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ABSTRACT: The state density for a spectroscopic systan oí many intcracting

particlcs is detennined to a large extent by tht: opt:ration of a

central limit theorem which fiJ:e~ the averaged fonn, while,
throughout the emire speccnun, the fluetuacioos abouc che average

c10sely íollow che Jaws, derived for high excitadon t:nt:rgy, by

considering random matrix ensembles. The f1uccuacions are
small, the Dyson-Mehu description of cht: random ensemble

spectra as "essentially crystalrinc" bt:ing found to apply much

more generally. The same general resules obtain, both for
averages and f1uccuations, under a restriction to states of

given eIact symmecry, and, for che averages, even for broken

symmt:tries. Dther propertit:s of the syscem, occupancies lor
example, are detennined similady.

,
00 Icave from the Univt:rsity of Rochester. This won: has bt:en supportC'd in part
by (he U. S. Atomic Energy Commi ssion.
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l. INTRODUCTlON

Frmch

We shall consider, in a non-tcchnical way, (he very clase relation-
ships which exis( between symmetries and sracistical behaviour in many-
panicle systcms. These show up particularly when, as is very often ap-
propriate we describe [he system in spectcoscopic cenos, the states being
represenrcd in renos oC panicles distributcd over sorne fínite set of single.
panic1e sralcs, say N in number. One knows oC eouese mar [he existence
oC good syrnmerries(j, T oc perhaps SU(4»)supplies an overriding principie
which may grea,ly simplify the problem of finding tite properties of the system.
Out ir is nor so well appreciarcd rhar thete is anocher general principie, rhe
central limit theorem, which similarly makes foc great simplicities; moreover
[he (Wo simplifying principIes are c10seIy related. With the action of these
principies it becomes feasible and profitablet in very strong contrast to what
one usually docs, to discuss in a unified way statistical behaviour Cboth
average s and fluctuations) right down into the ground-state dornaio and to
make use ol symmetries even at high excitations and when they are b'1.dly
broken. Many general questions which have hardly beeo explored at all
arisc wheo we do mis, for example about the information content ol complex
spectra, and a large number ol technical questions as well, lor example
about relationships between irreducible representations when [here is a rele.
vant chain or more general lattice ol subgroups.

Let us start with an old calculation of Heme 1 which perhaps for me
lirst rime made a conneccion between sratisricaI averaging and symmerry.
Assuming mat residual interactions could be ignored, Bethe had calculared
rhe nuclear level density and then asked lar its d.ecomposi[ion according to
angular momen[um. He gave an answer essenrially as lollows; regarding
[he z.component of the ;'rh-particle angular momentum as a random variable
whose disrrihueion centers abour zeto with width a(l) =11,¡l.¡ + 1), we have
by lhe e1ementary central [imi, theorem ,hal/ ="í, / (i) becomes Gaussian

% ,%

(O. mo-) in ,he (m »I) -panic!e case; then l is X2(I) and ¡'= (/2 + " + /2)
% x y z

is t(3), which gives for J {or better for (J + ~)} essentially [he Maxwellian
distribulion ~ x2 cxp { - x2/Z0-2 (m)} with 0-2 (m) = m0-2 (I) .

We irnmediately ask why the very powerful principIe invoked here was
not raken up and applied to oeher symmeecies. Bur on thinking aboue it one
sees (as Beehe himself did) many problems connected wieh the calculacion.
Sratisrical independence of the angular momen[a for vacious particles. which
is raken lar gran[ed in applying the eLT, is not compatible wirh the Pauli
principIe; while ignoring in[eracrions is perhaps satisfacrory {or the density
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¡[seU, we canno[ be confident chat a stcongly J-dependent interaction will
nor change (he j-Jecomposicion; and haw reaHy are we [o know [he effeccive
numoef of contributing nucleons?

~Ior{' significant (oc oue present purposes is [he (aet thar [he Con.
o('ction \\'i~(h symmetry seems noc ro be an essential ane in [har [he argument
useJ foc ]- could have beco used (oc [he square o( any one-body operatot,
whether oc nO[ ir is connected w¡eh a relevant group. Lec us tum chis dis.
appointment [o oue advantage and ask whether we could (oc example have
oeah with rhe flamihonian itse1f ro produce [hefe_by [he form of (he spectrum.
\\'e might cxpect [hat oeclinar}' lI's involve "or [hree but a much larger number,
r, of degrces of frcedom and, since (he eLT is a very "forgiving" theorem,
we migh( he willing [o ignore cross terros and so forth. But (hen since

2 '-00

X (r) - Gaussian (once again by tbe eLT) we migbt expect the resultant
dis(ribu(ion 10 be Gaussian. Then combining (his wirh Bethe's J-result we
would have that [he par/ial densi/y p(E,n is Gaussian in E and Maxwellian
in J; we could imagine furthcr decompositions as well.

•

m PARTICLES

A
E(N,)

E

PiE)
Fig. J. Rel ation ship be[ween (he singl e.p ani el e and the m.partid e specua.

shown schematically ([O different energy scales). E(N
i
), a function

of the number N. oi single-particle states considered. is a limiting.. '
energy aboye which [he spectroscopic eigenvalues and eigenfunc[ions
do not represen[ tho se oi the [rue H.
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This result is quite wrong as it stands; for it is obvious that the
level density increases inclefinitely with me excitatioo energy; in fact Bethe's
calculalion gives an exp {alE} foltn. We can propetly use lhe CLT only
with functions which are bounded in sorne natural way; hence we turn to a
spectroscopic description as indicated in Fig. 1, which shows me re1ation-
ship between the l~particle and m-particle spaces. To B, the largest rnulti-
particle energy of interest to us, there corresponcls sorne minimwn number N (8)
of single.particle states which we rnust take in to account*; and conversely
to given N there exists a maximum E?(N). In mis way then we have a finite
specuoscopic system which is equivalent to the original many-body problem
fOl enelgies B" E (N), il being agleed lha, appropdale melhods ale used lO
construCt the corresponding Hamiltonian and other operators in this spectro~
scopic space. These things being understood we can reasonably speculate
that the restricted density is close to Gaussian in energy as given above.

So much for me spirit of our undertaking; we are in fact considerably
more arnbitiou s than the se simple coosiderations would suggest. Let us proceed
therefore to a somew.hat more formal treatmen!. We are dealing with an

[:]-dimensional m-patticle veClOl space, m say, which has an (and-

syrnmetrized) direct-product structure

m= ,.,., xl

If H is the effective Hamiltonian which operates in (his space then the eigen~
value densicy is defined by its centroid 2 and 'its higher central moments

(p ~ 2) by

p p m
fJ-p (m) = J p(E)(E - e) dE '" «H - e) > (1)

mwhere <O> is [he expectation value oE O averaged over any orthonormal
basis of m; p(E) is the relative densi[y its integral being unity; Jx p(E),

whele in ,he plesenl case d = [:] , is lhe lroe density. We shall inle!prel

the moments as those of a smoothed distribution but, as shown in Fig. 2, we

.Th~r t:J(E) shoul~ incr~ase only slowly with E is the ~ss~ntial requirem~nt for th~
v ahd1ty 0'£ th e; hlgh en erg>: sh~1l rnodel. Note th. w~ eh not admit continuurn star es
rh,ough thls rnlght be £~.slbl~iwe could rationalize this by thinking about'th~ Wigner-
Els~nbud states for thenucl~ar int~rior.



