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ABSTRAC1: Cahecent states are obtained by applying a dynamical uniraey
transformarían to aD exuemal state in aD invariant subspace

oí a quantum mechanical hamiltonian. The properties oC Ca"

herent states are completely characrerized mathematically.
In addition, we prove the folIowing" very useful rheorem: A
physical system initially in a éoherenr state, oc in particular
in ¡es ground srare, wiU evolve ioto a caheceO[ srate. We give
variolls examples oí che uciliry oí coherent states.

1. INTRODUCTION

A large number oí quantum mechanical rnodels have the following
propertics:

1) The gross energy level structure is defined by a seaeic hamiIeonian;

2) Pereurbacions can be wriccen as a linear superpos icion of shife oper-
acors;

3) The seacic harnilconian and che shift operacors close under cornrnutation
and forrn a finice dimensional Lie algebra.
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\tle define coherene states with respec( to a Líe group G, a stability
st1>group 11, and an irreducible representarían ff..(G) , as (he state obtained
byapplying rhe operalorr"(G/H)loanexrremal slale (e.g., lhe ground
state of [he unperturbed harniltonian) in [he invariant subspace oE G charac~
terized by [he quantum numbers ".

Such coherent states have a11 (he usual properties of che f¡cId ca-
herenl slares. Baker-eampbell-Hausdorff formulas, depending only on G
and nO[ 00 rA, can be constructed and used [O simplify calculations.
The coherent states themselves are non-orthogonal and over-complete
within any ¡ovariant subspace. Undee an arbitrary perturbati<n, a system
which is initially in a coherene state, oc in particular in ies ground statc,
will evolve into a cohereot sta(c.

These statements are valid whenever (he dynam~al transformadon
group Gis compact, or if Gis non<ompact, whenever r is semi-bounded.

In gIl we describe the forces motivating the search Cor generalization
of the cooerent s{ate concepto This is directly related to {he extreme useful-
ness and lhe widespread applicabililY of lhe f¡eld coherenr Slares. lhe
¡xoperties of these state5 are reviewed in UII. These mathemat ral mecha-
nisms are applied, in gIV, to the construction oí the atomic cooerent states
for an ensemble oC 2-level atoms. The extreme similarity between the lield
cooerent states described io gUI, aod the atomic cohereot sta tes described
in glV, is made manifest by a group contractioo procedure in gV. lo this
process the Bloch sphere (describiog atomic coherent states) is cootracted
lO lhe phase plane of ,he harmonic oscillatrr (desclibing field coherenr slares)
lo 9VI we iIlustrate the utility al the atomic coherent states by indicariog
how they have been used to solve ooo-trivial problems.

In gVII we returo to a general discussion of the propenies ol crnereot
states, and in panicular we prove the theorem stated in the abstracr. Finally,
we apply th is fcrmalism in gVIII to rotain a swift solut ion to a particular
model of a superfluid syslem.

11. BACKGROUND AND MOllVATION

What are now called the field cohereot states were first discussed by
SchrOdinger1 in connectiQo with the semiclassical limir o(rhe quantum mecha-
nical harmonic oscillator. They were later used by Bloch and Nadsieck2 ro
trear the '"infrared catastrophe." The pr operr ie s ol the s e state s were then
lermalized by Schwinger.3 Finally, Glauber4•5 inrroo.uced these states under
rhe name "cooerem states," iota Quanrum Optics.
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Bccause of rhe intimare reIationship berween coherenr srares on rhe
one hand, and rhe ourput of a laser caviry on rhe other, field coherenr sra res
have mainrained a central posirion in rhe deveJopmenr of Quanrum Oprics
sincc thcir introduction by Glauber in 1963.6

Quantum Opticsinvolves the descrip:icn of tite inreracdon between N
atoros and an electromagnetic field confined to a cavity of Einite volume. A
suirable model hamiItonian foc such a sysrem is

(2.1 )

In this express ion, a¡ and Qk are the Bose creation and annihilation oper-
ators 1m pholons in lhe field mnde k. and S,( ')' St(j) are lhe angular momenlum
operators describing the atoro Iocated at posirion x¡ as a 2-Ievel sysrem.

Equa' ion (2.1) has nOI yel been solved in general. In particular. ,he
opcrarors appearing in this equatioo do not close under cornmutation, and as
a result do not form a finue-dimenslonaJ Lie algebra. As a result the pro-
cedures described 10 the introduction are not directly applicable to this
hamihonian.

If ,he "alomic par!" 01 [he sys[em described in (2.1) behaves c1assically,
so rhar rhe operators S.,( ') , St{.) can be replaced by c-number driving fields,
rhen rhe resulring hamillonian'can be solved explicitly and exactly. 4,5 lf
the system is criginally in a vacuum stare of rhe electromagnetic field, rhen
ir will evoh'c iota a fieId coherent State. \t'e conclude from the quantum-
classical hamiltonian (2.1) that a c lassical current, when applied to a vacuum
state of the eIectromagnedc field, will produce a coherenr srate of the
electromagnetic fieId, and rhar such a coherent stare is in sorne sense rhe
closest possible quanrum analog of a classicaI electromagnetic f¡eld.

Ir is instructive to ask whether these results can be dualized. That
is: is it fX>ssible to repIace the electromagneric fieId operators appearing in
(2.1) by c-null)ber driving fields and lhen solve [he resulting hamiltonian? The
resulting hamiItonian men describes the inceraetiqn between a classicaI electro-
magnetic field and an ensemble of N idemical 2-level aroms. This hamiltonian
can be sol ved exactly in three cases of extreme physical interest :

i) pain, lasel (cavilY lenglh «,\);

ii) single mnde traveling wave ¡a ser ;
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¡ii) travcling electromagnetic wave in an aplifying Of ahsorbing medium.

In ao)' of [hese cases, if (he atomic syscem is originally in ¡es ground S£ate,
it will C'volvc ioto a cohercnt atomic state.

A llhough lhe hamil(onian (2.1) cannOI be solved exactly, lhe semi-
classical hamiltonians arising from (2.1) can be solved exactly. The semi.
classical hamiltonians are ohtained by ass1Jlling either that che atomic system
is classical and [he field systcm is quantum rncchanical, Of thar [he f¡cld
sys(em is classical and [he atomic systcm is quamized. In either case, if
[he quantum mechanical system is originally in a cohcrcnt srate, Of in par-
ticular in its ground state, chen ir willevolve intoa cohcrent state. In both
installccs [he coherent state is (he closest possible quamum analog of (he
COfT('sponding classical state. Thcse remarks are summarized in Fig. l.

Classical
Stares

~tatter

Classical
Current

Field

Classical
Field

QU<'1ntum
Sta tes

Coherent
Atomic State

Coherent
Fi eld Stale

Fig. 1. Interactin~ awmic and f¡eld systems may be considered as dual
to ea~h other. If eúher quantum system is driven by its dual
classlcal counterpart, a coherent state results (diagonal arrows).
The coherent State is the closest possible quantum analog oE the
corresponding classical state (venical arrows).

1lI. REVIEW OF FIELD COIIER~\lT SlA1ES

We surnmarize here the properties of coherent statcs for a .single mode
d the electromagnetic field.<4.7
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l. Model Jlamiltonian: a model hamiltonian desecibing the ¡ntecaetion of a
classieal eurcent w ith the eleetcomagnetie field is

U =U+Uo pert

Uo
t

= hwa a

Upert
t • (3.1)= Í\.(¡) a + Í\. (1) a

flere ata is the single mode photon number operator, and } and a are the
photon creadon and annihilation operators for a single mode, respeetively.

2. Commutation Relations: the hamiltonian deseribed in (3.1) is a linear
supecposition of operators that close under eommutatÍon. These operators
obey the eommutation relations

[n, 1] o

[n, a ] -a o

[a,l] = O • (3.2)

The four operators n =ata, }, a, and 1 span the Lie algebra h
4
, called the

harmonie ose illator algebra.

