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DISTRIBUTIONS, FLUCTUATIONS AND SYMMETRIES
IN MANY-PARTICLE SPECTROSCOPY
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ABSTRACT: The state density for a spectroscopic system of many interacting
particles is detemmined to a large extent by the operation of a
central limit theorem which fixes the averaged form, while,
throughout the entire spectrum, the fluctuations about the average
closely follow the laws, derived for high excitation energy, by
considering random matrix ensembles. The fluctuations are
small, the Dyson-Mehta description of the random ensemble
spectra as “essentially crystalline” being found to apply much
more generally. The same general results obtain, both for
averages and fluctuations, under a restriction to states of
given exact symmetry, and, for the averages, even for broken
symmetries. Other properties of the system, occupancies for
example, are determined similady.
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1. INTRODUCTION

We shall consider, in a non-technical way, the very close relation-
ships which exist between symmetries and statistical behaviour in many-
particle systems. These show up particularly when, as is very often ap-
propriate we describe the system in spectroscopic terms, the states being
represented in terms of particles distributed over some finite set of single-
particle staces, say N in number. One knows of course that the existence
of good symmetries(J, T or perhaps SU(4)) supplies an overriding principle
which may greatly simplify the problem of finding the properties of the system.
But it is not so well appreciated that there is another general principle, the
central limit theorem, which similarly makes for great simplicities; moreover
the two simplifying principles are closely related. With the action of these
principles it becomes feasible and profitable, in very strong contrast to what
one usually does, to discuss in a unified way statistical behaviour (both
averages and fluctuations) right down into the ground-state domain and to
make use of symmetries even at high excitations and when they are badly
broken. Many general questions which have hardly been explored at all
arise when we do this, for example about the information content of complex
spectra, and a large number of technical questions as well, for example
about relationships between irreducible representations when there is a rele-
vant chain or more general lattice of subgroups.

Let us start with an old calculation of Bethe! which perhaps for the
first time made a connection between statistical averaging and symmetry.
Assuming that residual interactions could be ignored, Bethe had calculated
the nuclear level density and then asked for its decomposition according to
angular momentum. He gave an answer essentially as follows; regarding
the z-component of the i’th-particle angular momentum as a random variable
whose distribution centers about zero with width o (1) =%/ ]_(]_“'11_) , we have
by the elementary central limit theorem that L = %]z(:') becomes Gaussian

(0,m0o) in the (m >>1) -particle case; then ]: is XQ( 1) and ]2= (j’f + j; +]12)

is Xz(3), which gives for J (or better for J+%) essentially the Maxwellian
distribution ~ x? exp {= %" /20" (m)} with o? (m) = mo? (1).

We immediately ask why the very powerful principle invoked here was
not taken up and applied to other symmetries. But on thinking about it one
sees (as Bethe himself did) many problems connected with the calculation.
Statistical independence of the angular momenta for various particles, which
is taken for granted in applying the CLT, is not compatible with the Pauli
principle; while ignoring interactions is perhaps satisfactory for the density
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itself, we cannot be confident that a strongly J-dependent interaction will
not change the J-decomposition; and how really are we to know the effective
number of contributing nucleons?

More significant for our present purposes is the fact that the con-
nection with symmetry seems not to be an essential one in that the argument
used for f" could have been used for the square of any one-body operator,
whether or not it is connected with a relevant group. Let us turn this dis-
appointment to our advantage and ask whether we could for example have

dealt with the Hamiltonian itself to produce thereby the form of the spectrum.

We might expect that ordinary H's involve not three but a much larger number
r, of degrees of freedom and, since the CLT is a very “forgiving” theorem,
we might be willing to ignore cross terms and so forth. But then since

)(2 (r) =5 Gaussian (once again by the CLT) we might expect the resultant
distribution to be Gaussian. Then combining this with Bethe’s J-result we
would have that the partial density p(E,]) is Gaussian in B and Maxwellian
in J; we could imagine further decompositions as well.
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Fig. 1. Relationship between the single-particle and the m-farticlc spectra,
shown schematically (to different energy scales). E(N,.), a function
of the number, N;, of single-particle states considered, is a limiting
energy above which the spectroscopic eigenvalues and eigenfunctions
do not represent those of the true H.
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This result is quite wrong as it stands, for it is obvious that the
level density increases indefinitely with the excitation energy; in fact Bethe’s
calculation gives an exp {al/E’} form. We can properly use the CLT only
with functions which are bounded in some natural way; hence we turn to a
spectroscopic description as indicated in Fig. 1, which shows the relation-
ship between the 1-particle and m-particle spaces. To E, the largest multi-
particle energy of interest to us, there corresponds some minimum number N(E)
of single-particle states which we must take into account®; and conversely
to given N there exists a maximum E’(N). In this way then we have a finite
spectroscopic system which is equivalent to the original many-body problem
for energies E< E (N), it being agreed that appropriate methods are used to
construct the corresponding Hamiltonian and other operators in this spectro-
scopic space. These things being understood we can reasonably speculate
that the restricted density is close to Gaussian in energy as given above.

So much for the spirit of our undertaking; we are in fact considerably
more ambitious than these simple considerations would suggest. Let us proceed

therefore to a somewhat more formal treatment. We are dealing with an
N - -
-dimensional m-particle vector space, m say, which has an (anti-

symmetrized) direct-product structure

If H is the effective Hamiltonian which operates in this space then the eigen-

value density is defined by its centroid € and ‘its higher central moments
(p22) by

b (m) = J PUE) (E - efag = <wu-8 >" -

m
where <0> is the expectation value of 0 averaged over any orthonormal
basis of m; P(E) is the relative density its integral being unity; dx p(E),

: NL . . g
where in the present case d = , is the true density. We shall interpret
m

the moments as those of a smoothed distribution but, as shown in Fig. 2, we

L]
That N (E) should increase only slowly with E is the essential requirement for the
validity of the high energy shell model. Note that we do not admit (ol::‘:)ntinunm states

though this might be feasible; we could rationalize this by thinking about the Wigner-
Eisenbud states for the nuclear interior.
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can recover an approximate discrete spectrum by using F(E].) = (j-%)/d for

B

i=1,2,3..., where F(E) = | p(x) dx is the distribution function.? We
- 00

would use for F(E) a low-moment approximation deriving perhaps from the

moments of order p =1,2 (in which case we would assume a Gaussian 2)
but perhaps using moments to p = 4 (we would then use a “corrected” Gaussian®,
a Gram-Charlier or Edgeworth form); or in very large spaces we would repre-
sent O as a superposition of partial densities (the bases for which must in
fact be defined in terms of symmetries, as we shall see).

d x F(E)

1 1
E, E, EsE, 5

Fig. 2. The approximate spectrum as determined from a smoothed distribution
(Ratcliff). The eigenvalues are chosen so that, at its discontinuities,
the resultant staircase function evenly brackets the smoothed F(E).