Distributions. {luctuations ando ..

~-------~

193

can recaver an approximate di serete spectrum by using F(E
j
) = (j - !z)/d for

E 2; = 1,2,3 ... , where F(B) = J pe,,) d" is the distribution function. We
-00

would use foe F(E) a low-moment approximation deriving perhaps from the
moments oC arder p = 1, 2 (in which case we would assume a Gaussian p)
but perhaps usiog moments to p = 4 (we would meo use a .corrected" Gaussian",
a Gr~m-Charlier oc Edgeworth fonn); oc in very large spaces we would repre-
sent p as a superposition oC partial densities (the bases foc which must in
fact be defined in reeros oí symmetries, as we shall see).

d X F(El

E

Fig. 2. The appcoximate spectrum as decennined f(om a smoothed distribution
(Ratcliff). The eigenvalues are chosen so (har, at ¡es disconcinuities,
(he resultan[ staircase function evenly brac1c-ets the smoothed F(E).

Equation (1) for the densüy moments is valid even when we take
account of the Pauli principie and even when there are interactions, so [hat
in a sense these difficuhies with the Be[he calculations are overcome by
going [o momen[s. But we can anticipate [hat momeO[evaluation will rapidly
become harder as p, the order of the moment, increases; we see [hen [hat, as
a pracrical mauer, we will have sol ved the problems only if [he essen[ial
feature of the non-interacting.particle densiry is preserved, namely [hat [here
should be a characteristic form (describable now in terms of a small number
of momen[s). This will ruro out ro be rroe (giving then validity to the low-
moment approximation for F (E»; but beyond this a furrher major extension
becomes feasible; if we decompose the m.particle space according ro syrnmetry,
the 'moments, being expressed in terms of traces, decompose similar1y giving
rise [O a natural symmetry decomposition of rhe densiry.
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We encounter now a large number oí questions:

(1) ls [hefe any mathematical basis foc (he assumption oí Gaussian
oc close-(Q-Gaussian densities?

(2) What is the role of symmetlies?

(3) The centroid enelgy fOI the speclloscopic problem will usuaIly
líe Car aboye (he energy E(N); does any essential problem arise from che
face chat a description by moments "ties" everything ro chis energy which is
outside, and afteo very far outside the energy cange in which che (rue problem
and che spectroscopic problem coincide; what in face is the significance oC
[he resuhing densities? Note char sorne oí [hese quesrions arise also in
convencional shell-model calculations.

(4) Can (he informarion which is lose when we represent che complex
density in cerros of a few moments be recovered in sorne way?

(5) How can we calculate the necessary moments?

(6) Can we deal with other quantities besides the energies?

(7) What is the nature and role of f1ucruatlons? Do the fluctuations
carry the missing informarion?

2. GAUSSIAN BEHAVIOUR

To see where Gaussian behaviour comes from, one should recognize
at the beginning that for che "diluce" syscem (m «N) the Pauli principie is
noc liable ro be importan e; so lec us ignore it, which we can do conveniently
by caking che large-N limie. For non-inceraccing particles we may wrice
11 = ¿ E¡n¡, and then immediately Pm(E) =JPm_¡(E')P,(E- E') dE' so that
Pm, being an m-fold convolution, becomes Gaussian very rapidIy as m increases.
When we have inceraccions however che energies are no longer additive, the
argument fails, and the densicy may or may nor he Gaussian. J2 has a non.
Gaussian speccrum; a more interesting example is discussed by Quesne-4. A
sensible procedure rhen is to define a characteristic form of the densiry by
considering noc a single H buc an ensemble of JI's; we would rhen be inclined
to regard the ensemble-averaged density as characceristic, but of course chis
would be proper only if we could show chac all buc a negligible frac don of
the H's in che ensemble do give chac characteristic form

Hamilconian matrix ensembles were incroduced by WignerS, che macrix
elements being taken as scaciscically independenc and similarly distributed
by a Gaussian law cencered abouc zero, these matrices forming che Gaussian
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Orthogonal Ensemble (GOE). 1, is found in this case that ,he ensemble-
averagc.d densiey in che large-N limic is semicircular; chis is moreover che
characteristic forro because, when [he l¡mie is caken in ao appropriate wa)',
[he probability vanishes foc (indiog a non.circular single~matrix spectrum6•

Since however (he circular forro does nor reproduce itse1f under convolutions
one can strongly suspec( [har, if we realize [he macrices in ao m.particle
spectroscopic space, chen (he Hamiltonian muse change wirh particle number.
This wauld imply chat 11 conrains ao m-body part; in facr, ir we considcr (he

number oí indepcndent matrix elements for m-body operators (which is (N)2) I

m
we see [har foc Iarge N chis pare is dominant and that the GOE then describes
the situation where all the particles interact simultaneo~sly, a case which
is very rarely of interest.

Things are different if, instead of [he matrix GOE, we consider the
GOE ensemble of k.body operators, say w¡th k =: 2, accing in the m .particle
space. ln this case, which we shall describe as the "embedded" GOE, or
EGOE for short, one f¡nds7 that the characteristic form goes steadily from
semicircular for m =: k [O Gausslan for large m. It is easy [O see why; con-
sider for example the fourth moment (the odd-order ones vanish on ensemble
averaging) :

m '</fHHH> +<H/f/f
L.....J~ L.....J

where the Iinkages indicate a correladon ([he aj3 term wirh i[s adjoint j3a)
between terms in the expansion of H = L Wa,Bí/Ja(khf;; (k) , wltere the y.;'s

",/3
are k-body state opcrators. An even.order correlation is neccssary in
arder that the tcrm should flot vanish 00 ensemble averaging, while, in a
large space, corrclatioos of order higher than [\\'0 have a weight which is
ncgligible and goes to zero as N"" Xl. The first two [crms of (2) are egual
by cyclic invariance of traces and each gives {< /f /f >m}' ~ (u,(m)}'. The
third term is quite d¡fferen[; for example it vanishes as N"" OC) for m :;';:k
because [he faet that there are only k-particles available altogcther demands
a further correlation between the linked pairs which is no[ to be found in [he
limit. flowever when the number of particles is also unlimitcd (stricdy whcn
N"" 00, m - Xl, m/N - O) no further correlation is nceded, the differen[ linked
pairs fperate independently, and this term once again givcs {J.L

2
(m)}2. Thus

J.L./J.L2 - 2 for m = k, 3 for m» k, [hese defining respectively rhe fourrh
moments of a semicircle and of a Gaussian. Indeed we sec immedia[clv
tha[, in [he large-m limi[ defined aboye, J.L2V(m)/f.1~ (m) is simply [he number,
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(2v-l)!!, oí pairwise correlations oí 2v objec[s, [his oí eouese being a
standard way of coming upon a Gaussian disttihution. Far m = k 00 [he amer
hand we have [he W¡goce ealculation5•8 which gives semicircular.

