPERTIES OF COHERENT STATES

Coherent states were originally defined by Glauber* 3 for the electro-
magnetic field. Glauber found three equivalent ways to define field coherent
states:

M1. A coherent state is obtained by applying the unitary translation
operator U(a) to the ground state (3.5):

|a> =U(a)|0>= exp(aaT—a*aHO) >
M2. A coherent state is an eigenstate of the annihilation operatar @ (3.6):
ala>= ala>

PL. A coherent state is obtained by applying a classical driving current
to the ground state of the electromagnetic field.

The procedures M1 and M2 are mathematical; the procedure M1 is the mathe-
matical representation for the physical procedure P1.

The three procedures M1, M2, and P1 are equivalent for the electro-
magnetic field because of the particular commutation properties of the field
mode operators aTa, aT, a,1(3.2). For systems described by operators
with different commutation relations, the three procedures M1, M2, and P1
are not all equivalent in general.

In order to extend the extremely useful coherent state conc €pt to more
complicated systems, it is necessary to generalize one of the two incompatible
procedures M1 or M2.

It is ac first sight attractive to use the concept expressed in M2 as a
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basis for defining coherent states for arbitrary systems. For eigenvalue
equations play a prominent role in the quantum theory. % 1In this instance
the eigenvalue equations are non-hermitian and the elgenvalues are complex.
This approach has been adopted by Barut and Girardello? in discussing “new
coherent states” associated with the spectrum generating algebra su (1, 1).
Adoption of M2 as a basis on which to generalize the coherent state
concept suffers from two major drawbacks, the first mathematical, the second

physical:
1. Coherent states could not be defined in Hilbert spaces of finite di-
mensionality.  In particular, this would preclude construction of co-

herent states for compact Lie groups. Moreover, the states defined
in this way have few useful properties, and in particular they are not
computationally useful.

2 The states so defined do not correspond to physically realizable
states, except under the special circumstances that the commutator
of the annihilation operator @ and its hermitian adjoint a isa multiple
of the identity operator. Under these conditions we have restricted
ourselves to the electromagnetic field.

In attempting to generalize the concept of coherent state, it is much
more useful to use M1 as a point of departure. Then the mathematical ob-
jections raised above (#1) are automatically eliminated. In addition, since
M1 is the mathematical representation for P1, the physical objections raised
above (#2) are also eliminated.

We now proceed to define coherent states.

Let G be a dynamical trans formation groupfi e., S-matrix) which acts

by means of a unitary irreducible representation I_‘ (G) on a Hilbert space | 'H
Since F (G) is irreducible, M)\ is an invariant subspace under G. Let | ref > e\d

5 3
be an arbitrary reference state in M, which is normalized to unity: <ref|ref>= L.
Let HC G be the stability group of | ref > . That is, H leaves 1 ref > mvariant
up to a phase factor or modulus unity:

rl(b)lref>=|ref> exp (iy (b)) (7.1)

bheHCG

Then the action of an arbitrary group element g€ G on the reference state
[ref> is given by
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"y \ %
F?'(g);rep- - r‘?(cb)[rep =T A (h)|ref>

= r}‘(c)[ref> exp (iy () = | ¢ > exp (i (h))
gEG cE€G/H

bheH | eem®

. Ao .
The states r}\fc)|ref>5 [c> €M exist in 1-1 correspondence with the
coset representatives c€G/H. The states l c > are on the orbit of |ref>

A 3 A : .
under [ (G/H). Moreover, since [ (G) is witary, the states |c> are norma-
lized to unity:

A
<c’c> — <ref’F (c_l)r'x(c)lref> = <ref |[ref> =1,

The states |c> are not orthogonal and they are overcomplete. States of
the form

MG /)| ref> (7.3)

should therefore be considered as candidates for generalized coherent states.
Before defining coherent states in general, we look at the spectrum of proper-

; A
ties that the groups G,H, the representation [ (G) and the reference state
lref> may possess,

A. The group G may be an arbitrary dynamical transformation group. Or
we may impose sufficient additional structure on G so as to make jt a
finite dimensional Lie group. We may impose furth er additional
structure and demand that G be compact.