Equation (1) for the density moments is valid even when we take
account of the Pauli principle and even when there are interactions, so that
in a sense these difficulties with the Bethe calculations are overcome by
going to moments. But we can anticipate that moment evaluation will rapidly
become harder as p, the order of the moment, increases; we see then that, as
a practical matter, we will have solved the problems only if the essential
feature of the non-interacting-particle density is preserved, namely that there
should be a characteristic form (describable now in terms of a small number
of moments). This will turn out to be true (giving then validity to the low-
moment approximation for F(E)); but beyond this a further major extension
becomes feasible; if we decompose the m-particle space according to symmetry,
the moments, being expressed in terms of traces, decompose similarly giving
rise to a natural symmetry decomposition of the density.



194° French

We encounter now a large number of questions:

(1) Is there any mathematical basis for the assumption of Gaussian
or close-to-Gaussian densities?

(2) What is the role of symmetries?

(3) The centroid energy for the spectroscopic problem will usually
lie far above the energy E(N); does any essential problem arise from the
fact that a description by moments “ties” everything to this energy which is
outside, and often very far outside the energy range in which the true problem
and the spectroscopic problem coincide; what in fact is the significance of
the resulting densities? Note that some of these questions arise also in
conventional shell-model calculations.

(4) Can the information which is lost when we represent the complex
density in terms of a few moments be recovered in some way?

(5) How can we calcu'ate the necessary moments?

(6) Can we deal with other quantities besides the energies?

(7) What is the nature and role of fluctuations? Do the fluctations
carry the missing information?

2. GAUSSIAN BEHAVIOUR

To see where Gaussian behaviour comes from, one should recognize
at the beginning that for the “dilute” system {m <<N) the Pauli principle is
not liable to be important; so let us ignore it, which we can do conveniently
by taking the large-N limit. For non-interacting particles we may write
H =2 ¢€;n,, and then immediately g (E) = fpm_—l(H') P, (E - E') dE' so that
£,, » being an m-fold convolution, becomes Gaussian very rapidly as m increases.

?

When we have interactions however the energies are no longer additive, the
argument fails, and the density may or may not be Gaussian. ]2 has a non-
Gaussian spectrum; a more interesting example is discussed by Quesne*. A
sensible procedure then is to define a characteristic form of the density by
considering not a single H but an ensemble of H’s; we would then be inclined
to regard the ensemble-averaged density as characteristic, but of course this
would be proper only if we could show that all but a negligible fraction of
the H’s in the ensemble do give that characteristic form

Hamiltonian matrix ensembles were introduced by Wigner®, the matrix
elements being taken as statistically independent and similarly distributed
by a Gaussian law centered about zero, these matrices forming the Gaussian
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.

Orthogonal Ensemble (GOE). It is found in this case that the ensemble-
averaged density in the large-N limit is semicircular; this is moreover the
characteristic form because, when the limit is taken in an appropriate way,
the probability vanishes for finding a non-circular single-matrix spectrum®.
Since however the circular form does not reproduce itself under convolutions
one can strongly suspect that, if we realize the matrices in an m-particle
spectroscopic space, then the Hamiltonian must change with particle number.
This would imply that H contains an m-body part; in fact, if we consider the

: . . (Ny2
number of independent matrix elements for m-body operators (which is (m) s

we see that for large N this part is dominant and that the GOE then describes
the situation where all the particles interact simultaneously, a case which
is very rarely of interest.

Things are different if, instead of the matrix GOE, we consider the
GOE ensemble of k-body operators, say with & = 2, acting in the m-particle
space. In this case, which we shall describe as the “embedded” GOE, or
EGOE for short, one finds’ that the characteristic form goes steadily from
semicircular for m = k to Gaussian for large m. It is easy to see why; con-
sider for example the fourth moment (the odd-order ones vanish on ensemble
averaging) :

wm)=<H'3" =<HHHHS +<HHHBS +<HHH A"
4 e — Dl (2)

where the linkages indicate a correlation (the af3 term with its adjoint Ba)
between terms in the expansion of H = E’Bwa,s '\L’a(k)l,bg(k) , where the Y’s
a

are k-body state operators. An even-order correlation is necessary in
order that the term should not vanish on ensemble averaging, while, in a
large space, correlations of order higher than two have a weight which is
negligible and goes to zero as N~ . The first two terms of (2) are equal
by cyclic invariance of traces and each gives {<H H >m}2 = {;_Lz(m)}z. The
third term is quite different; for example it vanishes as N~ = form = &
because the fact that there are only k-particles available altogether demands
a further correlation between the linked pairs which is not to be found in the
limit. However when the number of particles is also unlimited (strictly when
N— o, m=o,m/N— 0) no further correlation is needed, the different linked
pairs operate independently, and this term once again gives {,u.z{m)}z. Thus
;_L4/;J,: — 2 form =k, 3 for m >> k, these defining respectively the fourth
moments of a semicircle and of a Gaussian. Indeed we sece immediately
that, in the large-m limit defined above, ,u,zu(m)/,uzm) i1s simply the number,
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(2v-1)!!, of pairwise correlations of 21 objects, this of course being a
standard way of coming upon a Gaussian diswibution. For m = k on the other
hand we have the Wigner calculation®® which gives semicircular.

Thus the ensemble-averaged density makes a semicircle = Gaussian
transition as we increase the number of particles starting with m = k. The
rate at which this transition occurs has recently been given by Mon’ as a
function of the particle rank % of the interaction. If we want the negative of
the “excess” (u, /,u.i - 3) to be not larger than 0.3, which would correspond
to a pretty good Gaussian, we need about 12 particles for & = 2, about 25 for
k = 3, and about 50 for four-body interactions. By considering the ensemble
variances of the mnments Mon has shown moreover’ that for each (m, k) the
resulting distributions are, in the sense described above, characteristic ones.

The conclusion then is that there is a characteristic form for the m-
particle density and that it approaches Gaussian when there are many parti-
cles. If however the space is very large we cannot expect that a Gaussian,
even with low-moment corrections, will adequately represent the density far
from the centroid, in particular near the ground state. Roughly speaking a
corrected Gaussian will be adequate up to a distance 3.50 from the centroid

which will encompass the entire spectrum if the dimensionality is less than
10,000 or so.