Thus [he ensemble~averaged densiry makes a semicirc1e - Gaussian
transirion as we ¡ncrease (he number oí particles srarting with m = k. The
rate at which this transition occurs has recencly beco givcn by Mon 7 as a
function of [he panicle rank k oí [be interaction. If we want [he negative oí
[he "excess" (J-L.• /J-L~ - 3) to be Dor larger [han 0.3, which would correspond
ro a pecte)' gooJ Gaussian, we necd abour 12 particles foc k = 2, abour 25 for
k = 3, and abour 50 foc four-body interactions. By considering [he ensemble
variances of the mr,ments Mon has shown moreover7 that for each (m, k) rhe
resulting distribu[ions are, in the sense described above, characteristic ones.

The conclusion then is that there is a characteristic form for the m-
particle d{'nsit)' and that it approaches Gaussian when there are roany parti-
eles. If however [he space is very large we cannot expect that a Gaussian,
('yen with low-momen[ corrections, will adequately represent che density lar
(roro [he cencroid, in particular near the ground state. Roughly speaking a
corrcc[ed Gaussian will be adequa[e up to a dis[ance 3.50- from [he centroid
which will encompass [he en tire spec[ruro if [he dimensionality is less than
10,000 or so.

3. DENSITIES FOR FIXED SYMMETRIES

AH the m-particle s[ates rogether forro an irreducible representa[ion
of the group VeN) of unitary transformations in the single.particle space;
thus, in an almos[ trivial sense, we have genera[ed above a relationship

between symrnetry and statistÍcal tlveraging; our real interese however extends
well beyond ,his, 'o symmetries defined by U(N) subgtoups. Many different
situations arise depending on [he groups involved; there are rnany diHerene
chains and lattices of subgroups; ehey may define good syrnmetries or broken
ones; the groups may involve free parameters to be chascn in sorne optimal
wa)'; a11 s[ates for a given symme[ry may be localized or spread out in energy;
aH [he s[ates oE a given symmetry may form together an irreducible repre-
sentation of sorne group (as with isospin) or they may not (as with angular
momentum). ~Ioreover, in con[rast to the VeN) case above, there seems
often no natural way to proceed to an asymptotic limit which would define
characteristic forms although such forros are encountcred. Very little study
has beeo made oí [hese things though it is c1ear from available calculations
00 [he ooe hand, and on the other hand from general thcorems which are known
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about probability 00 algebraic struc[Ures, and io panicular about the corre.
sponding (imit theorems (Greoaodcr6), that the whole subject is a rich one
waiting to be studied. We must con{en{ ourselves however with a few practi-
cal aspects of it.

Syrnmetries enter when instead of studying the deosity for al/ m-parti-
ele states in our "universe" defined by N we consider the distribution of
the summed intensity of a subset of the states as they sIlow up in the lIamiltonian
eigenstates. There is a triple of rcasons why the subset chosen should be
connected with an irreducible representation of a group: only in that case
can the distribution be expected to be close to a characteristic form and
thercfore calculable in terms of a few moments; only then also wiII methods
emerge for calculating these moments (in terms of invariants and generators
of the groups); and besides that of course the study of symmetries, which
becomcs feasible when the subsets are chosen in that way, is a malter of
the greatest interese.

If the symmetry which labels the states is a good one we can regard
the dcnsity as an intensity distribution as above, or altematively as an eigeo.
value distrihution¡ but when the symmetry is oot a good une only the first of
these choices is open to US, for in that case a subspace cannot in general
be spanned by a set of eigenstates. lf this lX>int is not appreciated an a¡:>-
parent parado x arises when the encrgy levcl fluctuations are considered; to
{he decomposition of the m.panicie space, which we write as m = 2. (m, a),
there is a corresponding decomposition of the density. If we think of the
partíal densities as that of cigenvalues we know that, in a region where
several spectra overIap, the energy level flucruations are drasticalIy modified,
rhe nearest-neighbour spacing distributíon going rowards Poisson instead
of the very different Wigner forro which display s the level repulsion. If in
fact rhe defining- symrnetry is good this is (X"ecisely what is known to happen;
hut if it is ver y badly broken it has no effect on thc Wigner form and we have
a conflicL The resolution is that the correspondence of the partial density
wirh eig('nvalues is lost in the case of a hroken symmetry. In the same way
it must be understood that the density being a superposition of partíal den si.
ties cIoes nor in any sense imply that one set of states has no effect on the
ot!l('r; \",hen the syrnmetry is broken the disrribution of one irrep is affecteo
hy all of [he others which are connected ro it by H, rhis showing up in rhe
"partial u'id[hs" of the represenu\[ion which go [O intermediate sta tes of
differen[ symmetries, and in higher momen[s 'lS well. Thus cach irrcp ac-
comodates i[seif to the others. \X'e stress [hese matters, perhaps unncces-
"mil)', becausc confusion has in the past arisen on both counts.

\tic can sce casil}' how the characteristic Gaussian form can arise
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when we have a specified syrnmetry. Going back ro (he beginning and ac~
cepting I3ethe's argument and his resules, we see [har 0-/, [he square oí [he
spin cuto£( factor, is % /2(8). chis denoting an expectacion value localIy
averaged in the neighbourhood oí E; we show latee how ir may be calculated.
If this quantiry is essenrially independenr of E so also is rhe ]-decompo-
sition and chen (he energy variadon is [he same roc each J. Thus in a large
spectroscopic system we would, if a2 constant, encounter a Gaussian form
roc (he distribution oí states oí (¡xci J. Moreover we would have [hen [har0'/= '1,<1' >m = 'l,m(N-m)(N-lr' j(j +1), where we have evaluared rhe
average by using [he result thar, for an operaror O, whose maximum panic1e
rank is fJ-, <O>"' is a u'ch order polynomial in m; lor J2, u = 2 and since
< / >0 = < l' >N = O the result follows. Note mar me (N -m)(N _Ir' "blocking"
oc Pauli correction was missed in rhe Bethe calculation. If, instead al being
constant, Oj2 varies strongly with energy rhen, unless rhe states ol givcn J
are localizcd in energy (which does no! happen wirh J though ir can for other
syrnmetries), we must expect thar [he fixed-J densities will have distorted
forros, foc rhe construction oC which we would need to consider moments say
up ro p = 4.