3. Diagonal States: the eigenstates of Uo eontain a fixed number of photons
in each field mode

lhe normalized eigenstates can be obtaincd by applying the creation oper~
atoe to the ground state lo> n successive times:

•
t '1 X

= (a) (n!)- 'lo>

These diagonal fie Id stat es are ca lled "F oc k" state s. 8

( 3.3b)
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4. Ground State:
faClor of modulus
val uc:

Gilmore

the gtound state is defined uniquely, up to a eomplex phase
unir y, as (he eigensrare of J:lo with lowest energy eigen.

= E. lo>
lIW1

ErOO = O • (3.4a)

It can equivalently be defined as the state annihilated by the shift-<1own
operaror a:

a I O> = O Ot exp a I O> = I O> (3.4b)

5. Unitary 1ranslatÍon 0íerator.: undee the influenc~ of a classical driving
currem, (he ground state O> w111evolve undee a unHar)' operator U(a):

U(a) = exp (aat - a' a)

U( a) lo> = la> . (3.5)

In general, a(¡) is a time-dependent complex numbei, and a{t) is related to
1-.(1) thtough the equations of motion whieh are derivable from (3.1).

The transformaríon U(a) is a uoirar)' representadon (e x 00 matrix) of
the eoset teptesentatives9 of H/U( l) @U(.l), whieh is isomo.phic with the
phase plane of che harrnonic oscillator. '!he states la> are caBed tolcoherent"
states and for rhe particular case of che eleetromagnetic field (hey are called
"Glauber" srares.4,5,7,9

G. Coherent State E~envalue Equation: the cohecem states ohey an eigen.
value equation easil}" derivable from (3.4b):

{U(a)aU.'(a)}u(a)io> =(a-a)ia> = O. (3.6)

7. Baker-Camp,ell-HausdorH Formulas: these formulas allow for rear.
rangements in the ordering oí exponentiaI operator products. They are
extremely useful íor dealing wirh rhe properries oí coherenr states. A useful
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BOl formula for rhe Lie group H. is

exp(a} +(30) = exp(-~a¡3) exp«(3o) exp(aot)

= exp (~a¡3) exp (a}) exp «(30) . (3.7)

149

8. Expansion oE Coherent Stares: rhe coherenr srares can be expanded in
terms of lhe eigenstates (3.3b) of Uo' since ,hese form a complete sel of
orlhonormal states. This expansion is facilitated by lhe 8CH relalion (3.7):

la> = U(a) lo> = exp(-~a'a) exp(aot) exp(- a'a) I O>
~ t •

= exp(-~a'a) i:(ao ) (n!r'l O>
o

= exp(-1a•a)
OQ,. .%
};(a) (n!r 'In>
O

(3.8)

9. Nono.ooQrthogonality: rhe field coherenr stares are non.orthogonal:

= exp(a'(3 - ~(a'a+f3'j3»

2 2I < a 1(3> I = exp ( - I a - (31 )

lO. Over-complereness: rhe coherenr srares are overcomplere.
lut:ion oí rhe identiry operaror in rerros oE coherenr sra res is nor
useful resoludon is

~
Jla> (d2ahT) <a i =[ = };in><n I

o

(3.9a)

(3.9b)

The reso.
unique. A

(3.10)

11. Uncertainry Relarions: rhe crear ion and annihilar ion operarors are nor
hermitian, hut rheir "real" and "imaginary" parrs are:
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'1

[p,q] =-;

p = (a-al)/;/2 (3.l.Ja)

The non-cornmuring hermitian operators p,q have mlnlmum uncerrainty within
a coherent state:

2 2 2
(6p) (6'1) = O,)

2 2
(6'1) = <al(q-<q» la>

<'1 > (3.1 lb)

12. Generating runctions: in carcelarion experirncnts ie i5 ofreo necessary

ro compare carcelarion data \\'ith matrix clements o.f rhe íoem:

normal form

anli-normai form

symmetrized (orro

n I m I<al(a)(a) a>

I
,¡ T m

<a S {(a) (a ) } I a> . (3.12a)

Such matrix elcmcnts are mast simply obtaincd froro a generating fUllccion:

In I m In", I I I<a (a) (a) a> = (Cl/dY) (ClIClS) <a exp(ya)cxp(~a) a>1
')'= S=o

(3.12b)
rhe generar ing function i5 simple to compute:

•
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= exp( - a' a) <O Iexp (a' a) exp(ya) exp( o}) exp (aat) I O >
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= exp(- a'a)<oi exp (a+ o)})exp(a'+y)(a+o»)exp(a'+ y)a) I O>

=exp(-a'a)exp(a+o)(a'+y») .

Other gcnerating fUllctions ean be obtained as simply.

IY. ATOMIC COHEREN1 STATES

(3.12c)

\\e 1I0\\' "dualize" the treatment given in rhe preeeeding section.

l. \Iodcl tlamiltonian: ir (he electromagne[ ie f¡eld opera[ors appearing in
(2. J) are replaeed by their (macroscopic) classical average values using [he
analog of a mean.fjeld approximation seheme, the hamiltonian simplifies
gready. (n [he case of a single mode traveling wave laser, ir is

= Ji + U
o peu

N

=6F. L S (')
; r;: 1 3 1

N "N

= y(¡) . ~ S. e) exp (ik . x.) + y' (1) ~ S_(") exp (- ik • x,)
1=11 1 ;=.' 1 1

(4.1 )

2. COllll1lutation Rcla[ions: [he single-atom opemtors are kinematicallr inde-
peooent and (:hey the usual SU(2) cornmutation rclations:

The many-atom operators
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N

J == 15(.), ;=1'/

N

J. = .2. S.(.) expUk 'x.)
1 = 1 / /

N

1- = "i. S_(') exp(-ik 'x.) = /
;=1 1 +

obey lhe usual SU(2) commulalion lelalions

Gilmore

[¡" JJ = -1-

( 4.2)

The opelalOf Jo is a mulliple 01 [he idenlily wilhin any irleducible leple-
sentation.

3. Diagonal States: che eigenstates of Uo are e5serr:ially a~ular momentum
eigenstates

(4.3a)

The nOlmalized eigenslales can be oblained by applying lhe shi!t-up opel-

ator [O (he ground s(ate I ~) (j + m) times
-/

I~)= ( 2; ).l¡ (j.f'" I ;); t.. (/+ '" ) ! - ;
(Ob)

These diagonal states are called "Dieke" states.7, 10
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4. Ground State: the ground state is defined uniquely, up to a complex
phase factor of modulus IJnicy, as the eigenstace of ílo with lowest energy
eigenvalue:

=£'..
mm I i)

-1
( 4.4a)

£'. . = - I'Ó£'.mm

Ir can equivalettly be defined as the state annihilated by the shifr-down
operator L:

=0 or exp(UI i)
- 1

= I i\-il ( 4.4b)

S. Unitary Transformation Operator: under [he iriluence of a elassical driving

field, the ground state I i) will evolve under a unitary operator'.9 V(8cP):-,
•

V(8q,) = exp (~J+ - ~ ]J

V(8cP) I_~>= It~) (4.5)

In general ~(I) is a time-dependent complex number, and ~(I) is related to
y(l) through the equations of morÍon which are derivable from (4.1).

The transformado n V(8cP) is a unitary representarÍon (2; + 1 x 2; + 1
matrix) of the coset representatives of V( 2)/V(I) lO V(I), which is isomorphic,.9
with the .phere S'. This sphere is ofren called'.9 the "Bloch sphere" since
ir was imroduced by Blochll for [he discussion oC [he nuclear induction ex~

perimem.12 The scaces 114» are ealled "coherenc" states, and far che

particular case oE two-level atoms, chey are ealled "Bloch" states. 7,9,11
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6. Coherem State Eigenvalue Equation: the coherent atomic states obey
several Ileigenvalue equations" easily derivablefrom the eigenvalue e~ations

defining the groun.i state I ~)
- 1

= i (i + 1) I i )
8f

o (4.6)

These equations do oot ha"e the c1assic structure of eigenvalue equations
since [he operalOr {U(e<:j;) 1[) U-' (e<:j;)} 00 ,he leh hand side of each equa,ion
depends explicitly on ,he parameters (e</;) serving 'o labe! ,he coheren'
(eigen) states.