3. DENSITIES FOR FIXED SYMMETRIES

All the m-particle states together form an irreducible representation
of the group U(N) of unitary transformations in the single-particle space;
thus, in an almost trivial sense, we have generated above a relationship

between symmetry and statistical averaging; our real interest however extends
well beyond this, to symmetries defined by U(N) subgroups. Many different
situations arise depending on the groups involved; there are many different
chains and lattices of subgroups; they may define good symmetries or broken
ones; the groups may involve free parameters to be chosen in some optimal
way; all srates for a given symmetry may be localized or spread out in energy;
all the states of a given symmetry may form together an irreducible repre-
sentation of some group (as with isospin) or they may not (as with angular
momentum) . Moreover, in contrast to the U(N) case above, there seems
often no natural way to proceed to an asymptotic limit which would define
characteristic forms although such forms are encountered. Very little study
has been made of these things though it is clear from available calculations
on the one hand, and on the other hand from general theorems which are known
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about probability on algebraic structures, and in particular about the corre-
sponding limit theorems (Grenanderf’), that the whole subject is a rich one
waiting to be studied. We must content ourselves however with a few practi-
cal aspects of it.

Symmetries enter when instead of studying the density for all m-parti-
cle states in our “universe” defined by N we consider the distribution of
the summed intensity of a subset of the states as they show up in the Hamiltonian
eigenstates. There is a triple of reasons why the subset chosen should be
connected with an irreducible representation of a group: only in that case
can the distribution be expected to be close to a characteristic form and
therefore calculable in terms of a few moments; only then also will methods
emerge for calculating these moments (in terms of invariants and generators
of the groups); and besides that of course the study of symmetries, which
becomes feasible when the subsets are chosen in that way, is a matter of
the greatest interest.

If the symmetry which labels the states is a good one we can regard
the density as an intensity distribution as above, or alternatively as an eigen-
value distribution; but when the symmertry is not a good one only the first of
these choices is open to us, for in that case a subspace cannot in general
be spanned by a set of eigenstates. If this point is not appreciated an ap-
parent paradox arises when the energy level fluctuations are considered; to
the decomposition of the m-particle space, which we write as m = X (m, a),
there is a corresponding decomposition of the density. If we think of the
partial densities as that of eigenvalues we know that, in a region where
several spectra overlap, the energy level fluctuations are drastically modified,
the nearest-neighbour spacing distribution going towards Poisson instead
of the very different Wigner form which displays the level repulsion. If in
fact the defining symmetry is good this is precisely what is known to happen;
but if it is very badly broken it has no effect on the Wigner form and we have
a conflict. The resolution is that the correspondence of the partial density
with eigenvalues is lost in the case of a broken symmetry. In the same way
it must be understood that the density being a superposition of partial densi-
ties does not in any sense imply that one set of states has no effect on the
other; when the symmetry is broken the distribution of one irrep is affected
by all of the others which are connected to it by H, this showing up in the
“partial widths” of the representation which go to intermediate states of
different symmetries, and in higher moments as well. Thus each irrep ac-
comodates itself to the others. We stress these matters, perhaps unneces-
sarily, because confusion has in the past arisen on both counts.

We can see easily how the characteristic Gaussian form can arise
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when we have a specified symmetry. Going back to the beginning and ac-
cepting Bethe’s argument and his results, we see that O}z, the square of the
spin cutoff factor, is ¥ ]2(8), this denoting an expectation value locally
averaged in the neighbourhood of E; we show later how it may be calculated.
If this quantity is essentially independent of E so also is the J-decompo-
sition and then the energy variation is the same for each J. Thus in a large
spectroscopic system we would, if o constant, encounter a Gaussian form
for the distribution of states of fixed,_,'. Moreover we would have then that
O}Z: s <]2 P = 1/,m(l’\’—m)(N—1)'1)"(;' +1), where we have evaluated the
average by using the result that, for an operator O, whose maximum particle
rank is i, <0>" is a u’th order polynomial in m; for ]2, # = 2 and since
<]2>0 = <]2 > = 0 the result follows. Note that the (N -m)(N-l)'l“blocking"
or Pauli correction was missed in the Bethe calculation. If, instead of being
constant, 0 varies strongly with energy then, unless the states of given |
are localized in energy (which does not happen with J though it can for other
symmetries), we must expect that the fixed-J densities will have distorted
forms, for the construction of which we would need to consider moments say
up to p = 4.

The simplest subgroup symmetry arises when we ask how the intensity
of a given single-particle state is distributed throughout the many-particle
spectrum.  This question is obviously relevant to a large class of experi-
ments and to questions about the validity of the shell model. An extended
question which quite naturally comes up is about the intensity of a “configu-
ration” the set of states which arise when we partition the N single-particle
states into subsets N, N, ..., N; (which we describe as “orbits”) and make
a corresponding decomposition m = X m_ of the particle number. A configu-

i
ration then defines an irrep of a U(N) subgroup G = % U(N,), the set of simul-
taneous unitary transformations separately carried out in each orbit; this
symmetry is probably the most important one in many-particle systems.

The evaluation of the centroids and widths is quite straightforward?,
there entering naturally Hartree-Fock-like energies and other familiar quanti-
ties; recently'® the third and fourth moments have been calculated by the
methods of many-body perturbation theory on the one hand and of R (2N +1)
contractions on the other (all the m-particle states together, m =0,1,... N
form an irrep of an R(2N +1) group) , the evaluation being by no means trivial
since we are dealing here with the third or fourth power of a complicated
operator in a complicated space. Most of the applications which we mention
briefly ahead have made use of these configuration distributions.

»

The presence in the nuclear Hamiltonian of pairing interactions in
particular implies that (at least in the usual spherical-orbit representation)
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the configuration symmetries will not be good. What happens then with the
distributions can be pretty well answered in terms of the moments to order
p = 4. One finds in fact that for the configurations located in the central
region of the spectrum the densities are quite close to Gaussian, but if the
space is large those near the extremes (the low-lying ones being the interest-
ing ones of these) are skewed and otherwise distorted. This arises of course
from excitations to high-lying orbits. For excitations from a low-lying configu-
ration to a very high orbit one can of course use simple perturbation theory
to calculate the corresponding shift in the ground-state energy. But we can
also take account of the change in the width of the low-lying configuration
according as we do or do not take into account these particular excitations,
and thus we can make a separate calculation of the effect. Comparing the
two tells us an important thing about the relationship between the statistical
and perturbation methods.