The simplest subgroup symm"etry arises v.nen we ask how rhe ¡n(cosity
of a given single.particlc state is distributed theoughout rhe many.particJe
spcctrum. This quesrion is obviously relevant to a large class oC experi-
mcnts and (o questions abour rhe validity al rhe shell model. An extended
question which quite naturally comes up is about the intensity of a "'configu.
ration" the set of states which arise when we partition the N single-particle
states into subsets NI ,N2 ••• ,N¡ (which we describe--as "orbits") and make
a corresponding decomposition m :::;¿ m, of the particle number. A configu.,
ration then defines an irrep of a VeN) subgroup G ::::;L V(N ), the set of simul-,
taneous unitary transformations separately carried out ln each orbit; chis
symmeuy is probably the most important one in many-particlc systems.

The cvaluation of the centroids and widths is quite straightforward9,
there entering naturally Harrree-Fock-like energies and other familiar quanti-
ties; reccntly la dIe third and fourth momeots have beeo calculated by the
methods of many~hody perturbation theory on the one hand and of R (2N + 1)
contraction s on the other (all the m .partic le state s together, m :::;0, 1, ...• N.
form an irrep of an R (2N + 1) group), the evaluation being by no means trivial
since wc art' dealing here with the third or fourrh [X>wcr of a complicated
opcraror in a complicated space. ~fost of the applications which we mentioo
briefly ahead have made use of these configuration distributions.

Thc presence in the nuclear Jlamiltonian of pairing interactions in
particular implies that (at teast in the usual spherical-orbit representatíon)
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che configuradon symmetries will not be good. Whac happens chen wich che
discribudons can be pretty well answered in cenns of che momenCs to order
p;::: 4. One finds in fac[ [har for the configurations locared in me central
region of che spectrum [he deñsi[ies are quite close ro Gaussian, but if the
space- is large those near [he extremes (the low-Iying ones being [he interesr-
ing ones of chese) are skewed and otherwise dis[Ofted. This arises of course
from excitarions [O high-Iying orbits. For exciradons from a low-Iying configu-
ration ro a very high orbir one can of course use simple perturbarion cheory
ro calculate rhe corresponding shifr in che ground"scate energy. Bur we can
also cake accounr of che change in rhe widrh of rhe low-Iying configurarion
according as we do or do nor cake into accounr mese particular excitations,
and chus we can make a separare calculadon of rhe effect. Comparing che
cwo tells us an importanr [hing abour [he relationship becween che staciscical
and perturbarion methods.

As a simple case suppose rhar we have m particles in two orbics which
are separated by energy ~ and rhar the interaction which connects them is a
pairiog interacrion "p + 11; where IIp promoces two particles from orbir 1 tu
orbil 2. Then iC!'1 is large (compared wilh lhe widlh oC lhe configuralions)
che ground srare, a, belongs ro the (m, O) configuradon, and the ground-state
shiCI is

1

= (-1/2!'1) ~ I <m -2,2:,81 Hpl m,O: a>t
13

where ~2 (m, O) is the amounr which the paUIng excitacions contributes._ to
the ground-state configuradon variance (ue is an -exrernaI parcial width").

For lhe slalisrica1 calculalÍon me ground.stale is deCined by F(Bg)= Y"
and chus when F changes because of a change in O" we have, che derivatives
being taken at the ground sta te,

~p = O = ( óF(B)/óa) óa + ( ÓF(B)/óB)!'1B .
g (4)

If however we were to assume [hat the form of che density is unchanged by
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(he 1 ....•2 excitatlOns we would have casily (har

OF( E)/Ó<T = ((2- E)Ia) P( E) = (( 2- E)/o- \( OF(E)/ÓE)

French

(6)

where t is rhe centroid oí (he (m, O) configuration, and in eornmon cases
(2- F. ) is a few times ,he width u.

g Thc two rcsults (3.6) are inconsisrent, ano in particular rhe second
form for 6p. is independent oí rhe orbit spacing 6. The firsr resule is oí
CDllese corren whcn 6. is large enough, and in rhar case rhe second is in
error, rhe assumption rhar (he form oí (he dcosir)' is unchanged by (he ¡nter.
orbit excitations bcing invalid. Ir obviously ¡s, for (he excitarions force
upwards by 26 a small part oí rhe (m,O) intensity thus tending co generare a
bimodal distribution; if rhere is a disuibutionof high orbits we have instead
a long high.encrgy tail. As a practical matter we can keep (Caek of what is
happcning: in complex cases by e\'aluating the skewness JJ.

3
/cr3 which will

gro\\" rapidly when distant orbits are taken into aecount. Hur, more interest-
ing to us at present, we see that the statistieal method, which our experienee
t('lls us does have a region of validity, actually works in a domain of suong
¡orcraetioos wirh resulting "ehaos", quite the opposirc of the perturbation
proeedure.

4. SPECTRA AND SPECTRAL FLUCTUATIONS

Fig. 3 gives a eoarse.grained pieture of a (ds)12 speerrum found by
eonstructing and diagonalizing the 11 matrixll (839.dimensional) lar a "realisric"
(KLS) intcraction. 12 The dimensionaliry is smaJl enough thar a Gaussian or
correcred Gaussian dcnsiry should be adequate ovcr rhe whole specuum span
(close ro 100 Me\') and wc sec [ha[ [his is indeed so, [he densiry being well
rcpresenrcd by only four momenrs even though the number ol matrix elcmenrs
is ...•..300,000. Observe [har in rhis case rhece are exaer-symmerry speeifie-
acrions but they give liule oc no modificarion of the densiry. There are many
examples like this v.:hich show essenrially rhe same result.
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Fig. 3. :\ compu(('r hi stogr 3moí a (ds)u spectrum.
The Gaussian values are indicated by oval

The bins are 1.1 :\ole\' wlde.
"points" .

Lee us tum eo a closcr examinaelon of ehe_ specerum, considering
panicularly rhe "cncrgy-Ievel flucruaeions". Recall rirse ehae in line wieh
rhe general argumcnrs or 91 indicared in Fig. 1, only rhe rirsr 10 ~ieV or me
speetrum may he regardcd as representing reasonable eigenvalues ror ehe
S¡28 nuclcus. Bur rhis ncedn'e borher us, for ie will turo our ehar ehe level
fluceuaeions ar a givcn cnergy, whcn measured wieh ehe local level spacing
as a unir, are csscntially unchanged when we exrend rhe underlying space;
as a consequence ir will make sense ror us to consider ehe flucrua[ions
throughout the entire (dS)12 specrcum.