7. Bake,-Campbell-Hausdorff Formulas: a la'/(e number of BOJ fo,mulas
Can he de,ived for ,he Lie group SU( 2). These have been ¡rea,ed in de'ail
clsewhere.i.l~ Sorne particularly useful BCJI fonnulas for current purposes
are gi"en in (4.7):

,
exp(~J.- ~ JJ = exp(TJ.) exp(ln (1+ T'T)J,) exp(-T'JJ

(4.7 )

where

T = exp (- ¡el-) tan 16

H. Expansion of CohereDt Statcs: the cohercfl[ s(ates can be expandcd in

t<:rms of rhe eigcnstates (4.3b) of Uo' since thesc form a complete set of
orthono.rmal states. This expansion is facilitated by the BCH relarion
(4.7):
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= uw,p¡i i)
- I

. -i 00 ".1 I i)=(]+TT) l (TJ,) (n!) _'
'" =0 ,

'. .,
2' "í ,.", V '"e') (cos J¡I/) (exp( - iq,) sin J¡OI

I t ••
(4.8)

9. Non-orthogonality: the atomic coherl"nt stares are non-onhogOfiaI:

( 4.9a)

I (i' I i ) 1
2

8'</>' 8</>
= { 1 + ,; (O') . ,;m)}i S.•.

2 I I
(4.9b)

In the later exprt:ssion, ,;(0) is rhe unu vector from the center ro rhe point
(O<f;) 011 ,he su.Cace oC ,he Bloeh sphere.

10. O,'('r-eoOlpleteness: within any SU(2)-invarianr subspace rhe ideruity
operator may oc resolved wirh rcspccr to cirher'the diagonal or the cohecem
states. The resolution of the idcntity operaror in terros of coherent srares
is Dot unique, since they are over-complete. A useful resolution is

2; + 1 dO
471

'i
= 12i'l = l. 1 i) (i I

",=-1'" ",
(4.10)

ll. LJnc('rtainty Relations: the canonical uncertainty relations

2 2~,2A26J 6J ." ( ,,) uJx y %

become, afIer rhe unirary rransformation by U(8<j;):
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( 4.11a)

( 4.llb)

Within a coheceot stac:e, this uncertainty reladon assumes the mínimum allowed

value.

12. Generating Functions: (bese generating functions play (he same role
in alomic physics lhallhe funClions (3.12) playfor lhe elecrromagnetic field.
They are derived in substantial1y (he same way. Far example

All such generating functions can bé expressed sueciocdy as the 2j-rh power
al [he crace oE a product DE [wo matrices, ane oE which depends only 00 che
parameters eeP, (he orher only 00 (he parameters Q¡ .13

V.RELATION BE1WEEN Al0MIC ANU FIEL U STA TES

The fieId states descríbed in ~III and (he atomic states described in
glV have an extremely clase formal resemblance. This reseni>lance is empha-
sized iil Fig. 2, which indicares how che Dicke and ,Fo~k stares are related
to (he Bloch and Glauber states.

This resemblance is not solely formal. Nor does it come about
because the treatments followed in ~IlI and HV follow the same basic panern.
Rather, it comes about for the following rea50ns:
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Diagonal
State s

Field
Syslem

Foek

Glauber

Atomic
Syslem

Dicke

Bloeh
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Fig. 20 A Roseua stone foc rhe renninology ol Quanrum Oprics

i) The dynamieal group for lhe single field mode, whieh is H. ' and lhe
dynamieal group for an ensemble of 2-level aloms, whieh is U(2), are
borh 4-parameler Lie groups.

ii) Field coherem states exist in 1- 1 correspondence with coset reJX~.
senlalives II./U(l) ••U(l), whieh is essenlially lhe phase plane of
the harmonic oscillatoro Atomic coherent states exist in .1-1 corre-
spondenee with eosel representatives U(2)/U( I) "U(l), whieh is es-
sentially lhe Illoeh sphere.

iii) The groups U(2) and H. and lheir eosets, lhe Illoeh sphere and lhe
oscillator phase plane, are related ro each Olherby a group contrnction
processo14,lS

Uo'henthe non.singular transformation (e 1= O in 5.1) is performed on
the generators J oí the group U(2), the new basls vectors h ohey the

. 11'- .. '() 1'-cornmutatlon re at10ns glven In 5.2 .

h. e O O O J.
h- O e O O L
b, O O 1 1/2e2 J,
ho O O O 1 Jo

[h, ' h.J ~ + b. [h, ,hoJ =0

[h" hJ = -h [h. ,hoJ = O-

[b_,h.J = b -2e2b [h_,hoJ =0o ,

( 5.1)

(5.2)
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Although che uansfonnacion (5~1) bccomcs singular in [he 1imit e - O, che
cornml1ation relatioos (5.2) remaio wcIl defined. In fan, in [he l¡mie e-O,
che cornmutadon relatioos foc che L ie algebm u (2) beC4..HnC che cornmutation
reladoos foc (he Lie algebm "4'

Ir is useful at (his poior to define me following limits:

y(t)!c - >--(t)

(5.3)
y, exp (- ¡ef;)e/c - a

In (he l¡mir e - O che hamiltonian (4.1) becomes cqual (O (he hamiltonian
(3.l) up to a constant additivc (crm:

(5.4)

In addition, ,he BOl formulas valid fo, U( 2) (4.7) can be con"ac<ed ro ,he
corresponding BOl formulas, valid for H. (3.7).

Prope«ies 1,2, and 7 of IIII and ¡IV are ,he only propcnies described
that depcnd exclusively 00 che abstraer group dc 00 ¡es algebra. Tbe remaining
(X"operties (3~, 8-12) emee into (he discussion oí che physical systems
through their unitary irreducible represcnrarions.

Accordingly, to trcat these remaining propcrtics, we must comract
the representations oC U(2) [O the rerx-escn[ations oC 11

4
" lIere we encountcr

a sligh, dif!icul'y.'.9 The group U(2) is compac<,13 and has only fini,e di-
mensional unitaey irreducible representations. l1X' groupll4 is non.compact.
anJ so has no faithful (inite dimensional reprcscntations. Therc(ore. we

choose a sequence oC larg ce and larg ce ee(Tese mar ioos of U( 2) as e bccome s
smaller and smaller. In this way (j t ('CI as e! O) we can consrrucr a faithful
unirary irredocible rcpresentation of 11

4
from the well-knownl~ un¡tary lrn ••

ducible eepresentations of U( 2) .
We wiU takc this I¡mit in a way that is transparcnt from a physical

viewpoint, by insisting that aH encrgies be rneasuc<..dfmm the geound statc.
'lhcn
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~ Lim(- j+ l/2e2))1 i)-, ( 5.5)
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In order {oc the limit to be welI defined, we demand;1 Xl and e lOas {ollows:

j ~ l/2e2
(5.6)

In chis limir aH [he remamlng propenies 4.3-4.6 and 4.8-4.32 for [he a[omic
system conttact irnmediately to the corresponding properties 3.3-3.6 and
3.8-3.12 for rhe field sys[em.

As an example o{ this ¡:rocedure we conUact the non-onhogonality
relarion (4.9a) 10 ,he non-orthogonaliry re¡arion (3.9a):

(5.9)
The cemaining contractions proceed in an ana logous fashion. This Con-
traction mechanism is surnmarized in Table l.