A
B. The unitary irreducible representation [ (G) may be arbitrary. By

A
imposing additional structure, we may demand ["' (G) be square inte-
grable. Finally, by imposing a great deal of additional structure, we

could demand that [ (G) be finite dimensional.
C. The reference state |ref> of norm unity may be an arbitrary state

arb > in M?\. By imposing additional constraints, we could demand
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that it be an eigenstate Idiag> of some unperturbed Hamiltonian Ho'

Finally, we can impose yet more structure and demand that it be an

extremal state | ext > in M')\. An extremal state (for example, the
ground state | gnd > = | 0>)isa state annihilated by a maximal sub-
algebra of the algebra (not necessarilya Lie algebra) generating the
dynamical transformation group G. If G is a semisimple Lie group,
then

|ext> = 'SMb>

where MJIJ is the highest weight®® in M?\ and S€W, the Weyl group?® of
g

The stability group H is completely determined by the choice of G,
]_'7\(6), and |ref>. H is a closed subgroup of G which may be compact

or non-compact when G is non-compact, but which must be compact
when G is compact.

This spectrum of possibilities is summarized in Table 2.

TABLE 2

A . .
Spectrum of possibilities available for {G,I"", | ref>, H } in constructing a
useful definition of generalized coherent state. Within any given row,

the amount of structwre increases in going from left to right.

Amount of Structure Assumed
Level Refers to 1 2 3
A G dynamical trans- Lie group compact
formation group
B A i
r arhirrary unitary square ~integrable  finite -
irreducible repre - Cﬂ dimensional
sentation
c | ref > arbitrary, normalized ecigenstate of N exwemal
to unity diag > ext>
| arb> ulsnd>=|0>
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Definition: with the notation as described above, the coherent states associ-

A
ref >, H} are the states on the orbit [ (G/H)|ref>

A
ated with the system {G,["",
provided:

Al: G is a dynamical transformation group;

A s
B2: I is square integrable;

C3: |ref> = ]E‘Xt > is an extremal state.

With this definition for generalized coherent states, we are in a po-
sition to examine each of the properties #1-12 discussed in $III and §IV for
two particular systems. Some of these properties depend only on the dynamical

; A :
group G(#1,2,7), others depend on the representation [ (G) and the choice
A
of reference state. That is, some properties (#3) are valid for atbitrary [,
some (#10) depend on F?\ being square integrable, while yet others (#13)

require [ to be finite dimensional. Some properties of coherent states
(#9) are valid for arbitrary reference states, others (#3) require the reference
state to be diagonal, while still others (#11) are valid only when the reference
state is extremal. In Table 3 we summarize the properties of general coherent
states, including a summary mathematical characterization for each property,
as well as a statement about the amount of math ematical structure required
for the property to be valid. In this Table we have included a thirteenth
property suggested by the non-rivial applications of coherent states de scribed
in §VI.

Perelomov? has adopted a definition for coherent states similar to
the one presented here. The definitions differ ‘essentially in the amount of

: : . " A ;
mathematical structure required in determining G, ['", and |ref>. These differ-
ences are summarized in (7.4).

In this work Perelomov?®®
G Al A2
A
IV ‘B2 Bl (7.4)
| ref > c3 c1

These differences in detail lead to some differences between the ap-
proach presented here and that of Perelomov:

A. Perelomov’s more restrictive choice for G allows alway s 3 for the
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Property
Number

0.

11.

TABLE 3
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SUMMARY OF PROPERTIES OF GENERAL COHERENT STATES

Mathematical
Structure Required

Al

Al

A2

Al,Bl1,C2
Al,B1,C3
Al,B1,C3
Al, Bl €1
A1,B1,C1
Al,B1,C2
Al,B1,C3

A2’
Al,B1,C2

A2",B1,C3

Al,B1,Cl1

Al,B1,C3
* .
A2 ,B2°,C1

A2°,BL,C3

A2,B1,C3

A3",B3",C1

Property Name

Model Hamiltonian

Commueation Relations

Diagonal States

Ground State

Unitary Transformation

Eigenvalue Equations

BCH Formulas

Eigenstate Expansion

Non -orthogonality

Over-completene ss

Uncertainty Relations

Generating Functions

Diagonal Representation

Mathematical Summary of Properntv

Hot Mo =40, ()H +i(D, (NE,+D_(NE)
lo.9l ¢y

lg.9] Cq

H,,B,.B.

span g
[M> =~ (B, +E) | diag>

[mM> > (E+)M|D>

E|0>=0

|Q> = exp(@+ E)|ref > = U(Q)]| cef >

U(Q) {Invariant Operators }U™ (@) Q> =Tav [0 >

U(Q) { Diagonal Operators}U™"(@) [0 > = Eig 0>

U(Q) { Annihilation Ops. }U@)|Q> = 0 [@>

exp(Q« B) = exp({},E,) exp({} H) exp((}_E)
> =3cM) (g +E_)~|di >
M .