As a simple case suppose that we have m particles in two orbits which
are separated by energy A and that the interaction which connects them is a
pairing interaction Hp + H; where Hp promotes two particles from orbit 1 to
orbit 2. Then if A is large (compared with the width of the configurations)

the ground state, a, belongs to the (m, 0) configuration, and the ground-state
shift is

2
AR =(—1/2A)%|<m_2,2:[3| Hp|m,0: a>|

=(=1/20) <m,0: a| HpHp | m,0: 0>

0

=(-1/20) <HpHp>™" =(-1/28)07 (m,0) , (3)

where Géz(m,O) is the amount which the pairing excitations contributes to
the ground-state configuration variance (cre is an “external partial width”).

For the statistical calculation the ground-state is defined by F(E )= %,
and thus when F changes because of a change in O we have, the derivatives
being taken at the ground state,

SF =0 =(8F(E)/%) & + (BF(E)/SE)AES . (4)

If however we were to assume that the form of the density is unchanged by
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the 1 2 excitations we would have easily that
SF(E)/8c = ((E-E)/o) p(E) = ((E- B)/o ) (8F(E)/SE) (5)
AE, = - 80 (E-B)/0) = - (802/20") (E-E,)

= - ((€- Eg)/ZO'Z\Of(m,O) , (6)

where € is the centroid of the (m,0) configuration, and in common cases
(E-E ) is a few times the width o.

The two results (3.6) are inconsistent, and in particular the second
form for AF is independent of the orbit spacing A. The first result is of
course correct when A is large enough, and in that case the second is in
error, the assumption that the form of the density is unchanged by the inter-
orbit excitations being invalid. It obviously is, for the excitations force
upwards by 2AA a small part of the (m,0) intensity thus tending to generate a
bimodal distribution; if there is a distribution of high orbits we have instead
a long high-energy tail. As a practical matter we can keep track of what is
happening in complex cases by evaluating the skewness ,us/o"" which will
grow rapidly when distant orbits are taken into account. But, more interest-
ing to us at present, we see that the statistical method, which our experience
tells us does have a region of validiry, actually works in a domain of strong
interactions with resulting “chaos”, quite the opposite of the perturbation
procedure.

4. SPECTRA AND SPECTRAL FLUCTUATIONS

Fig. 3 gives a coarse-grained picture of a (a's)12 spectrum found by
constructing and diagonalizing the H matrix'! (839-dimensional) for a “realistic”
(KLS) interaction.' The dimensionality is small enough that a Gaussian or
corrected Gaussian density should be adequate over the whole spectrum span
(close to 100 MeV) and we see that this is indeed so, the density being well
represented by only four moments even though the number of matrix elements
is ~ 300,000. Observe that in this case there are exact-symmetry specific-
actions but they give little or no modification of the density. There are many
examples like this which show essentially the same result.
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Fig. 3. A computer histogram of a (ds)? spectrum. The bins are 1./ mev wide,
The Gaussian values are indicated by oval “points”.

Let us turn to a closer examination of the spectrum, considering
particularly the “energy-level fluctuations”. Recall first that in line with
the general arguments of §1 indicated in Fig. 1, only the first 10 MeV of the
spectrum may be regarded as representing reasonable eigenvalues for the
Si? nucleus. But this needn’t bother us, for it will turn out that the level
fluctuations at a given energy, when measured with the local level spacing
as a unit, are essentially unchanged when we extend the underlying space;
as a consequence it will make sense for us to consider the fluctuations
throughout the entire (ds)!? spectrum.

In Fig. 4 we take a finer view of things, comparing the ground-state
segment of the spectrum, as well as a segment from the central region, with
the corresponding fluctuation-free spectrum derived, as in Fig. 2, from the
four-moment density. When measured in the appropriate unit the comparisons
in the two segments, and indeed over the entire spectrum, are of comparable
quality. The RMS deviation between the two spectra, averaged over the
entire spectrum, is 1.8 spacing units,'® and averages over restricted domains
of the spectrum give essentially the same result.
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Fig. 4. A comparison between the exact shell-model (ds)® spectrum and the
corresponding spectrum generated, as in Fig. 2, by using a four-
moment distribution. Two segments of the 839-dimensional spectrum
are shown, for levels 1-23 and 503-524; in each case the exact
spectrum is to the left.,

For a theory of these fluctuations we would naturally introduce a
Hamiltonian ensemble, drawing on the standard assumption that a fluctuation
measure defined by a suitable local energy average may be calculated via
an ensemble average. There exists as yet no theory for (J, T)-conserving
fixed-particle-rank ensembles, nor even one for the simpler EGOE, but there
is a well developed theory' for the infinite-dimensional GOE, the most-
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discussed outcome of which is the strong appearance, in the distribution of
the nearest-neighbour spacings, of the well-known Wigner-von-Neumann level
repulsion (which by the way is strongly moderated if there is a good hidden
symmetry). By no means as well known as this striking short-range-corre-
lation effect is the long-range correlation discovered by Dyson and Mehta!$
which led them to the conclusion that the spectra encountered in the GOE are
of an “essentially crystalline” nature. These authors show for example how
to construct the optimal linear counting statistic for the levels; they use it
to show that the number of levels to be found in an energy span tD, where D
is the mean spacing, can be measured with a mean square error of less than
one unit (in 10°D one should find ~10% +1 levels for example). As one
would then expect, other measures of long-range order in the GOE spectra
confirm the “extremely high degree of regularity” which one encounters.

The results displayed in Fig. 4 suggest immediately that the Dyson-
Mehta phenomenon applies much more generally than to GOE spectra. Other
shell-model calculations with reasonable interactions give the same result,
which has emerged also from very extensive Monte~Carlo calculations for 2-
body-interaction ensembles. Of course when one deals with finite matrices,
the departures from an evenly spaced spectrum must now in part be ascribed
to a slowly varying change in the density but, if we take for granted that
this is well looked after by using the corrected Gaussian (p< 4), form, the
1.8-spacing-unit RMS error, though larger by a factor 2 than the Dyson-Mehta
value, nontheless shows that the Si?® spectrum, for fixed (J, T) is also
crystalline®.