In Fig. 4 we take a finer view of things, comparing [he ground-starc
scgmenr or rhe spcctrum, as well as a segment rrom rhe cenrral region, wirh
rhe corrcsponding flucruarion-free specrrum derivcd, as in Fig. 2, rrom che
four-momcnr densir)'. When measured in [he appropriate unir rhe comparisons
in [he [wo scgmcnts, and indeed o\'er (he entire spectrum, are of comparable
quality. The R~tS deviation between rhe two spectra, averaged o\'er rhe
entire spectrum, is 1.8 spacing units, 13 and averages over restricred domains
of rhe spectrum give essenrial1y the same result.
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Fig. 4. A comparison between (he e:raet shell-model (ds)12 speclCum and (he
corresponding spectrum generared, as in Fig. 2, by using a four-
moment djstribution. Two segments of [he 839-di.mensional specuum
are shown, foc leveIs 1-23 and 503-524; in each case rhe eIBct
spectrum is ro the Jefe.

For a theory of these fluctuatÍons we would naturaJly incroduce a
Hamiltonian ensemble, drawing 00 [he standard assumption that a fluctuadon
measure defined by a suitable local energy average may be calculatcd via
an ensemble average. There exists as yet no theory for (j, T)-conserving
fixed.pauic1c-rank ensembles, nor even one for the simpler EGOE, but there
is a well developed theoryl-4.for the infinite.dimensianal GOE, the mase.
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discussed ourcome ol which is the strong appearance, in the distribution ol
the nearest-neighbour spacings, ol the well-known Wigner-von-Neumann level
r<pulsion (which by rhe way i.' s[(ongly moderared if ,here is a good hidden
symmetry). By no meaos as weIl known as this strikins short-ranse-corre-
lation eHect is the long-ranse correlation discovered by Dyson and Mehta15
which led them ro rhe conclusion thar the spectra encountered in the GOE are
of an "essentia//y crys/alline" nature. These authors show for example how
to construct me optimal linear coundng statisric for the levels; they use it
to show that the number of levels ro be found iD an eneesy span tD, where D
is the mean spacing, can be measured with a mean square error ol less than
one uni, (in 1060 one should find ~ 106 :t 1 ¡evels (or example). As one
would then expect, other measures ol long-range order in the GOE specrra
confirm the "extremely high degree oC regulariry" which ooe encounrers.

The resu!,s displayed in Fig. 4 suggesr immedia,ely ,har ,he Dyson-
\tehta phenomenon applies much more senerally than ro GOE spectra. Other
shell-model calcularions with reasonable interactions Si ve the same result,
which has emerged also £rom very extensive Monte-Carlo calculations for 2-
body-interaction ensembles. Of Couese when one deals with finite matrices,
the deparrures from an evenl}' spaced spectrum must now in pan be ascribed
to a slowly varying change in the densit}' but, if we rake for gran red that
,his is well looked afrer by using rhe correcred Gaussian (1',(,4), form, ,he
1.8-spacing-unit RMS error, though larger by a {actor 2 than the Dyson-Mehra
value, nonrhcless shows thar the Si28 spectrum, lor fixed (J, T) is also
crystaIline* .

The conclusions to be drawn {rom chis are remarkable. The original
formal results {or the energy level fJucru3tions, derived lor ensembles ol
quite unreasonable many-body inreracdons, and in tended to be applied ar
hisher excirarion energies are, so far as one can see, valid lor the realisric
interacrions encounrcred in rhe shell model; rnoreover rhey apply right down
ioto the ground srate dornaio ••. ~Ibelattcr result seems particuJarly astonishing;

•
Yalucs for orher fluctuation measures, derived (rom the central region of the shell-
rnodel or two-body.ensemble sp«'tra, are in eJ:cellent agreement with the GOE re-
sults and with experiment too; it is entirely probabl e that allowing more freedom in
the choice of fluctuation-free density and using a more sophisticated statisticaI
analysis16 wiII teduce the 1.8 va1ue .••
Though whether the accuracy is as high in this regioo is as yet undear becauseof
complications connected with the spectrum curvature. Besides results analogous
10 those O( Fig. 4 there are prcliminary results17 derived for example foem the GOE
and TBRE ensembles of the spaciogs between the two lcowesr states, and the same
procedure has beeo appIicd tO the experimental results.lB
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Dne might racionallze (he rigidity of che specrrum in (he central regioo
as bcing due [O (he "pressure" being exerted from borh sides of (he spectrum,
but how chen could Dne understand [he rigidiry at (he very end~point?

The flucmations chen are small and, beyond informatlUl about symme.
tries, Dne is inclined to say thar (hey carry liule Of no physlcal informacion,
(he physics bcing chen carried by (he density oc, at (he lower end, by (he
'srnoothed spectrum. Though chis scems in the maio to be corrcer, ir quite
probably overstates things, at least in (he ground-srarc dornajo; one knows
rhar in sorne simple regioos (p shell, 1% shell, foc example) (he accurate
fitting of model cnergies to experiment is worthwhile, and besides char one
sces regularities in other dornains (rotational bands for example) which ob-
tain more accurately than the fluctuation picture would permit. For the most
paer in these exceptional cases we are dealing with spacings between levels
of different (J, T), and it might be profitable tO ascribe rhe regularides to a
general correladon between the energy level fluctuarions for different symme.
tries. There is no theory for this kind of phenomenon nor is mere any ade-
quate microscopic theory of flucruations for other quantities hesides energies
which should of course be considered also.

5. lNFORMATION AND ITS PROPAGATION

We have seen in Fig. 4 a structure which displays a great microscopic
complexity coupled with a macroscopic simplicity, che firsc being represenced •
by che large number of macrix elemcnts and che se-cond by rhe small number
of contributing mornenCs. This kind of dualit'y is of course eornmon; chink
about che scruccure of a solid bodyl Moreover in oUt spectroscopic cases we
know that rhe microscopic complcxity increases wirh particle number*,
whereas che macroscopic structure becomes simpler because of the more
effective operarion of che CLT. Things are as shown schematically in Fig.
5 where the. nurnhers 67, "" 300,000 and 4 are respectively the number of
indepenJenl (one and cwo-body) macrix elernents, che tocal numher of matrix
elements, and the number of mornents for our (ds)12 example. We realize that
the number of (independent) pieces of information is relatively srnall, but che
infoonation becomes enormously fragmented in the complex syscem and the
fragmentation is worsened by the necessity oí increasing N as we 80 up in

.Until W~ accive at m = N/2 after which things graduaUy becom~ simpl~r again.
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excitation energy; exccpt in a few simple cases it would become impossible
to recover it from the experimental results. Bufbeyond that, me infarmation
becomes filtered out as parricle number increases, so that in a much more
fundamental sense it is in fact losl; if the fluctuations were more charac-
teristic of the system and the interaction then we might seek out (he infor-
marion there; but we know from experience (though a real theory is missing)
[hat [his is not the case. The one exceprion in {act is the moderation of
short-range correlations when we have a hidden symmetry.

-300,000 --

{
MICROSCOPIC
COMPlEXITY

{
MACROSCOPIC

/ SIMPlICITY

z
O
•....
~
~
a::
O•••
Z

•••O
'"UJ
U 67
UJ

el.