= exp(,E,)| god > N(Q,)
<2 lﬂ'> = <ref IU{ﬂ'lﬂ' )‘tef >
= U, ()exp (iy(h); Q' =ch

A
dim[” 7‘) G/H A =]
wl{a?u)“ﬂ Melt ) <9I

A(Re E;)z Alm E; )2 = minimum
E; = U@) E,UT'@)

F(A,0Q) =<Q] expa-E|Q>

. A
x = dimD )f|n>xm)<niip(m

Vol (G/H)

'Requircmcnls labelled with a * may possibly be relaxed somewhat.
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construction of BCH formulas (#7,10,12). Since Perelomov does not discuss
BCH formulas,his more restrictive requirement on G does not lead to any
sharper results.

P, The square-integrability requirement adopted here guarantees the
existence of over-completeness relations (#10). Without this requirement
(Bl instead of B2), property #10 may not be valid.

C. The demand that 1ref> be an extremal state guarantees the usefulness

of BCH formulas as a computational device. 3!

Thus, this restriction
(C3 as opposed to 1) is useful in the discussion of those properties de-

pending on the application of BCH formulas (#8,9,11,12).

In practical applications, we generally adopt the more restrictive
requirement A2, since we do not yet know how to construct BCH formulas
simply under only the requirement Al. In practice, Perelomov adopts also
the more restrictive requirements B2 and C3 in place of Bl and C1:

Present Work Practical Perelomov
Applications
Al A2 A2
B2 ———p B2 e Bl
C3 3 €1

In closing this section, finally, we prove the following important
theorem. This theorem provides a kind of selection rule far coherent states,
and is responsible for the usetulness of coherent states for describing physical
processes.

Theorem: if a syster: is originally in a coherent state, then it will
evolve into a coherent state.

Proof: Assume the original system state is c1>:

| €7 = Fl(cl)l ref >

Then during a time interval A7 = t,-t it will evolve under an element g of
the dynamical transformation group G. The system state evolves into

A
I (g)|c1>= Fl(gcl)lref>=r?\(czb)|ref>= c2>exp(:”y(b))
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g Ea

b el

c\’CIEG/H

be.>, e, > em™ (7.6)
| 1 . 2 i -

We point out that this proof is very general: the level of mathematical structure
required for this theorem is (Al, B1,C1).

VII. APPLICATION TO SUPERFLUID SYSTEMS
We now apply the considerations of the preceeding section to the de-

scription of a superfluid system. The Hamiltonian describing a system of N
bosons interacting weakly with each other is¥

H=H +H¥

0 pert

- i T
ﬂo—fekbkbk Ek—‘ﬁk /2191
_ e
R = /aEPZqkap,rkbq_kbﬁbq. (8.1)

Here, JE(O describes the kinetic energy of the non-interacting bosons. The
term € = #°k?/2m is the kinetic energy of a boson with momentum #k in mode
k. The perturbation term ¥ ore describes the scattering of two bosons out
of the momentum states (p, q) and into the momentum states (p+k, q-k). The
creation and annihilation operations obey the usual commutation relations:

[bp,bL] =8 o - (8.2)

This scattering proceeds through an interaction potential V(x) whose Fourier
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components are Vi . We will also assume ¥} = Vs
Coherent states for this system are obtained by applying the unitary
transformation operator

I

g =frexp(-(z‘/f;)flﬂ(:) dr) (8.3)
t
2

to the extremal state

gad> =110, > (8.4)

Here 7 is the usual Dyson time ordering operator®, and I?J > is the ground
state of boson mode k under the unperturbed Hamiltonian X .

The set of operators appearing in (8.1) does not close under commu-
tation, and therefore ¥ is not an element in a (finite dimensional) Lie algebra.
The dynamical transformation group G is thus not a (finite dimensional) Lie
group.