TABLE I

/(elarion berween [he U(2) labels and [he H. ¡abels
1Il [he comraclion ol [he Bloch sphece lo the oscillator phase plane.

Group Operators Coord inate s Ei,ll;('n Ei,ll;en Coherem
valu('s StHes srates

V(2) cJ./.cJ_ W/2e) ('xp( -ir:P) 2j~2 I~) I;~)
J) + Jo/2e2 1+'" Dieke A10eh

H, I

l.>
a a a

la>

ata
• Fock Glaubl"t
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VI. APPLlCATIONS OF ATOMIC COHERENT STATES

Gilmore

The field coherent stares (HU) and rhe :romic coheren' stales (HV),
which are so closely relaled (9V), have a number of useful properties in
common. Since (he usefulness oí [he f¡eId cohereDr states is firmly es.
lablished'-6, we presenl here some physical1y useful applicalions of lhe

atomic cahecenr seates.
The two applications which we discuss involve [he app-oxirmte 50-

lution oC (he lIamihonian (2.1), and [he constIuction oE thermodynamic par-
tilion f\I1.ctions fOl"a large class oE spin Hamilton1ans.

Both applications depend in a crucial way on the overcompleteness
oí [he atomic caheceor states. Let G be ao arbítrary operator acting within
an SU(2) invarianl subspace of dimensionalily 2j + L Tben G can be expressed

in lenns ol Dicke states (4.3) , as

(6.1a)

The (2; + II matrix e lemenlS <m' IG I m> are in general independent.
The operator G.can also be exp-essed in rerros of (he cahecem ~nates

(4.5),as

(6.1b)

Ir ís a remarkable raer [hal, because ol (he overcompleteness of the statcS

I~)lhe kernel in (6.1b) can always7 be chosen 10 be diagonal:

(6.2)

The kernel G(O) is a c-number function defined on lhe s•• face of lhe
unit spherc. As such, ir can be expanded in rerros of spherical harmonics.

G(m = ~
/=0

+/~i y(m
.•• = -1 '" ".

(6.3)

The funclion G(O) defined by (6.2) is not unique. Any other kernel G'([})
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G'(O)= ~ ~ h/ y/m) (6.3')

/=om--l" '"

2
defines ,he same operarar G ¡rovided ooly tha, the lowest (2; + 1) eoefficients
appearing in (6.3)and (6.3') are equal.7

0(/ ~ 2; (6.4)

Two kemels Gm) and G'(fl)differing only in their "Foutier eoefficien's.
with 1> 2; describe exactly (he same operarar G. Such representations al G
may be said ro differ by a tlgauge transformarían'.

The imponance al (he coherent state representarían ro physical apa
pliearions lies in this: Fot any operator G aeting within an 5U(2) ;-invariant
subspace, ir i. always possible ro construct a diagooal te¡resentation (G(fl»
vithin a coherent state representation. 1hen aIl equations and manipularían s
involving (he operoto, G become simply c'"flumber equations and operations
involv ing the ¡une/ion G(fl) .

In arder to make contac( with quantum optics experiments, ir is
necessary to know (he implications oC (2.1). This does nO( mean rhar ir is
neee .sary 'o solvc (2.1). Rather, it is only desicable 'o de,ermo, e ,he densi-
'Y operarar pU) lo< a systcm governcdby (2.1). Thc construetion ol the
density operator from its equation oE motÍro 16

(JI,p] = i~opra/ (6.5)

i3 facilira,ed by the coheren, state re¡resentation' fo< the field sys'em and
foro(he atomic system.

lhis comes about for the followin¡¡ teasoo.:

If the a'omie system behaves classically, 50 that (2.Il simplifies to
(3.1), ,hen ,he sys,em evolves ioto a coherent sta te (d. Fig. 1). A. a
result, (he density operarar becomes a delta functionm the f¡cld cohcrmr:
statC' lC'prcsentatioo. Ir me atomic aystcm is nQt Mtoo quantum meehaoical-
il narme, th~ WC'should C'xpect the ficld to C'volvC' inta a superposition al
cohereor states containing only a .small" numbcr01 cohcu:or: states.

Conversely, if the field behaves classically, so, tbat (2.1) simplifics
'o (4.1), tben the system evolves in,o a eohereot state (d. Fig. J). As a
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result, [he densicy operator becomes a delta function in [he atomic coherent
state representarion. lf (he f¡cId system 1S nOl "too quantum mechanical"in
nature, we should expect (he awmic sysrcm [O evolve ineo a supcrposition
of coherent states containing ooly a "small' number of cahecent states.

As a resule of [hese intuitive considerations we would expect (he
coherent state representarían ro provide a useful mechanism lor treating (he
master equation (6.5).

The density operarar p can be described in many representations. In
,he diagonal representation. (3.3) and (4.3) it is glven by

p ~ In'ml><n'm' I pI nm ><nm I (6.6)

Since experiments are usually designed [Q trcat ooly (he f¡eId pan oí the total
system, oc ooly (he atomic parr of (he total system, ir is more useful tn con-
sider reduced density operators treating only the field subsystem oc only the
atomic subsystem. Thesc reduced density operators are obtained frorn (6.6)
by taking the trace over the uninteresting subsystern. Thus

PA(t)=TrFP(t)=~,~lm'><m'lplm><ml •
m m

where

L<nm'lplnm>
n

(6.7 A)

where

~,~ in'><n'lpln><n I
n n

(6.7F)

<n '1 p In> = ~ <n 'm Ip I nm >
m

As might be expected, the reduced densityoperatocs ace not unrelated.
In the superradiant regirne17 (hey are related through the moments of thcir
respective shift operators according to
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(6.8)
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where K.
1 is a pho{on {ransit time in a superradiam cavi{y of ¡eng{h /.
In many ins{ances 18 {he reduced density operawc is essemially assumed

{O be diagonal in {he Fock of Dicke represen{ation, and {hen {he time de-
pendenee of the diagonal elements PF (1) Ot p. (1) is determined. While,,,n ","'m
chis approach provides a useful firs{ approximation, {he dynamical infonnatian
con{ained in {he off-diagonal matrix elemems is lost.

Under a large varie{yof conditions, 19 it is possible to choose the
reduced densit}' operator PF (1) as a diagonal matrix within the coherent state
representadon:

(6.9F)

\l'e have seen above that it is always possible7 to. choos(' the reduced densi-
ty opera{or PA (1) as a diagonal mauix within its coherem s{a{e representation:

(6.9A)

Undcr these diagonal ansatze, the operator equations of motion fuf

the reduced density operator become simply ordinary c-number parrial differ-
enrial equations. In fact, they become Fokker-Planck equations. Far the
rcduced density opcrator PF (/) we find

OR(a,a' ;I)/Ol~ [(%a)a+(%a')a') {(K-y¡)+y.¡a'a} +

+ 4q(CllOa')(o/Cla)] R(a,a';¡) (6.lOF)

where the parameters "11' y,,¡, and q describe the linear gain, the nonlinearity,
and the fluctuations in the atamic ~ystem, respectively. 20 For the reduced
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densiry operator p¡\ (1) we find21

aQ(8;I)/al = [(a/ae)(j sine+ Y,sine(1+coser1) +

2 2 ]+ (a /ae) Y,(l-cose) Q(8;I) ,

Gilmore

(6.10A)

where we have assumed an azimuthal syrnmetey and have ser
211

Q (e; 1) = sin ef dif; P(ep; 1).
o

Ir is clear Iroro inspecrion 01 (6.10F) and (6.l0A) rhar me drift coel-
licienrs 2 Re a {(K-Y/) + Yn/ a'a} and {j sin e + Y, sin e (l + cos e¡-l)
drive the distributions R(a; t) and Q (8; t) Dver the surface of the oscillator
phase plan e andme surface af the Blochsphere,respecdvely. The diffusion
coefficienrs 4q and y, (1- cose) are responsible lor rhe btoadening 01 rhe
respective distributions.