4
2 ---------------------- _

m=k

PARTlCLE NUMBER

Fig. 5. A schemaric rcpresentation ol the dlective number 01 pieces ol inlormarion
versus particle n\imber, accordiog as we think in microscopic or macroscoJ.!ic
terms. In the latter:case, if N is targe enough, the number is asymptoticaJly
2 (centroid and widlh sol rhe G1Wssian densiry), reached at '" =N/2. Tbe
numb«. 4,67, - 300,000 apply 10 ,he (d.)-shell e•• mple.

We consider now two questions which are suggested by Fig. 5:

O) Is information transmitted along the macroscopic lin~; i.~. is th~
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moment informadon nceded for m adequate foc (m + 1), oc do we encounter
different pieces oí informarion. as m ¡ncreases? In orher words do we have
a fihedng action?

(2) m defines a U(N) irrep so rhar we have propagarion along a line
of irreps. lf we in[[oduce U(N) subgroups do we find a similar propagarion
throughout (he lattice oí subgroup irreps? And can we recaver in this 'Way oue
lost informadon?

We can expecr thar (he answer ro me firsr oí [hese questions is es-
sentially "yes". foc we see casily mar ir is so in l:heN-- 00 limir for non-imeracting
partides. In rhis case rhe eLT applies exactly, and rhe cumulants Kp(m)

(homogeneous polynomials oE arder p in me rooments) are strictly proponional
(O particle number, Kp(m) = mKp(l). In f~c[ [he scalc.invariant comulants,
kp ~ Kp!aP, rhen satisfy kp(m) ~ kp(l)!mY,P", so rhar we can see rhe
f¡lrcriog out oí (he informarion as m ¡ncreases. Far general A and fin¡te N
[he question can be similarly answered 19 by using the facr rhar < H(lef >m is
a polynomial of order pie in the variable m.

Imporr:anr for both of these questions are che norions of inclusion and
orientation of irreps. There is an obvious sense in which we can regard me
A:-particle spacc, k, as being conrained in m (m :a::.A:)with a weighr

-1 -1
w(m:k) ~ J(k) «p(k)>>m~ J(m) J(k) <p(k) >m

where «»m IS the m-parr:icle trace and

(8)

IS rhe operaror foem of rhe trace of rhe Ic.particle densiry, rhe 'Y summarion

being over a k"parricle orthonormal basis; rhat p(k) = [:] ,where n is rhe

number opera[or, follows from rhe fact chat both are k-body operators with

unir (diagonal) matrix elements. P(Ie} = [N."] , the corresponding operaror

for holes, is defined by inrerchanging tPY' tP; in (8). We see <har w(m:k) ~~:j,
gOlng properly ro uniry when m = Ic. Moreover the relationship between le and m
is special in rhe sense rhar p(k) is scalar in rhe m space. We shall say rhar
the [wo spaces are not orienled with respeet to ea eh oeher: If we have a

•
The relacionship is reciproca! for, if we describe chings in temu of boles. k and m
are incefchanged; che "..hole densicy is chen a sc.lar in cbe k hale sp.ce.



Dist,ibutions, I/uctuations and ... 207

subgroup chain U(N):l GI :lG, '" GI (or a more general subgroup larrice), and
eonsider the irreps (m, a) of G¡, equivalent ones being separated by the iocee.
vening groups, che nocions ol weight and orientation have nacural extensions;
and similarly when we sum over aH che equivalenr irreps of G¡ .

lf now in ,he U(N):l Gl' .• GI case we con sider a (k-body) operalor
O(k,j3) which is defined in an irreducible subspace (k,j3) of G

I
, we are led

ro a tencative theorem that the trace of O in other irreducible subspaces (m, a)
is a mul'iple of !ha! in (k,j3);

«O(k,j3)>>m, a = «O(k,j3) »k,f3 . {Weighl of (k, 13) in (m, a)}

kf3
= «O(k,{3)>>' 'w(m,a:k,j3) (9)

whieh would give a remarkably simple and incuicively pleasing desceiprion of
the propagacion of informacion chroughout che lattice. Since a general .4:-body
opeeawr is represen cable as a sum of (k, /3) operators, along with operators
which conneet cwo subspaces and therefore do noc eontribute Co traces, che
extension ol (9) w che more general case would chen be

«O(k) »m, a ::£ «O(k) »k,f3 . w(m, a: k, 13)
f3 (lO)

Hewriring chis by means oE (7), extended in che natural way, we ha ve

(l1)

wherc ac denotes the m-hole subspace which is complementary co a.
Eq. (11) is noc quite general enough, for our interesr is in ni' which, even
for p = 2, is no' readily expressible in !he normal form demanded by (ll);
in ocher words we need che extcnsion to operators 'Q..nichdo noc have a definice
particle rank k bu[ have mixed ranks up to sorne maximum value u(u = 4 for
che squarc of che usual Hamiltonian). The exrcnsion is found ro be

«O »m, a = «j5(N -m, ac) ["- "'lO» [u]
u- nJ (l2)

where [u] "
~ t, the trace chen being over a11 stares wirh 0,1,2, ... U
t = o
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Are equations (9-12) correer foc a general lanice as we have writren
them? Does informacion in raer propagate in chis remarkably simple way? A
ti,tle ,hough, will show ,ha' ,he basic equation (9) is va lid if and only if ,he
irreps are noC oriented with respect to each oeher. Moreover if they are DOC
orien,ed ,he o,her equations do in fac, follow from (9), as well as ,he analog
of (lO) which would derive flOm (l2). The equations are in fac, valid in a
number oí impareant cases, in particular foc I,U(N¡), che direct-sum subgroups
which define partitions, for direc'.produc' subgroups U(N ;,) x U(,) , and for
,he symplec,ic subgroup Sp(N). In ,hese cases ,he density opera'ors are
cxpressible in terms oí Casimir invariants aud simple methods are available
roc wriling them.

In oeher important cases, as foc example with the physically ¡nrcrest-
ing SU(3), che representalions are orientcd, che densicy operators are non-
scalar, and eqs. (9-10) are invalid. The general forms (lO, 12) are howeve,
valid foc arbitrary subspaces (m, a); to use them foc the more complicated
subgroup structures we would need forms for the density operators which,
though not expressihle in tenns of Casimir invariants, are functions of the
generators. This problem has beel. dealt with for ooly two cases, isospin20

and angular momentum21, for which radically diHerent methods have been
employed, but there is a strong need for a more general understanding.

lo an equation such as (10) we have a separatian betweeo me input
information, represented by the k.particle trace, and me algebraie strueture,
represeoted by the weight CtJ. Moreover, considering moments (fot whieh
0= HI') we expect that as m increases the higher.momeot information is
filtered away so mat the resultant distributioo becomes simple. The problem
cheo, which is highly non.linear i""the matcix formulation, becomes of Iow-
arder multilincatity in che interaetion mactix elemencs in the preseot way of
considering chings. One consequence is thac we.can often describe che be-
haviuur of che rnany.particle syscem in terros of quite explicit fuoctions al
the input matrix elements.