We therefore try to replace X by an approximate model Hamiltonian
which is an element in some Lie algebra, and for which the associated dy -
namical transformations (8.3) are elements in a Lie group. Under these
circumstances, the full power of the computational methods developed within
the context of Lie group theory! % canbe brought to bear on the simplified
problem. '

We make this replacement using the following observation. In a
superfluid system, the k = O state is macroscopically occupied at the expense
of states with k # 0. We therefore linearize the Hamiltonian N under the

following two assumptions:3*

|
%

1. the operators bi,bo can be replaced by the number N, ,where N, =<bl b
2. terms higher than quadratic in operator bi, by (k #0) may be neglected.

Under these two simplifying assumptions the Hamiltonian becomes

M= 5V NS + 2 (g + NV +N, V) b oy +

+EE N V(BB b ) (8.5)
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&
In these expresions, 2 indicates that the summation excludes the case

k =0 . The occupation number N in the ground state can be replaced by
the total number N of bosons present using

N=N+5"8lp . (8.6)

Within the terms of the approximation above the Hamiltonian can be expressed

L 2 ] ’
A =3VN +X (}io)k+2 (Jipm)k

(Ho)k =(ek+va)gfbk (8.7)
Hoa) = 5NV (BB +hby) .

Aside from the constant term, the hamiltonian is the direct sum of single
mode hamiltonians,

3= Eﬁiﬂk (8.8)
where each single mode Hamiltonian has the strucrure
M = (€ +NV) (Bl by + 86 )+ (8.9)

NV (B bl + b b))

As a result, the wave function |L,D > is a direct product of single mode
wave functions |l,bk Phig

|¢>=E|¢k> : (8.10)

where each single mode eigenstate obeys
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Ml =Bl |y > .

The Hamiltonian (8.7) is now an element in a Lie algebra, for the
operators appearing in (8.9) close under commutation .

t ot
N

;
Tk =Jeg = bpbog = bypb g

[]+k,]_k] [bikbjk’b+kb-kj
= i Voo
= - (bppbyp tb b)) =-2, (8.11)

The operators Jsk » J1k obey the su(1, 1) commutation relations.

Ugper Jepd = 2744

e Tad ==~20y . (8.12)
Moreover, operators belonging to different modes k commute

L g1 =10,0" 18 ¢ (8.13)

Since the algebraic treatment™ of each k (# 0) mode is identical, we
suppress the subscript k in the algebraic computations to follow. It is useful
to define the following hermitian linear combination s:

Il

L, =501 = 50] 8 +66)
J, =-%i(J,-]) = (1/2:‘)(1:15:[-”»(5-)

Jy =%blo,+616 +1) . (8.14)
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The se hermitian operators have the commutation relations
[.,3 * !1] == ijz
Uy ) = -4 =+
§ e Hy k k
Lo 2] = =il (8.15)
The difference operator A also has useful properties
_ it t, = A
A=bb -bb =N
[J,8] =0 . (8.16)

Since the operator A commutes with the J, it is:

1. Mathematically, an invariant which will serve to label the unitary

representations of SU(1,1).
2. Physically, a constant of the motion.

The single mode Hamiltonian (8.9) can be expressed as a linear super-
position of the elements J , J, in the su(1, 1) Lie algebra:

He=2Nvuj, - 4u ], K=(€+NV)/NV) . (8.17)

One of these two generators can be eliminated by applying the unitary transfor-
mation U(6) = exp (+i6],) to this Hamiltonian using

J, cosh & -sinh 6 T
exp (i6])) exp (-i0],) =
s - sinh & cosh&@ | |],

(8.18)
The transformed Hamiltonian is
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U(@) Hu' (6) = 2NV { (u cosh & - sinh 6) J, +
+(-u sinh@ +cosh6) J } - (e +NV). (8.19)

By a suitable choice of &, either J, or J, can be elimmated from the equation.
Recall that € —ﬁ2k2/2m il Thersfues

1. Atvaciive potential, V < 0:

tanh 6 = 45 U(O) NUT (J) = 2NV sechf] - (€ +NV) . (8.20)

2. Repulsive potenrial, V > 0

tanh@ = 1/p; U@)HU ' (6) = 2NV esch O], - (e tNV). (8.21)

The infinite simal generators ' and ]3 generate subgroups conjugare
to $§0(1,1) and U(1), respectively. Since J, is a non compact generatet, i
has a continuous spectrum. On the other hand J, generates a compact sub-
group, and therefore has a discrete spectrum. As aresult, there is an encrgy
gap between the ground and first excited state in the second case (V> 0),
which is responsible for macroscopic condensation into the ground state with
concomitant superfluidity.