The coheceot state representation has al50 beeo used by Lieb22 (o
compute upper and lower bounds foc a large class of quantum mechanical
partidon functions. The thermodynamic partidon functions for which this
technique is useful aH involve the so-called spin Harniltonians. These are
Hamiltonians for N separare particl~s which interact oo.ly thtough their associ-
ated angular momentum qperators ]J (i = 1,2, ... , N). These Hamiltonians
need not be linear in the variou~ spins, nor must chey involve spins in only
pairwise combinations. This class of Hamiltonians includes, as speciaJ
cases, the Heisenberg model,23 the Ising mode!, 2. and the Spherical model. 25

In this particular appJication of the atomic coherent state representadon,
Jet G be an oper:uor that act,5 within an su (2) j-invariant subspace. Two
kernels gm) and G(O) are 01 interesr

g(o)=<oIG[o>

(6.11)

in particular, we have t~at

Tr G= Tr«2j+I)/47T)fdo lo >G(O)<ol = (2j+I)/47T)JdOG(0).

(6.12)
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U'hen G is an opera'or 01 ,he lorm (v' Jr. ,hen g(O) and G(fI) are
remarkablr closely related. To highest arder in powers oC i they are given
by

G(O) = ( Ivl t (;+ Ir + ~ (j.' 1 )

111US, for examplc 22

s;(O) =;' cos' e + 1; (1- cos'e)-;' cos' e

(6.13a)

(6.13b)

5:(0) = (;+1)' cos' e- 1(j+l)(I- cos'e) - (;+0' cos'e. (6.14)

The quanrum panitioo function 15

• QM
Z = Trexp(-j3l1)

This Can he expre5sed

N

i~J (dfl¡l 477) <fiN I exp( -1311)IfiN>

= Tr exp(-j3l1) = Tr lim (/-(1/.)1311)"
.-00

For the fina term in thi, equality, we have

(6.15)

(6.16)

N N
n J(dfl/477)<flN I exp(-j3l1)lflN> ~ n J(dfli/477) exp(-j3<ON IlIlo

N
»

1=1 '=1

(6.17)

by ,he Peierls -Bogoliubov inequali,y « q, Iexp (X) Iq,> ¿ exp « q, Ixl q,> ») •
The term in the expooential il:
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(6.18 )

and undcr the replacernmt (6.13a), allowable by the assumption that H is a
spin Ilamiltonian. we have that ,he tight hand .ide oE (6.17) is simply <he
classical partition fmetion

N Cl
[J J(dO.l47T) exp(-,I3h(ON)) =Z (; .;" ... ,;.'1)
i=1 1 1

to h ighest order in each value of ji.
On the o,h et hand, Eot the th ird tetm in (6.16), we have

(6.19)

• N •
Tr Lim(¡-O/n),I3I1) =Tr n J(d0¡l47T) Lim {\ü,;>(I-(J/n),I3I1(ON)) <0.'1 i}

n-OO ,=1 n-"'"

N n
~ Tr n J(dO/47T) {ION> Lim (I-O/n),I3Il(ON)) <oNI}

1=1 n-~
(6.20)

by the Sehwartz inequality. The limit in the last term in (6,.20) is trivial and
leads to the classieal partition funetion

N
Tr i~J(dO¡l47T)loN> exp (-,I3Il(ON)) <0.'1'1

N Cl
= [J f(d\1./47T)exp(-,I3Il(ON))=Z (; +1.; +1, ...• ;.'1+1)
;=1 r 1 2

(6.21)
to the h ighest order in eaeh valuc of j ..

1
As a rcsulr of me inequalities appearing in (6.17) and (6.20), we

have

N N
i ~ J (d0¡l 47T) e xp (-,I3h (O'" ))< Tr exp (- ,l31l)( i ~ J(dO¡l 47T) exp (-Il (0.'1))

(6.22a)
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(6.22b)

When each operator Ji in ZQM is replaced by che corresponding norrnalized
. . . %

operawc i/(J'. J') 2 as in various Spherical rnodel Harnilwnians, and each
j.-~, rhe left and tighr hand .ide of (6.22) become equal, giving a preciseI

value for me quancum parcition function.

VII. DEFINITION AND GENERAL PROPERTlES OFCOHERENT STA TES

Coherenc scates were origina11y defined by Glauber". s for the electro-
magnecic field. Glauber found chree equivalen e ways co define field coherent
staces:

MI. A coherent s.cate is obtained by applying the un icary eran slation
operaror U(a) ro rhe ground srare (3.5):

la> = U(a) I O> = exp (aat - a* al I o>

M2. A coherenr srare is an eigensrare of rhe annihilarion operara a (3.6):

al a > = al a >

PI. A coherent SCate is obcained by applying a classical driving current
to che groWld sCate of the electromagnecic. fieId.

The procedures.\l1 and M2 are mathematical; the procedure M1 is the mathe-
macical representation for rhe physical procedure P 1.

The rhree procedures MI, M2, and PI are equivaIent for the elecrro.
magnetic field because of che particular commutation propenies of rhe field
morle operators at a, at, a, 1 (3.2). For sysrems described by operarors
with differenr commutarion relations, che thcee procedures MI, M2, and PI
are nor a11 equivalenr in general.

In order to exrend che exrremely useful cohermc state concept to more
complicated sysrems, ir is necessary ro generalize one of me rwo incom¡xuible
proccdures Mloe M2.

Ir is ar firse sighc attcacrive ro use rhe concepr expressed in M2 as a
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basis for dcfining cohcrcnt seares fOf arbitrar y s}'stems. Foe cigenvalu{'
cquations playa prominent role in thequantum theory.26 In (his instance
the cigen\'alue equa[ions are nonflcrmitian and rhe eigenvalues are complexo
This approach has beco adoptcd by llarue and GirardellQ27 in discussing "new
cohercnt states" a~socia[ed wirh rhe spectrum generating algebra su (1,1).

Adoption of .\12 as a basis on which to generalize rhe coheeent state
concept suffers froro two major drawbacks, the first mathematical, lhe sccond
physical:

1. CohCfel1t states could Ilat be dcfined in Hilbert spaces of f¡nite di-
mcnsionalir)'. In particular, this would precludc construction ol co-
hcrcnt starcs foc compacr Lie groups. Moreovct, rhe statcs defined
in [his way have few useful properties, and in particular they are flot
computationally useful.

2. .Ihe statcs so defined do not correspond to physically realizable
statcs, cxcept under the special circumstances that (he commutator
of the annih ilation operator a and ¡ts hermitian adjoint at Ís a mu1tiple
of the id<,,'ntÍty operator. Under these conditions we haye rcstrictcd
ourselves to the electromagnetic fieId.

In attempting to gent:'ralÍze the concept of coherent state, Ít Ís much
more uscful to use ~Il as a poÍnt of departure. Theo the rpathematical ob-
jections raised above (#1) are automatically elimÍnated. In addition. since
~Il is the mathematical representadon for PI, the physical objections raÍsed
abo,.e (#2) are aIso elimÍnared.

\\'e no\\' procecd 10 define cooerent staces.
Ler G be a d)lWmical transformation groupli.e.,S-marrÍx) which acrs

by means of a uni[ary irreducible representation rA(G) 00 a lIilbert s~cc .\1;'.

Since rA(G) is iru.-duciblc, MAis an iovariant subspace undcr G. Let I f(J > €MA

be an arbirrary refcrence sratc in M
A
, \\hich is oonnalizcd to nnity: < ref I ref> = l.