The conclusions to be drawn from this are remarkable. The original
formal results for the energy level fluctuations, derived for ensembles of
quite unreasonable many-body interactions, and intended to be applied at
higher excitation energies are, so far as one can see, valid for the realistic
interactions encountered in the shell model; moreover they apply right down
into the ground state domain**. The latter result seems particularly astonishing;

L]
Values for other fluctuation measures, derived from the central region of the shell-
model or two-body-ensemble spectra, are in excellent agreement with the GOE re-
sults and with experiment too; it is entirely probable that allowing more freedom in
the choice of fluctuation-free density and using a more sophisticated startistical

analysis’® will reduce the 1.8 value,
..

Though whether the accuracy is as high in this region is as yet unclear because of
complications connected with the spectrum curvature. Besides results analogous

to those of Fig. 4 there are preliminary results!” derived for example form the GOE
and TBRE ensembles of the spacings between the two lowest states, and the same

procedure has been applied to the experimental results,
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one might rationalize the rigidity of the spectrum in the central region
as being due to the “pressure” being exerted from both sides of the spectrum,
but how then could one understand the rigidity at the very end-point?

The fluctuations then are small and, beyond information about symme-
tries, one is inclined to say that they carry little or no physical information,
the physics being then carried by the density or, at the lower end, by the
smoothed spectrum. Though this seems in the main to be correct, it quite
probably overstates things, at least in the ground-state domain; one knows
that in some simple regions (¢ shell, fy shell, for example) the accurate
fitting of model energies to experiment is worthwh1le and besides that one
sees regularities in other domains (rotational bands for example) which ob-
tain more accurately than the fluctuation picture would permit. For the most
part in these exceptional cases we are dealing with spacings between levels
of different (J,T), and it might be profitable to ascribe the regularities to a
general correlation between the energy level fluctuations for different symme-
tries. There is no theory for this kind of phenomenon nor is there any ade-
quate microscopic theory of fluctuations for other quantities besides energies
which should of course be considered also.

5. INFORMATION AND ITS PROPAGATION

We have seen in Fig. 4 a structure which displays a great microscopic
complexity coupled with a macroscopic simplicity, the first being represented
by the large number of matrix elements and the second by the small number
of contributing moments. This kind of duality is of course common; think
about the structure of a solid body! Moreover in our spectroscopic cases we
know that the microscopic complexity increases with particle number®,
whereas the macroscopic structure becomes simpler because of the more
effective operation of the CLT. Things are as shown schematically in Fig.
5 where the numbers 67, ~ 300,000 and 4 are respectively the number of
independent (one and two-body) matrix elements, the total number of matrix
elements, and the number of moments for our (ds)12 example. We realize that
the number of (independent) pieces of information is relatively small, but the
information becomes enormously fragmented in the complex system and the
fragmentation is worsened by the necessity of increasing N as we go up in

L ]
Until we arrive at m = N/2 after which things gradually become simpler again.
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excitation energy; except in a few simple cases it would become impossible
to recover it from the experimental results. But beyond that, the information
becomes filtered out as particle number increases, so that in a much more
fundamental sense it is in fact Jos?; if the fluctuations were more charac-
teristic of the system and the interaction then we might seek out the infor-

mation there; but we know from experience (though a real theory is missing)
that this is not the case. The one exception in fact is the moderation of
short-range correlations when we have a hidden symme try.

~300,000F--
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< COMPLEXITY
=
a
(@]
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<
w
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O 67—
—
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4 —
2 RS TN B i i S
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Fig. 5. A schematic representation of the effective number of pieces of information
versus particle number, according as we think in microscopic or macroscopic
terms. In the latter case, if N is large enough, the number is asymptotically
2 (centroid and widths of the Gaussian density), reached at m =N/2. The
numbers 4,67, ~ 300,000 apply to the (ds)-shell example.

We consider now two questions which are suggested by Fig. 5:

(1) Is information transmitted along the macroscopic line; i.e. is the
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moment information needed for m adequate for (m + 1), or do we encounter
different pieces of information as m increases? In other words do we have
a filtering action?

(2) m defines a U(N) irrep so that we have propagation along a line
of irreps. If we introduce U(N) subgroups do we find a similar propagation
throughout the lattice of subgroup irreps? And can we recover in this way our
lost information?

We can expect that the answer to the first of these questions is es-
sentially “yes”, for we see easily that it is so in the N— o limit for non-interacting
particles. In this case the CLT applies exactly, and the cumulants Kp(m)
(homogeneous polynomials of order p in the moments) are strictly proportional
to particle number, Kp(m) =mK,(1). In fa.ict the scale-invariant comulants,
kP: KP/UP, then satisfy kp(m) = kp(l)/m/zp'l, so that we can see the
filtering out of the information as m increases. For general k and finite N
the question can be similarly answered ' by using the fact that <H(kY >™ is
a polynomial of order pk in the variable m.

Important for both of these questions are the notions of inclusion and
orientation of irreps. There is an obvious sense in which we can regard the
k-particle space, k, as being contained in m (m 2 k) with a weight

-1 -1
w(m:k) = d(k) << p(k)>>™ = d(m) d(k) < p(k) > (7)

where << >>" is the m-particle trace and

k) = EMOEEM
o) = )y ) =[] (8)

is the operator form of the trace of the k-particle density, the ¥ summation

being over a k-particle orthonormal basis; that p(k) = [”] , where n is the

k
number operator, follows from the fact that both are k-body operators with

unit (diagonal) matrix elements. p(k) = [N;”] , the corresponding operator

for holes, is defined by interchanging ., L[J_; in (8) . We see that w(m:k) =[:':],

going properly to unity when m = k. Moreover the relationship between & and m
is special in the sense that p(k) is scalar in the m space. We shall say that
the two spaces are not oriented with respect to each other.” If we have a

L]
The relationship is reciprocal for, if we describe things in terms of holes, k and m
are interchanged; the m-hole density is then a scalar in the k hole space.
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subgroup chain U(N)D G,2G, ... G (or amore general subgroup lattice) , and
consider the irreps (m, a) of G,, equivalent ones being separated by the inter-
vening groups, the notions of weight and orientation have natural extensions ;
and similarly when we sum over all the equivalent irreps of G, .