In the superfluid case with hamiltonian proportional to J,, a lowest
lying state must exist which obeys

?

b b =1 . (8.22)
gnd

The hamiltonian eigen states must belong to a space which carries a semi-
bounded 3 35, % unitary irreducible representation of SU(1,1):

’j+

These representations are characterized by the eigenvalue j(j + 1) of the
Casimir operator
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L=li-L-n B l=o0. t8:23]

Since Cz commutes with the Hamiltonian, it must be related to the difference
operator A, which also commutes with §, and j is given by

j==%|Al=k . (8.24)

The effect of the diagonal generator J, and the shift operators J, on the

basis vectors I j) is given by
i ] )
T, > = ) 1/(7:'?‘1)(11 -2
” ntl
' § i _ _
L = Vn(n-2j-1) (8.25)
n n-1
i 7
&y = (n~f) R R . T

The energy eigenstates of the superfluid Hamiltonian are

E, =@n+1+|A]) E-(e +NV)

where H o =(& +NVY-(NV) . (8.26)

The eigenstates of the Hamiltonian (8.9) are

i
ue)|y,>= I )

i
|¢”>=U'1(8)’ ) _ (8.27)
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In particular, the ground state of (8.21) is the coherent state, obtained by
setting n = 0.

The ground state is constructed most easily by applying the appropri-
ate SU(1, 1) BCH formula. These BCH formulas are analytic continuations
of the SU(2) BCH formulas’*%'13:3! and have also been constructed explicit-
ly.* Applying the appropriate BCH formula, we find for the ground state

j l j 4
=Uu~ (@) = exp (—'/29(f+'].)),
gnd n=20 i

i
= exp(- tanh 56 J,) exp(~2ln cosh %0 J,) exp (tanh '/29]_)| >
0

i
Since ]_, > =0,
0
i 1
exp (tanh '/29]-) , = ] ; (8.29)
0 0
i i
Since ]3, =(—j)| ;
0 0

i i
exp(-2In cosh '/29]3, ) = exp (2j In cosh %8) I )
0 0

(8.28)

7 .
=| ) {cosh k&) . (8.30)

O
i)
0

tanh @ = NV/(e + NV) . (8.31)

The single mode ground state is therefore

7 27
, ) = {cosh 58} rexp(—[anh";t?blbj)
gnd
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The total system ground state of (8.7) is a direct product of single mode ground
states (8.10), each of the form (8.31):

; j (k)
| 2j(k) | &t
lgnd> =11 & {cosh 50(k)}" exp(-tanh 50(k) b}, 5", )
k+#o 0
_ (8.32)

Once the single mode coherent states (8.31) have been obtained ex-
plicitly, it is possible to show their non-orthogonality and over-completeness
explicitly. Instead of doing this directly, we first compute a useful gener-
ating function. To compute the moments of the operator J,, it is sufficient
to compute the derivatives of a simple generating function:” 13- 3

<0'l)* | 6> = (W/da* <6'| exp(ay,)| 6> |

(8.33)
a=0
where
2f !
|9>:{C0$hl/28} (-xp(—tanh'/zg_h)l )
0
25 i )
<8'| = {cosh 56"} , ) exp(-tanh 50']) . (8.34)
0

Arbitrary moments (k non-integral) are computed in the usual vay.

It is more convenient to determine a more general generating func+ion

than the one introduced in (8.33). This function is

f(@,B,% = <6'| exp(al, +BI. +7])|6> . (8.35)

This generating function is, moreover, easy to compute, for

f(a,B,y) ={cosh '/29'}2] {cosh '4!9}21‘ x

]
x( Iexp(-— tanh %60°']) exp(aJ, +BJ. +y],) exp(- tanh 56],)
0

)

(8.36)
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Applying now the appropriate SU(1, 1) BCH relation gives
ey L oy
fla, B, %) = {cosh %8’ cosh 46}
)i 7
l exp(x’]+) exp(=2In z],) exp(x]_), )
0 0
2 [7 ]
= {cosh 48’ cosh %6} exp(-2ln z/J,
0 0
. a5 2§
= {cosh 48" cosh 46} (z) ! (8.37)
The function z is given by
- tanh %60’ tanh 50 - tanh 50" |[coshw +%7y shw/w ashw/w
z=Tr
tanh %0 1 -Bshw/w coshw-%yshw/w