Let 11 e G be rhe srabiliry group oí I reí>. That is, H ¡caves I reí > invarianr
up ro a phase factor or modulus uniry:

(7. 1)

hEHCG.

lhen the action of an arbitrar)' group element gEG 00 rhe reference state
I rel > is given by
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= r\ el I re£> exp (ir (h)) = le> exp (;r (h))

g tC etC/U
(7.2)
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'Ihcsrarcs rA(c)lrcf>:= JC>EM" cxisr in 1-1 correspondence wirh the
coser represenratives cEGlu. Thc states 1 e > are 00 the orbit of I ref>

under r
A

(GIU). '\loreover, since rA(G) is lIlirary, rhe srates I e> are norma-
lized to WI ity:

lhe Mates le> are not orthogonal and they are overcomplete. States of
the foon

r\c/u)1 re£> (7.3)

should therefore be considered as candidates for generalized coherent sta tes.
Befare defining coherent states in general, we look at the spectrum of proper-

tíes that the groups G,II, the representarion rA(G) and the reference state
Iref > may possess.

A. The group G may be an arbitrary dynamical transformatian group. Or
we may impose sufficient additional structure on G so as to make it a
finite dimensional Lie group. U.'emay impose furth er additional
Structure and demand mat G be compact.

B. The unitary irreducible representatíon rA(G) may be arbitrary .. By

"imposing additional strucrure, we may demand r (G) be square inte-
grable. Finally, by imposing a great deal of additional structure, we

could demand <ha' r"(C) be finite dimensional.

C. The reference state I ref> of norm uniry may be an arbitrary state

1 arb > in M A. By imposing additional constraints, we could demand
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(har it be aD eigenstate I diag > of sorne unperturbed Hamiltonian J::lo'
Finally, we can impase yer more structure and demand thar ir be an

extremal state I ext > in M". An extremal state (for example, (he
ground state I gnd > = lo» is a state annihilated by a maximal sub.
algebta of the algebta (not necessatily a Lie algebra) generating the
dynamical transformation group G. lE G is a semisimple Lie group,
chen

I ex,> = 15M
b
>

whete M
b
is the highest weigh,2B in MAand 5€W, the Weyl glOUp28 of

g.

D. The stability group H is completely detetmined by the choice of G,

r\ G), and I tef >. H is a closed wbgroup of G which may be compact
oc non-compact when Gis non-compact, but which must be compact
when G i:s compact.

This specuum of possibilities is summarized in 'Iable 2.

TABLE 2

Spectrum of possibilities available fot {G,rA, I re£>, H} in cOtlsrructing a
useful definition ol generalized cahecear state. With.il any given row,

(he amounr of struct\re ¡ncreases.in going from leh to nght.

Amount of StrlErur~ AS'UIlled

Lnd Rder3 10 2

B

e

G

r'

lId>

dynamical Uans-
fOflllation group

albin.lv unitaty
ilTeducible repre_
$C'nlation

IU"bitrary, norIDllllized
to unity

latb>

square -intesrable

r.'

ei.¡cnStale ol)t
I diaA: > o

COlllpact

fi.nite.
dimensional

l!'l[tremal
[ut>
orfsneP-[O>
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Definition: with the notacion as describedabove, the coherent states associ-

" " Iated wilh the system {G, r , I ref >, H} are !he slales 0f1 lhe orbit r (G/H) ref>
provided:

Al: G is a dynamical transformation group;

B2: rA is square integrable;

C3: Iref> = ¡ext > is ao extremal state.

\t'ith this defioition for generalized coherent states, we are in a po-
SltlOO ro examine each of the properties # 1-12 discussed in ,slll and ,sIV for
two particular systerns. Sorne of these properties depend ooly on me dyoamical

glOUp G(#I, 2, 7), olhers depend 00 lhe represeotatioo r"(G) aod lhe choice

r/of reference state. That is, sorne properties (#3) are valid for arbitrary ,

sorne (#10) depend un r" being square integrable, while yet olhers (# 13)

"require r to be finite dimensional. Sorne properties of cohereot states
(#9) are valid for arbitrary reference states, omers (# 3) require me refereoce
state to be diagonal, while still others (#11) are valid only when the reference
.••tate i s extremal. In Table 3 we summar ize the [X"operties of general coherem
states, including a summary mathematical characterization for each property,
as well as a sratement about me amollnt oí madlematical s{ructure required
for the property tú be valido In this Table we have included a thirteenth
propeny suggested by the non -tri vial applications of ccherent sta tes de scribed
in 9VI.

Perelomov
29

has adopted a definition for coherent states similar to
the one presented here. The definitions differ'essentia11y in the amount of

mathematical structure required in deterrnining G, rA, and ]ref>. These differ-
ences are surnmarized in (7.4).

In this work Perelornov29

G Al A2
r" 82 81 (7.4)

I re£> C3 el

These differences in detail lead tú sorne differences between the ap-
proach presenred here and [har of Perelomov:

A. Perelomov's more restrictive choice for G a110ws always30. 31 for the
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TABLE 3

SUMMt\RY OF PROPERTIES OF GENERAL COHERENT STATES

Pro~ny
Sumbu

1.

2.

,.

4.

l.

6.

7.

8.

9.

JO.

JI.

12.

Marhemarical
ScructlJ't Required

Al

Al

Al

A1,81,C2

A1,B1,0

AI,SI,O

..••1. BJ,CI

Al,Bl,CI

M,Bl,O

Al, BJ,C3

Al

AI,Bl,CZ

....Z., BJ,C3
Al,Bl,Cl

Al,B1,0

AZ",BI,C3

AZ,81,C3

Pro~rly Name

Model Hamihonian

Conlllll1arioo Rdations

Diagonal Stalts

Ground Sr.re

Unil:ary TrllosformariOll

Eigenvalue Equations

BOf Formula$

Eigensrau: EIr.nsion

Non~thogonality

Over-(:omplett.-,ss

Uoccnainry Re Iations

Gerwracif\ll Functions

Mal~lDatical Summary 01 Pro~nv

Ho.E+,E_ [v"I 1-'
spang [9.,]C9

•IN>~ (E .•.+EU Idia,ll;>

•1M>::: (E .•.) lo>

eJ O> = O

In> '" np({l. E)lrcf> =- U(mlrd>

UfO) {Invarwu Operarors} u.I(O)I n > "' Iny I{} >
U(O) {Diagonal OperaIOl"s}U.I{O) 1{} > '" E~ In>

U(O){AnnihilationOps. }u"(O)lo> = o lo>

e;", U(O) E'tU.I({})
1{A.,Ol'" <01 cllp'A,.eln>

13 . Di_lonal Repn:scn~.tion

• RcquircmcnlS I.belkd •..ith •• lIlay poslibly be u'1aJ:cd somcwt.{.
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COlls{ruction of Bell formulas ('17,10,12). Since Perelomov does not discuss
BCII formulas,his more restriecive requiremcm on G does not lead tú an)'
~harpu r("sul[s.

P. 1h(" square-inH.'h'fabilit}, requirerncnt aJopted here guarantees the
cxi ...•t(.nce of o\'er-completeness relations (#10). \\'ithout this requiremcnt
(lJl in stead of B2), propen)" # 10 may not be valido

C. 1h(:' lkmand that 1 ref > be an extrcmal state guarantees the u sefulness
of BClI formulas as a computational devicc. 30.31 Thus, this restriction
(C3 as opposed to el) is useful in the discussion of those properties de-
pending on the application of AOI formulas (~8, 9,!l, 12).

In prac[ical applications, wegcnerally adopt the more restrictive
requirement 1\1, sinc{" we do not yct know how to construCt BOl formulas
simply under unir the requirement Al. In practice, Perelomov adopts also
the more fl:'5tricti\"e rcquirements B2 anJ C3 in place of 131and el:

Prt"sent \\'ork Practical
Applications

Perelomov

Al

132

C' •,o

------...•~
A2

A2
C3

•
A2

Bl
CI

In closing this section, finally, \\le provc the following important
theorl:'m. lhis theorem provides a kind of selection rule for coheeent states,
anJ is respon sible for [he usetulnes5 of cQherrot states foc describing physical
proccsses.