We have commented aboye on the difference io the dornaios of ap.
plieation oí the statistical and perturbation mcthods. On che other hand che
rnethods are re1ated in that [he moments are calculable by diagrammatic
methods l0; but, group-theoretical methods being available for that purpose
al so 10, we see the possibility of IOverting the conoectíon and using unitary-
group mechods in many.body perturbation meory. There are other interesting
relatíonships among distributlons, ensemble-averaged results and inforlnatíon
cheory. Ensemble averaging and spectral averaging are related by an ele.
mentary ergodic theorem 22; if our 11 is a rypical ensemble member then the
ensemble.averaged results are relevant to che actual situacian; chis should
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lead, on the one hand, to methods for making re~able estimates for eompli-
eated quanriries, and, on rhe other, ro using ensembIe-averaged many-body

perturbarion rheory for srudying su eh quantities as the effecrive interaetian.
h wouId be welI in sueh applications not to carry out too braad an ensemble

averagjng, as one would .."..ith the GOE or EGOE, but to speeify for example
[he strengths af variaus parts af the interaetian, the pairing strerigrhs (as at
[he end of ~3)and so forth. Restrictions of this kind are aeeomodatcd very
welI by bot:h the statistÍcal and the pcrrurbatioo met:hods, and as made cIear
by Balian23, by more formal information theory as"wcll.

6. EXPECTATION VALUES

Suppose thar wc add to our lJamilt:onian a small multiple af ao oper-
ator K, so ,hat H-H(a) = /1+ aK. If we should discover!hat !he (smoo,hed)
state density is unehanged, ir folJows by first-order perturbation theory that
K( f!), [he loeally averaged expeeta[ion value of K, must vanish; if the effeet
is to lea ve [he densi[y unchanged exccpt for a rranslatian in energy, K( E)
must be a eons[an[; if the width changcs (but not the shape) that effect is
representable by a scale cha ••ge, implying a K(e) proportional 10 (e _ E)
where 2 is the ccntroid of rhe density p. Bu[ it falIaws from this [hat,
if H givcs an essentialIy Gaussian spectrum and if mis feature is main'tained
'o firs' order in a whcn /I-/l(a) (ir. which case wc shall say !ha' a s/rong
CLT is in operalion), ,hen K(e) varies linearly wilh <he energy.

We have for [he m-particIe system mat

oE(a)'da = (%a) < /1 + aK >m = < K >m

[o0-2(a)/Oa] = 2 <K(l1 - E) >m (13)a=o

and then we find casily, in rhis simple but important case, that2.

K(E) = < K >m + < K(/I- E) >m (e _ E)/0-2
(14)

m
The average s < > which Wt: encountcr hcrt: are parametric derivatives of
moments and easily evaluatcd by the methods indicated abovt:.
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In dealing wilh ,he J -dependence or level densities we reh lhe need
rOl lhe energy dependence or rhe (locaHy averaged) expeclation value or J;
since (his would give us al (8). le is cIear chal che same need arises for
operators connected with oeher symmetries, and for more general operators
as well. In cases where a stcaog eLT is operative, this problem is now
solveq by (14), giving a considerable extension oE oue arguments about
densicies and specu3. That expectation values should be derivable from
densiries is noc surprising; for che (smoothed) state density and particion
funecioos are related by Laplace transformation, so chat parametric derivatives
00 the lacter funcúon, which are standard in stacistical calculations, may be
replaced by derivatives 00 che density. We have al50 an analog aE che result
for a Gaussian stochastic process, that its Gaussian nature has a major
simplifying influence on the func.tions which describe che system; the present
requirement is strictly, not that tht= shape be Gaussian, but that it be stable
under H-H(a); bUl in race lhal comes prellY well lO lhe same rhing. We
cannot now discuss the circumstances under which a strong eLT obtains,
except to say that it will not, in general, if K is of high particle rank (for
then, as in .~2, the approach to Gaussian is slow) , and that we may reasonably
expecl lhar il will when K is an arbitrary (O +1 + 2).body operalor as long
as H is a more or less realistic interaction (not a "synthetic" H with just a
few degrees of freedom). As we indicate ahead we would in practical cases
calculate correction terms24 ro (14) so that we would in fact know when our
procedure is valido

If we 'Icen ter" the operators K, H by subtracting fran them their scalar
pares (scalar with respecl lO U(N) ir the average s ,,:re over aH m'pallicle
states) we are left, when (14) is valid, with a system in which only widths
are of consequence. But since a defines a proper (Euclidean) norm, our
results should chen be expressible in geometrical terms, the magnitude of K
and the angle between K and H in the operator space then fixing the way in
which K(E) varies with H(E) = E. If we wrire iG"12 = <G+G>m"ror the square
oí the norm of any operator G, and g for the centered and renormalized G,

g = (G - < G >"')/\ G - < G >"'1

lhen (14) becomes

- - _ .•...•.•.-
I&(E) = 1&. h (E- e)/O" = cos(1& . h) (E- ellO"

(15)

(16)
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giving a very elear transeription from an operator relationship to a relative
energy variation. The dependeoce of the expeetation value on partiele
number is also implicir in (16); e.g. if K is a l-body operator, as wich oc-
cupaneies, the redueed operator i is unitarily irreducible, the Young, diagram
structure being [2, lN

o2] so that only the correspo~di~ part of ¡; (the re-
normalized single~particle part) ean contribute to k . h, whieh: then has a
simply specified number dependence.

]n very large systems the "chaos" generated by the interaetion wiU
not span the eotire speetrum and we get large. deparrures from Gaussian; even
in a small system we may be interested in che (usuaIly small) deparrures.
For these we need an extension of (14). Two general methods, as well as
many combinatioos of them, are available. We may 00 the one hand simply
continue with the argument which led to (14) but take account of shape
changes as well, describing the shape by a set of translation- and seale-
invariant parameters (the redueed cumulants of order V ~ 3 are ane sueh
se(24). Taking account of the K-indueed changes in these quantities simply
adds (in the reduced cumulant case) an expression in Hermite polynomials
H {(E - E)/u} to rhe K(E) given by (14); in spaces of dimensionality
~tl05 - 10

6
only 11 = 2.and perhaps 11 = 3 contribute significantly to K(E);

higher terms have an eHect only on the energy-Ievel fluctuations. In huge
spaces (14) becomes unsatisfaetory as it stands, but theo we can partition
the space in che standard way, no new teehnical ¡xoblems being eneountered
when we do this.

The basie equation which gives rise to the various forms for K(E)
is most easily derived by eonsidering che modification which the ehange in

E
H generates on che distribution function F(E)'= f p(x) dx (we drop the-~
dimensionality d so that pis the state density not the probability density).
Suppose that E is bracketed by the eigenvalues. Et J E, + 1 ' that a is small
enough that the level shifts (which are then aK(E,») are small compared with
the spacings P-I(E,), and that, for simplicity of discussion, K(E,) and K(E,t¡)
are positive. F(E) simply Coun's ,he number of levels below E and chus, unde,
H - H(a), will change by -1 if ,he level shif, brings ,he (ch eigenvalue up 'o
or beyond the value E, and zero otherwise; i. e.