2
w?=(%y) -af . (8.38)

From this generating function we easily compute

k k
<6'|(.) 16> = (@/dpy 1(0,8,0) -

0
. 27 k i 27
= {cosh 58’ cosh 40} ' (d/dB) {1-(- ) tanh 46 - tanh %6’ tanh %6}
k 25 -k
= (cosh 50" sinh 50) (["(2j +1)/T°(2j +1- &) {IN} (8.39)

IN = cosh %468’ cosh %40 - sinh 40’ sinh %6 . (8.40)

In particular, the inner product <£9'| 0> is determined by setting £ = 0.

Now we show that the identity operator can be resolved in the co-
herent state representation. We construct the operator
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I la>1<qldu/n . (8.41)
QcG/HI | w

. . . ’
This operator commutes with the action of all elements g'€G:

ey [ le><ala@
QeG/H

=" [T @ |0><0|FNa Y du @)
Q

A
=" (1/vol () [TN@R | 0><0 | P G6~'aY djL (Qb)
?.\ . A oA
= (1/vol () [T (g 'g) [0><0| T (g™") . (g)
A M A -1 pal ’ A t
=(1/vol(m) [T (g'g)| 0><0|T" (g7 g Ndug’'e) (g"h

x
={ [ la><a|ldu@)re’) . (8.42)
QeG/H

As a result, the operator (8.41) is a multiple of the identity

fla>1<alau@) = yud (8.41)
94

and ¥ can be computed by taking the 00 matrix element

<ol fri@lo><o|r*@ ") |0>du(@) = y<o|1a]0>
Q

A 2
J @] du6/my =y . (8.43)
G/H



Properties of coberent states. .. 185

X AL . :
This exists whenever [ is square integrable. When G is compact, the

resolution of the identity has the form given explicitly in Table 3,
The resolution of the identity for SU(1, 1) has been given explicitly by
Perelomov:®

-2 +D7 19> 1<0ldu @) =1d . (8.44)

The integral is over the hyperboloid SU(1,1)/U(1).
The results presented above are valid for any physical system whose
dynamical transformation group is SU(1, 1), or a direct product [ISU(1, 1).

IX. SUMMARY AND CONCLUSIONS

The properties of field coherent states, originally introduced as a
useful system of vectors in terms of which to represent physically occurring
states of the electromagnetic field, have been studied from a group theoreti-
cal point of view. We have been able to find a group theoretical interpre-
tation for each of the properties (8111, #1-12) which make the coherent states
such an attractive mathematical representation for certain phj;sical systems.

These properties have been applied to the description of an ensemble of
N identical 2-level atoms interacting with an external electromagnetic field
(§81V). The treatments given in §III and §IV are extremely similar in nature.
This similarity exists for 3 reasons:

1. The procedure described in §III is related to the procedure described in
§IV by a group contraction process. This is shown explicitly in §V.

2. The problems described in §III and §IV are essentially duals to each
other. This duality has suggested several non-trivial applications of

the newer atomic coherent states. Two such applications are outlined
in §VI.

3. The calculations carried out in §III and §1V are special cases of a much
more general procedure for constructing coherent states. Such states are
A
defined in §VII as states on the orbit [ (G/")|ext >, where |ext> is an
extremal state (i.e., ground state) in a Hilbert space M?\ which carries a

s : 5 ; A
unitary irreducible representation [ of a dynamical transformation group
G, and where H is the stability group of |ext >. The properties of gener-
alized coherent states are outlined in § VIl and presented in Table 2 and
Table 3.
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Finally, in §VIII the coherent state concept is used to treat the
Foldy model for a superfluid system in a simple and elegant way.
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RESUMEN

Se obtienen estados coherentes aplicando una transformacién unitaria
dinamica a un estado extremal en un subespacio invariante de un hamiltonia-
no mecanico cuantico. Las propiedades de los estados coherentes quedan
completamente caracterizadas en términos matematicos. Ademas, probamos
el siguiente teorema que es muy dtil. Un sistema fisico inicialmente en un
estado coherente, o en particular en su estado base, evolucionara a un esta-
do coherente. Damos varios ejemplos de la utilidad de los estados coheren-
tes.