Thcorcm: if a ~l'~terl is original1y in a coherent state, mm it will
('\'oh-e imo a coherent state.
Proof: AS5ume me original s:ystem state i5 1 el >:

le> = r), (e ) I tef>
1 1

lben during a time interval!:::.T ::;;t
2
- t

1
th e dynamical tran sformation group G.

it will evolve under an element g of
The system state evolves into
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We raint out that chis proo! is very general: me level oC mathcmuical structure
fl'quircd for lh is theorem is (A.l, B 1, e 1).

VUI. APPLlCATION TO SUPERFLUID SYSTEMS

\re now apply the considerations oí (he preceeding section to the de-
scription of a superfluid system. The Hamiltonian describing a system of N
hosons in[(:racting weakly wirh each other is32

(8.1 )

Heee, Uo describes (he kinetic energy oí (he non .mteracting hosons. The
[fnn Ek = ,,'k'/2m is [he kinetic ene[gy 01 a b050n wi[h momemum I5k in mode
k. The perturbation rcrm U describes (he scattering oí two bosons outpett
al [he momentum states (p, q) and ¡nto [he momentum states (p + k, q -k). The

creacion and annihilation operations obey (he usual cornmutation relatioos:

(8.2)

This scarcering proceeds through aD interaction palencial V(x) whose Fourier
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componcnr s are Vk' We will also assume Vk = Y-k'
Coherenr srarcs foc rhis sysrem are obtained by applying the unitary

transformation operator

"g=Texp(-U//i)J U(¡)dl) (8.3)

"
to rhe extremal stare

(8.4)

lIere T is the usual Dyson time ordering operaror..\J, and IÜfc > is rhe geound
srare of buson Illode k undee rhe unpenurbed lIamilronian J1~.

The set of operarors appearUtg in (8.1) does nO[ close undee commu.
tation, and thucfoee Ji is oor an elemenr in a ([inite dimmsional) Lie aIgebra.
lhe dyoamicaI transformarion group G is thus oot a (finite dimensional) Lie
group.

U'e rherefore rey ro eeplace Ji by an approximare modeI HamiIronian
which is an elemenr in sorne Lie algebea, and foe which che associared dy.
namical reansformarions (8.3) are elemenrs in a Lie geoup. Under these
circumsrances, rhe fuIl powee of rhe computational merhod.s developed within
rhe conrcxt of Lie geoup theoey13. 30 can be broughr ..ro bear on rhe simplified
problem.

We make rhis replacemenr using me fóllowing observar ion. In a
superfluid systern, ehe k ;: O srare is macroscopically occupied at rhe expense
of stares with k #: o. \tIe theeefoee linearize rhe Hamiltoniun J:[. undee the
following rwo assumptions:34

t x
1. che opcrators bo,bo can be replacedby lh. nu.merNo' ,whereNo=<b¿b

o
>;

2. terms higher than quadratic in operalOr bl. bk (k *O) may be neglected.

Under rhese two simplifying assumptions rhe Hamiltonian becomes

(8.5)
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,
In these expresions, L indicates rhat the surnmarion excludes me case
k ::::;O. The occupation number No in rhe ground state can be replaced by
the total number N ol bosons presffit using

(8.6 )

\l'ithin me rerffiS oí the approximation above rhe Hamiltrnian can be expressed

(8.7)

Aside froro che con.scant terro, me hamiltonian is the direc t sum 01 single
mode hamiltonian s,

(8.8)

\\nere each single mode Hamiltonian has che structure

(8.9)

As a result, rhe wave flUlctÍon 1 t./J > is a direct produc[ ol single mode
,,:ave flUlctions I t/;k >:

(8.10 )

where each single mode eigenstate obeys
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The liamil,onian (8.7) is now an elemen' in a Líe algebra, for ,he
opcra(ors appearing in (B .9) e lose under cornrnutation.

(8.11)

The operalOrs f,k' ftk obey the sur 1,1) commutadon relation •.

(8.12)

~Ioreo\"er, operacofs belonging to different modes k cornmute

(8.13)

Since the algebraic treatment34 of each k (i- O) rnode is identical, we
suppress the subscript k in the algel:raie comp.nations to follow. Ir is useful
(O define the following hermitian linear eombinatioos:

(8.14)
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lhese hermitian operarocs ha\'c (he commutation r('latioos

U" J,J = iJ,

U"J,J
t- iJ J. = + J.,

[J" J,] = - iJ,

Thc differcnce opt-rator 6. aIso has useful properties

Gilmore

(B.15)

[l,ó] = O . (B.16)

Since [he operator 6. commu{{'s wirh the lit, ir is:

1. ~fathematically, an invariant which will serve tO label [he unitary
f{'presentations oC SU(l ,1).

2. PhysicalIy, a Constant oC the mmion.

'Ihe single mode lIamil,ooian (B.9) Can be expressed as a linear super-
po.irion oC ,he elemenr s J, ' J, in ,he .u (1, I) Lie algebra:

H ,
"k = 2NVj.lJ,- '2j.l+J¡ j.l=(€+NV)/NV) . (B.17)

One oC these two generators can be elimi.nated by applying the lIlitar)' transfor-
marion U(6i) = exp (+ ieJ,) to this lIamil,ooian using

'" '''1,' [j ""-"1," [_:::.': -:~:.:] []
(B.18)

"l1H' tran sformed lIamiltonian is
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u(8) Ji 0-' (O) = 2NV {(p. cosh e - sinh e) J, +

+ (-p. s¡nhe + cosh e) J,} - (E +NI').
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(8.19)

Bya suitahlc choice o{ e. either 1 or 1, can be elirnmalf'<1 from rhe f'e..¡uarion.
22'Rccall ,ha' E = 15 k 12m> O. lb etefor e

l. Atvl\ctivc potendal, V < O:

'an" e = i1; u(O) Jiu" (ti), 2NI' ;>('eh (J J, - (E + NV) .

2. Repulsivc potfllrial, V.'> o:

(8.20)

,aJJhe~.lli1.; U(D)Jiu.1(f)= 2NVcschOJ,-(E+NI'). (8.20

Thc infillilc" :-:;irll;]l gcncratOl s J¡ and 1, genemtc SLJhglOUp~C()I'jll~.1.r{"

coSO{l,l)and U(l), respecrÍ'\'ely. SinceJ¡ isanon-compnct gC:Jl-fraU;I, il

has a conunuou s spccrnJnl. On rhe (lth('r hand, J, generates a COlllpact suh.
group, and therefoH: has a discrctc spcctrum. As a result, there is an t.'fH'rgy
gap bctwecn the grounu and {irst cxcitl"ll state in the second case (V> O),
\\,hich is responsible for lI1acrosc:opic c(Tldensation mro the ground statP ';~;ilh
concomitant su pcrfluid ity.

Ir:. lhe superfluid case with hah"llhcnian proportional to J ~' a low('~1
lyin'g sratt' mUSl exist which oheys

(8.22 )

The hamiltonian eigenstate5 must beloog to a space which carries a scn.i-
bounded34,35,.Yl 'unitary irreducible representation of 5U(1,l):

These represen tation s are characterized by the eigenvaluc i (j + 1) ef the
Casimir operator
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r , , ,
>, = J, - J, - JI [U, s,J = O .
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(8.23)

Since S2 commutes with the Ham¡!ranian, ir must be rehued [O (he djfference
operarar tJ., which also commutes with j:(., and i i5 given by

;=-!¡161-!¡ (8.24)

The effecl oC <he diagonal gmeralor J, and lhe shift operalors Jt on lhe

basis veClors 1:) is givm by

/(" +l) (" - 2j)

("-j) n :;;;:0, 1, 2, ...

(8.25)

The energy eigenstates of me superfluid Hamiltooian are

E = (2n + 1 + 161) E - (é + NV)n

where E'=(é+NV)'-(NV)2.