If now in the U(N)DG,...G; case we consider a (k-body) operator
O(k, B) which is defined in an irreducible subspace (k, 8) of G;, we are led
to a tentative theorem that the trace of O in other irreducible subspaces (m, a)
is a multiple of that in (k,8);

<< Ok, B)>>M a = << o(k, B) >:B . {Weight of (k, B) in (m, a)}

= < 0k,8)>" - wom, a: k. B) (9)

which would give a remarkably simple and intuitively pleasing description of
the propagation of information throughout the lattice. Since a general k-body
operator is representable as a sum of (k, 3) operators, along with operators
which connect two subspaces and therefore do not contribute to traces, the
extension of (9) to the more general case would then be

<0k)»™% = 5 <o) > . im aik, B) . (10)
B
Rewriting this by means of (7), extended in the natural way, we have
<o) »™* = <<p(N-m, a.) O(k) >>k {11}

where a_ denotes the m-hole subspace which is complementary to a.
Eq. (11) is not quite general enough, for our interest is in H which, even
for p = 2, is not readily expressible in the normal form demanded by (11);
in other words we need the extension to operators which do not have a definite
particle rank & but have mixed ranks up to some maximum value u(y = 4 for
the square of the usual Hamiltonian). The extension is found to be

<< a>»M® _ <<5(N—m, ac) [“"'] 0 >>["'1 (12)
u—1mn

u
where (4] = 2 t, the trace then being over all states with 0, 1,2,... u
t=o0
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Are equations (9-12) correct for a general lattice as we have written
them? Does information in fact propagate in this remarkably simple way? A
little thought will show that the basic equation (9) is valid if and only if the
irreps are not oriented with respect to each other. Moreover if they are not
oriented the other equations do in fact follow from (9), as well as the analog
of (10) which would derive from (12). The equations are in fact valid in a
number of important cases, in particular for EU(NE) , the direct-sum subgroups
which define partitions, for direct-product subgroups U(N/r)x U(r), and for
the symplectic subgroup Sp(N). In these cases the density operators are
expressible in terms of Casimir invariants and simple methods are available
for writing them.

In other important cases, as for example with the physically interest-
ing SU(3), the representations are oriented, the density operators are non-
scalar, and egs. (9-10) are invalid. The general forms (10, 12) are however
valid for arbitrary subspaces (m,@); to use them for the more complicated
subgroup structures we would need forms for the density operators which,
though not expressible in terms of Casimir invariants, are functions of the
generators. This problem has beer. dealt with for only two cases, isospin?
and angular momentum?, for which radically different methods have been
employed, but there is a strong need for a more general understanding.

In an equation such as (10) we have a separation between the input
information, represented by the k-particle trace, and the algebraic structure,
represented by the weight . Moreover, considering moments (for which
0 = H") we expect that as m increases the higher-moment information is
filtered away so that the resultant distribution becomes simple. The problem
then, which is highly non-linear in the matrix formulation, becomes of low-
order multilinearity in the interaction matrix elements in the present way of
considering things. One consequence is that we can often describe the be-
haviour of the many-particle system in terms of quite explicit functions of
the input matrix elements.

We have commented above on the difference in the domains of ap-
plication of the statistical and perturbation methods. On the other hand the
methods are related in that the moments are calculable by diagrammatic
methods '®; but, group-theoretical methods being available for that purpose
also!®, we see the possibility of inverting the connection and using unitary-
group methods in many-body perturbation theory. There are other interesting
relationships among distributions, ensemble-averaged results and information
theory. Ensemble averaging and spectral averaging are related by an ele-
mentary ergodic theorem??; if our H is a typical ensemble member then the
ensemble-averaged results are relevant to the actual situation; this should
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lead, on the one hand, to methods for making reasonable estimates for compli-
cated quantities, and, on the other, to using ensemble-averaged many-body
perturbation theory for studying such quantities as the effective interaction.
It would be well in such applications not to carry out too broad an ensemble
averaging, as one would with the GOE or EGOE, but to specify for example
the strengths of various parts of the interaction, the pairing strengths (as at
the end of §3) and so forth. Restrictions of this kind are accomodated very
well by both the statistical and the perturbation methods, and as made clear
by Balian®*, by more formal information theory as well.

6. EXPECTATION VALUES

Suppose that we add to our Hamiltonian a small multiple of an oper-
ator K, so that H—H(a) = H+ aK. If we should discover that the (smoothed)
state density is unchanged, it follows by first-order perturbation theory that
K(E), the locally averaged expectation value of K, must vanish; if the effect
is to leave the density unchanged except for a translation in energy, K(E)
must be a constant; if the width changes (but not the shape) that effect is
representable by a scale change, implying a K(E) proportional to (E — &)
where € is the centroid of the density o. But it follows from this that,
if H gives an essentially Gaussian spectrum and if this feature is maintained
to first order in a when H—H(a) (in which case we shall say that a strong
CLT is in operation), then K(F) varies linearly with the energy.

We have for the m-particle system that

af(a)da = (3/da) <H + ak >™ = <g>™

[90*a)/3a)  =2<k@u-€)>m (13)

0]

and then we find easily, in this simple but important case, that®
K(E) = <K>™ + <k(H - €)>™(E- 8Y/0? . (14)

m . : i .
The averages < > which we encounter here are parametric derivatives of
moments and easily evaluated by the methods indicated above.
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In dealing with the J-dependence of level densities we felt the need
for the energy dependence of the (locally averaged) expectation value of j
since this would give us c‘I (E). Itis clear that the same need arises for
operators connected with other symmetries, and for more general operators
as well. In cases where a strong CLT is operative, this problem is now
solved by (14), giving a considerable extension of our arguments about
densities and spectsa. That expectation values should be derivable from
densities is not surprising; for the (smoothed) state density and partition
functions are related by Laplace transformation, so that parametric derivatives
on the latter function, which are standard in statistical calculations, may be
replaced by derivatives on the density. We have also an analog of the result
for a Gaussian stochastic process, that its Gaussian nature has a major
simplifying influence on the functions which describe the system; the present
requirement is strictly, not that the shape be Gaussian, but that it be stable
under H— H(a); but in fact that comes pretty well to the same thing. We
cannot now discuss the circumstances under which a strong CLT obtains,
except to say that it will not, in general, if K is of high particle rank (for
then, as in §2, the approach to Gaussian is slow), and that we may reasonably
expect that it will when K is an arbitrary (0 +1 +2)-body operator as long
as H is a more or less realistic interaction (not a “synthetic” H with just a
few degrees of freedom). As we indicate ahead we would in practical cases

24 o (14) so that we would in fact know when our

calculate correction terms
procedure is valid.

If we “center” the operators K, H by subtracting from them their scalar
parts (scalar with respect to U(N) if the averages are over all m-particle
states) we are left, when (14) is valid, with a systein in which only widths
are of consequence. But since 0 defines a proper (Euclidean) norm, our
results should then be expressible in geometrical terms, the magnitude of K
and the angle between K and H in the operator Space then f1x1ng the way in
which K(E) varies with H(E) = E. If we write [G| = <G G >™ for the square

of the norm of any operator G, and Z for the centered and renormalized G,
= (G = <G>™/ |6~ <e>" (15)
then (14) becomes

A—o
k(BE)=+k *h (E-E) o= cos(k *b)(E-E)/o (16)
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giving a very clear transcription from an operator relationship to a relative
energy variation. The dependence of the expectation value on particle
number is also implicit in (16); e, g. if K is a 1-body operator, as with oc-
cupancies, the reduced operator k is unitarily irreducible, the Young diagram
structure being [2, lN'z] so that only the corresponding part of b (the re-
normalized single-particle part) can contribute to kb , which:then has a
simply specified number dependence.

In very large systems the “chaos” generated by the interaction will
not span the entire spectrum and we get large departures from Gaussian; even
in a small system we may be interested in the (usually small) departures.
For these we need an extension of (14). Two general methods, as well as
many combinations of them, are available. We may on the one hand simply
continue with the argument which led to (14) but take account of shape
changes as well, describing the shape by a set of translation- and scale-
invariant parameters (the reduced cumulants of order v 2 3 are one such

set“) .

Taking account of the K-induced changes in these quantities simply
adds (in the reduced cumulant case) an expression in Hermite polynomials
Hv{(SE- E'g/c"} to the K(E) given by (14); in spaces of dimensionality
€10" - 10" only v = 2 and perhaps v = 3 contribute significantly to K(E);
higher terms have an effect only on the energy-level fluctuations. In huge
spaces (14) becomes unsatisfactory as it stands, but then we can partition
the space in the standard way, no new technical problems being encountered
when we do this.

The basic equation which gives rise to the various forms for K(E)
is most easily derived by considering the modification which the change in

. B
H generates on the distribution function F(E) = f P (x) dx (we drop the
- 0o

dimensionality d so that p is the state density not the probability density).
Suppose that E is bracketed by the eigenvalues_ E,,E,,,,that a is small
enough that the level shifts (which are then aK(Br)) are small compared with
the spacings p'l(Er), and that, for simplicity of discussion, K(E‘) and K(Etﬂ)
are positive. F(E) simply counts the number of levels below E and thus, under
H=H(a), will change by -1 if the level shift brings the £th eigenvalue up to
or beyond the value E, and zero otherwise; i.e.

8F = -1, E, SE<E, +aK(B,)
=0, B ,taK(B Y<E<E,,,
8F = - aK(E,)/(B,,, - E,) — - 8a K(E) p(E) , (17)
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where, in the last equation, we have written the probable value (thereby im-
plicitly introducing the local average) and then have proceeded to infinitesimal
a. We have then, with the derivative taken at a = 0,

E
K(E) = - p™ (B)F,(E)/da = - p'(B) [ (3p(x)/3a) dx . (18)

All the forms for K(E) emerge from this when we express p in terms of the
location, scale and shape parameters (or sets of such quantities if we par-
tition the space) and carry out the indicated derivative.

The K(E) equations can be used to study something about expectation
value fluctuations. We can define a locally averaged variance as K*(E)- {K(E)}’ )
where Kz(E) corresponds to H~H + aK ; when [K,H] = 0 this quantity is
indeed the local variance of the expectation value of K, but in the general
case, when K, H do not commute, it is the sum of this quantity and the averaged
single-state “quantum mechanical” variance of K; we have then a problem
of separating the two effects if we want better than an upper limit to the
fluctuations in the expectation value.

7. APPLICATIONS

We mention only a few of the possibilities. The most obvious application
is to level densities. By using moments, and relying on the CLT, we have
gotten around the limitations which are naturgl to the combinatorial me thods
used by Bethe!, reformulated shortly after that by van Lier and Uhlenbeck,®
and used since by just about everybody interested in the subject. In the
hands of artists this theory has given a good account of observed facts,®
but it has obvious fundamental deficiencies as a result of which it makes no
contact at all with the nuclear physics of the ground-state domain, of which
it should be a natural extension; moreover it is unable to deal adequately
with such things as spin cut-off factors which are now beginning to be
measured, parity® ratios, and the partial level densities which are needed
for treating both the 7y cascades and the internal cascade which leads to
compound nucleus formation.

L]
As a symmetry, parity is interesting; it should be easily seen by considering configu-
rations that the fixed-parity distributions, though easily calcuiated, are mul timodal,
nothing like Gaussian.



Distributions, fluctuations and. .. 213

The present indications are that, by partitioning the single-particle
space and using four moments to describe the low-lying configuration densi-
ties (Gaussian is adequate for the higher ones), we generate quite accurate
densities which give a good treatment of the experimentally measurable
quantities. It is implied by this that the densities give a satisfactory treatment
of the ground-state energy, this being essential in order that we can identify the
excitation energy in the calculation with that of the actual nucleus. The
theory for non-interacting particles encounters no such problem (just fill up
the lowest states and count the single-particle energies!), but that feature
is not to its credit but instead an indication of its unreality. We have now
an answer to the third question of §1; we can indeed extrapolate from the
system centroid down into the domain of interest. It must be realized also
that the theory of ground-state energies (nuclear binding energies) is of
great interest, quite apart from the role which it plays in level densities.
In such considerations the energy level fluctuations appear to be of conse-
quence only in setting a limit to the accuracy of the calculations;' it is
fortunate then that the fluctuations are small.

We have a family of methods for calculating the spin-cut-off factor, a
quantity not accessible to the elementary theory. As a minor example we
give (he result denved by parametnc dlffctcnnauon for A = 63 treated as
(f,/ p) for which N = 24, d = 3.5x 10°. With a Brown-Kuo interaction? and
STNi single particle energies we find?*, with o= 3.5 MeV,

of = 10.0-0.073(E - €)/o - 0.72 {(E- €) - o?}/0? (19)

where the spectrum span is about 20 MeV. In this case, and in many others,
]2 is essentially orthogonal to the centered H (hence the small coefficient
of the linear term) so that we would predict a good Gaussian behaviour for
the states of fixed J (as discussed in §3).

Fig. 6 shows an application® of a spin-cut-off factor to calculation
of the lowest (yrast) state for each J in the T = 5/2 states for the same ex-
ample; the nucleus now is Cu®® for which shell-model calculations are availa-
ble?®. One sees a remarkable agreemcn: between the exact results and those
derived very simply by a calculation of ] (E); the only significant discrepancy
in fact is removed by using a J, (E) correction to the Maxwellian distribution.
Experience indicates though tha( this quality of agreement may be found only
with odd-even nuclei.