The eigenslales oC<he Hamillonian (8.9) are

u(e)\lbn>= 1)
Ilbn> = 0-1 (e{)

(8.26 )

(8.27)
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In particular, me ground state of (8.21) is me coheren[ s[ate, obta.K1cd by
.setting n = O.

Thc ground state lS cooscructed most easily by applying [he appropri-
are SU( 1, I) BOl fonnula. These BOl formulas are aoalytic cootiouatioos
of!he SU(2) BOl formulas',9,B,31 aod have alsobeeo coosrructed explicito
Iy.'" Applying!he appropriate BCH formula, we find for !he ground Slate

=uo1(e) 1; _ )
n-O

= exp(- tanh ~ eJ.) exp (-210 cosh ~eJ,) exp (taoh ~eJ.)I :)

Sioce Jol:) = o ,

exp(taoh ~e01:) = 1 1:)
Sioce J,/:) = (- j) 1 :)

exp(-21o cosh ~eJ,I:) = exp(2j lo cosh ~e) /:)

(8.28)

(8.29)

2;
{ cosh ~e} . (8.30)

lhe single mode ground state is merefore

tanhe = NV/(€ +NV) . (8.3I)



lB] Gilmorc

TIl(' total systcm ground state of (8,7) is. a direct (Toduct of <;ingle mode gr<Uld
,'ate, (8.10), ca"', of ,he forro (8.31):

I 2;(k)I gnd > ~ n ~ {cosh ;¡O(k)} exp(- ",nh
kTO

;:k)
(8.32)

Once me single mode coherent staees (8.3I) have beeo obtalned ex.
pli c itl}', it is po ss iblc ro shúw dlcir non .orth ogon aliey ;wHi OV{1' -completene ss
explicitly. Instcad of ooing chis directly, we first cO'npute a useful gener.
altng funcrion. To compute the momcnts of ehe oper.uor J+, it is 5ufficient
to compute the derivativcs of a simple gcnerating function:7. 13,30

<8'luj' I 8> = (dlda/' <0'1exp(al.)1 O> I
a=O

(8.33)

where

(8.34){lO'}';cosh :s

lo> = {eosh !sO}'; ("Xp(-,anh!sOI.)/:)

1:) exp(- ,anh 18'U .<0'1

Arbitrary moments (A: non.intcgral) are computed 'io the usual vay.
Ir is more convcnicnt to determine a more general generatiog funr.;~)n

than the one iotroduced in (8.33). This funetion is

{(a,/3,Y) = <0'1 exp(al. +/31.+YI,)I O> . (8.35)

This generating function ¡s, moreo\'er, easy tu compute, foc

{
l' } '; { ,';{(a,/3, y) = cosh;¡ O cosh ;¡O} x

x (:/ exp(- <anh !sO'U exp (al. +/31.+'y 1,) exp(- ,anh!s 01.) 1:)
(8.36)



Applying now rhe appropriare SU(l, 1) BOl relation gives

2j
l(a,/3, y) = {cosh Y,e' cosh y,e}

((: I eXP(X'l.») exp(-2In xl,) (exP(xl.) 1))
{cosh Y,e' cosh Y,e} 2j e /exp (- 21n Xl,)/:)
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{'e' , e}2j 2j= cosh'í cosh'2 (2')

The function z is given by

(8.37)

[

- ranh Y,e' raoh Y,I'I- tanh y,e'][cosh w +Y,y shw/w ashw/w J
r = Te

tanh],z8 1 -¡3shúJ/w coshw-1yshw/w

2 , 2 af3w = (1Y) -

From chis gcncrating funcrion we casily compute

k k<e'lu.) le>= (d/d/3) 1(0,/3,0)1
13=0

(8.38)

2' k 2 .
{cosh y,0' cosh y,0} '(d/d/3) {1-(-/3) ranh Y,e- taoh Y,e'ranh y,0} ,

k 2j~
= (cosh Y,e' sinh Y,6) (r(2j + I)/f'(2j + 1- A»){IN}

IN = cosh 18' cosh 18 - sinh 10' sinh 18

(8.39)

(8.40)

In panicular, [he ¡once product <8'1 f» is dctermined by scning k. = O.

No\\' we sho\\' rhat [he ¡dentity opcrator can be resolved in che co.
herent starc rcpresenrarion. We construcr the operator
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J la>l<ald¡.L(G/H).
Q.C/II

This operator cornmutes wirh che aedon oí all elements g IEG:

r\g') J la><ald¡.L(U)
Q.C/II

= r\g ') J r"(a) IO><01r ,,<a-1) d¡.L(a)
Q

( / )Jr'" I Ir" _1 ,_1 'r"( ,= 1 Vol(lI) (g g) 0><0 (g g ) d¡.L(g g) g)

= { J ia><ald¡.L(a)}r\g')
Q.C/II

As a resuh, [he operator (8.41) is a muhiple of the identity

J la> I <a Id¡.L(a) = yId
Q

and y can be computed by taking the 00 matrix cIernent

<OI Jr\U) I 0><0 I r\a-1) IO>d¡.L(a) = y <OI Id lo>
Q

Gilmore

(8.41)

(8.42)

(8.41 )

(8.43)
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A
This exists whenever r is square integrable. When G is compact, the
resolution of the identity has the form given explicirly in Table 3.

The resoludon of lhe identily for SU(l, 1) has been given explicitly by
Pe re lomo\': 29

- (2;+I)7T.1Jln> 1 <n I d¡..L(n)= Id (8.44)

The integral is over lhe hyperboloid SU(l, I)/U(l).
The resulrs presen(cd above are vaIid for any physicaI sysrem whose

dynamieal transformation group is SUr 1,1), or a direet produel nSU( 1,1).

IX. SUM~IARY ANO CONCLUSIONS

The propenies ol fieId coheren( sra (es, originally introduced as a
useful system of vectors in terms ol which (Q represent physically occurriog
states of the electromagneric field, ha,.c beeo srudied from a group theorcri-
cal point of view. We have beeo abIe ro f¡nd a group rhcorericaI inrerpre.
lation for eaeh of lhe propellies (~lll, #1-12) M1ieh make lhe ,eoherent Slales
such an attractive marhematicaI representarion for cenain physicaI systems.

These properties have been applied ro (he descriprion of an ensemble ol
N identical 2-levcl atoms ioteracting with an external e1ecrromagnetic f¡eId
(sIV). The trearmenrs given in sIl! and 9IV are extremely similar in nacure.
'Ibis similarity exisrs for 3 reasons:

1. The procedure described in 9IIl is re la red to the procedure described 10

sIV by a group contraerion proeess. This is shown explicitly in ,SV.

2. The problems deseribed in ~lll and BV are essenlially duals lO eaeh
other. This duaIity has suggesred several non.trivial applications of
(he newer atomic coherent states. Two such applicarions are oudined
in ~VI.

3. The calcuIarions carried out in HU and UV are special cases of a much
more general procedure for consrructing coherent states. Such States are

defined in 9VIl as states on rhe orbít rA(G/ll) 1 ext >, where I exr > is an

extrema) state (i. e., ground state) in a Hilbert space M Awhich carries a
A

unitary irreducible representaríon r oC a dynamical transformatíon group
G, and where 11 is the stability group of I ext >, The properties oC gener~
alized coherent states are outlined in ~VII and presented in Table 2 and
Table 3.
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Finally, in sVIII the cohcrent state concept is uscd to treat the
Foldy model for a superfluid system in a simple and elegant way.
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RESUMEN

Se obtienen estados coherentes aplicando una trans{onnación unitaria
dinámica a un estado extremal en un subespacio invariante de un hamiltonia.
no mecánico cuántico. Las propiedades de los estados coherentes quedan
completamente caracterizadas en términos matemáticos. Además, probamos
el siguiente teorema que es muy útil. Un sistema físico inicialmente en un
estado coherente, o en particular en su estado base, ~volucionará a un esta.
do coherente. Damos varios ejemplos de la utilidad de los estados coheren.
tes.