The occupancies of single-particle states are the simplest and perhaps
the most important parameters encountered in studying a many-particle system.
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Fig. 6. The yrast spectrum for 83Cu treated as (fs/ p)7. The exact shell-model
2

spectrum of Wong is compared with that derived directly by Chang from
the locally averaged f: , with and without ]; correction.

They are calculable with excellent accuracy by the method of §6. The linear
equation (14) becomes?*

ng(B) = (m/n) {1 +((N-m)/AN-1)L_(E - €)0?} (20)
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where {,s is the renormalized single-particle energy; the quadratic and cubic
corrections are easily calculated. A (ds)'? example is given in Fig. 7,

comparison being made with exact shell-model results. Observe that the
occupancy lines are quite close to linear, the quadratic correction being
small and the cubic negligible. In a very much larger space one might ex-
pect that some of the linear occupancy curves (which correspond to Gaussian
densities) would give “forbidden” values (negative or larger than unity) at

1.0

0.9

0.8

B Y Y O

I0 20 30 40 50 60 70 80 90 100
Excitation Energy (MeV)

Fig. 7. Fractional occupancies (dashed line) for (a’s)12 with a KLS interaction,
calculated via (14) with a quadratic correction; the cubic correction is
negligible. The solid line shows occupancies calculated from the confi-
guration distributions. The discrete values are for ] =T = 0 and come
by smoothing the matrix results of Soyeur and Zuker,
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the spectrum extremes. This in fact does happen, another indication, that
the energy range over which the density is Gaussian is limited; the occupancy
curves give us a very useful way of measuring this range. The forbidden
values of course disappear when we include corrections or make partitions.
There is a very wide range of other applications of the locally averaged
expectation values, for example to calculating correlated occupancies, and
to comparing different interactions, and different parts of the same interac tions,
(pairing and quadrupole-quadrupole for example), at a given excitation energy.
Considerable attention has been given to the study of symmetries by
statistical methods, especially, leaving out the configuration symmetries,
to spin-isospin SU(4)® and to pairing®. One may study a symmetry by asking
first for the intensity distribution of its irreps; the two-body Casimir operator
locally averaged as in §6 would tell us something about this, but in fact has
not yet been really used for the purpose. Instead one has dealt separately with
each irrep. The technical question then is about the calculation of the low-
order moments, a problem however which has not really been faced for third
and fourth-order moments, though these will in the long run be necessary; in
the meantime one gets along with Gaussian densities. If, in a given domain
of excitation (which in practice would be near the ground state), only one
irrep has an appreciable intensity, the symmetry is necessarily good. Otherwise
the symmetry may be broken, or it may be that the energy region contains
states of different (good) symmetry. But in an even-even (ds)-shell nucleus,
for example, one is not prepared to believe that the lowest o*,2%. .. states
could have different good SU(4) symmetries, so that one would ascribe the
intensity admixtures, as Parikh® has done, to an SU(4) breaking. For SU(4)
the spectrum of the centroids is the same for all (0 +1 + 2)-body H's to with
a scale factor (we ignore the possibility of a sign change); moreover, and
much more generally than for SU(4), the widths of the various irreps are
closely equal.” One expects then that the ratio of the width to the centroid-
spectrum scale factor should be the parameter which has most to do with
the symmetry breaking, this then giving a simple classification of H’s and
for example displaying explicitly the symmetry breaking due to spin-orbit

effectsC.

Nonetheless one must not really expect that a one-parameter
treatment of symmetry breaking will be adequate and, for the more general
treatment in terms of the densities, one would be happier to know more about
the distribution shapes.

Pairing symmetries have been studied by Nissimov et al®! in terms of BCS

quasiparticles, the necessary extensions of the formalism being made to deal

L
This has been used? for SU(3) whose centroid energies are easily calculated =ven
though the irreps are oriented. Then if we assume the widths to be the same the
value follows from a calculation of the m-particle width.
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with fermion non-conservation. These authors moreover have not relied on
intensity considerations alone (in this case the intensities for different quasi-
particle numbers) but have evaluated the partial widths (an elementary example
of which we have given at the end of §3) and have used these along with
the centroids in considering what truncations of the quasiparticle space are
allowed, and other related matters.

Identical-particle pairing theory has been worked out® and applied to
Ni and Sn isotopes by Hsu and, recently and in much more detail, by Quesne
and Spitz, in terms of the symplectic group and R(3) quasispin; there is in
fact a useful combination of the two, in which propagation is carried out via
the symplectic group (whose identical-particle irreps are not oriented with
respect to each other), and a partical-width decomposition is made by using
the R(3) Racah algebra. There are two separate kinds of pairing effects
(and intermediate cases as well) according as the fundamental pair (the two-
particle wave function) spans all the orbits of the system or whether we
consider a different pair for each orbit. In the first case the group is S§p (N)
and the whole structure of the theory is similar to BCS, without however
the BCS degrees of freedom which permit the pair to adjust its structure to
take best account of the interaction; in the Sp(N) case the pair structure is
fixed (to within phases) by the single-particle states considered. Little
attention has yet been given to the second kind of pairing, in which the group
is essentially a direct sum of symplectic groups; it is clear though that this
will be very much better symmetry.

8. CONCLUSION

Much of the behaviour of spectroscopic systems is determined by the
operation of symmetries and central limit theorems. There are close connections

between them and with the notion of the information carried by spectroscopic
spaces.
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RESUMEN

Se determina en gran medida la densidad de estados de un sistem es-
pectroscopico de muchas particulas interactuando, por medio de la aplicacién
de un teorema de limite central que fija la forma promediada, mientras que, a
través del espectro completo, las fluctuaciones alrededor del promedio siguen
muy de cerca leyes, derivadas para alta energia, por consideracién de ensam-
bles de matrices estocasticas. Las fluctuaciones son pequefias, la descrip-
cion de Dyson-Mehta de los espectros de ensambles estocasticos como “esen-
cialmente cristalinos” se encuentra que es mas generalmente aplicable. Los
mismos resultados generales se obtienen, tanto para promedios como para
fluctuaciones, al hacer una restriccién a estados de una simetria exacta dada,
y para los promedijos, se obtienen ain para simetrias rotas. Otras propieda-
des del sistema, nimeros de ocupacién, por ejemplo, se determinan analoga-
mente.