óF=-l, E,~E~E,+aK(E,)

=0,1 E,+aK(E,)<E<E,tl

óF = - aK(E, )/(E,tl - E,) - - óa K(E) p(El (I7)
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wherc, in the las( equation, we have written me probable value (thereby ¡m-
plicitly inrroducing rhe local average) and chen have pcoceeded <o infiniresimal
a. We have meo, w¡lh me derivative ralcen al a = O,

E
K(E) = - p.1 (E) ap(1(E)/Cla = - p.I(l!) J (ap(1(x)/Cla) dx . (lB)

1 -~

AlI rhe locms loc K(E) emerge lrom chis when we express p in rerms 01 rhe
tocaríon, scale and shape parameters (or sets o~ su eh quantities if '\Vepat-
lÍtion (he space) and carry out me indicated derivative.

The K(E) equarions can be used ro srudy so:nerhinJl( abour expecrarion
value f1ucruarions. We can define a locall~ averaged variance as K2(E)_ {K(l!)}2,
where K

2
(E) corresponds ro H-H +aK ; when [K,H] = O chis quanriry is

indeed me local variance aE me cxpectation value oE K, bUl in (he general
case, when K, H do Dol commutc, ie is the sum oE tbis <pantity and die averaged.
singlc-statc "quantum mechanical" variance of K..;we have meo a problem
oE separalÍng the [wa effects if we want bettcr (han an upper limit to [he
fluctuations in me expectation vaJue.

7. APPLICATIONS

Wemenriononly a few ol me possibilities. The [Ws[ obvious application
is to l~vel d~nsities. By using moments, and r~lying.on the CLT, wc: have
gonen around me limitations which are natur"J to me combinatorial memods
used by Beche 1, ,eformulared shordy afeer rhar by van Lier and Uhlenbeclc,2S
and used since by just about everybody interested in the subject. [n the
hands ol attists this theory has given a good account of observed facts,2tj
but it has obvious fundamental deficienCÍes as a resuIt of which it makes 0(1

contact at aIl wjth the nuclear physics of me ground-state domajn, of which
it should be a natural extension; moreover it is unable to deaI adequateIy
with such things as spio cut-off factors which are now beginning to be
measured, parity. ratios, and me partial leve! densities which are needed
lor ueating both me y cascades and me internal cascade which leads to
compound nucleus foonadon .

•
As a symmeuy. parity is interestiog; it should be easily sem by cqosideriog coofigu-
ratioos tbat tbe fiJ:ed-pariry disuiburioos, though easily calculated are multimodaJ
nothing like Gaussian. "
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The present indications are mat, by parutloning the single-particle
space and using four mornents to describe the low-Iying configuration densi-
ües (Gaussian is adequate for the higher ones), we generate quite accurate
densicies which give a good treaanent of the experirnentalIy measurable
quantities. It is implied by this that the densities give a satisfactory tteaanent
of [he ground-state energy, this being essential in order that we can identify the
excitation energy in the calculation wim mat of me actual nucleus. The
meory for non-interacting particles encounters no such problem (just fiU up
the lowest states and eount me single-particle energies!), but that feature
is not to its credit but instead an indication of its unreality. We have now
an answer to me third question of il; we can indeed extrapolate from the
system centroid down ioto the dornain ol interest. It must be realized .also
that the theory ol ground-state energies (nuclear binding energies) is ol
great interest, quite apart frorn the role which it plays in level densities.
In such considerations me energy level fluctuations appear to be ol conse-
quence only in setting a limit to the aecuraey of the caleulations;u it is
forrunate then that the fluctuatíons are small.

We have a family of methods for ealculating me spin-cut-off factor, a
quantity not accessible to me elernentary theory. As a minor example we
give the result derived by parametric differentiation for A = 63 treated as
(/,I, p)7, for which N :, 24, ti = 3.5 x 10'. Ti m a Brown-Kuo in'e,action27 and
s7Ni single particle energies we fiod24, with 0"= 3.5 MeV,

'1' = 1O.0-0.073(B- E)/u- 0.72 {(B- E)" -u'}/u' (19)

where the spectrum span is about 20 MeV. In this case, and in many others,,
/ is essentially orlhogonal 'o me cen,ered H (hence ,he small coefficien'
of me linear ,erm) so ma, we would predic, a good Gaussian behaviour for
,he s'a'es of fiud / (as discussed in B).

Fig. 6 shows an application 21 of a spin-cut-off factor ro calculatíon
of me lowes, (yras') s'a'e for each / in me T = 5/2 s'a'es for me same ex-
ample; the nucleus now is Cu63 far which sheU"'fIllX1elcalculatioos are availa-
ble29• One sees a remarkable agreement between che exact results and mase
detived very simply by a calculation of J; (B); me onIy significan, discrepancy
in fact is removed by using a J: (E) correc[ion [O me Maxwellian disuibu[ion.
Experience indica,es ,hough lba' mis <paIiry of agreemen' may be found only
with odd-even nuelei.

The occupancies of single-parricle states are me simplest and perhaps
the most.important parame[ers encountered in studying a many.particle system.
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Fig.6. The yrasr spectrum (or 63Cu ueated as Us4P)1. The ex.et shell.model

spectrum of Wong is compared with {hat derived directly by Chang from
(he locaIly averaged J: . with and without J; correction.

They are calculable wirh excellent accuracy by the method ol .~6. The linear
equacion (14) becomes"

n (E) = (m/n) {l + (N -m)/(N -1)) r (E _ E)a2)s Ss (20)
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where Ss is the renormalized single-particle energy; the quadratic and cubic
corrections are easily ealculated. A (ds)12 cxarnple is given in Fig. 7,
eornparison being made witn exaet shell-rnodel results. Observe that (he
occupancy lines are quite close to linear, the quadratic correc(ion being
srnall and the eubie negligible. In a ver}' mueh larger spaee one rnight eXa
pect that sorne of (he linear oeeupancy curves (""nieh eorrespond ro Gaussian
densities) would give "forbidden" "alues (negative or larger than unit}') at

1.0
o d5/20.9
x d3/2

0.6
+ 51/2

0.7

0.6

0.5 -------
+

0.4
x

0.3 x

0.2

0.1

O 10 20 30 40 50 60 70 80 90 100
Excilotion Energy (MeV)

Fig.7. FractionaJ occupancies (dashed line) for (ds)12 with a KLS interaction,
calculated via (14) with a qUlldratic correction; the cubic correction is
negligible. The solid line shows occupancies calculated fmm the conEi.
.':uration distributions. The discrete values are for J = T = O and come
b}' :'moo(hing the matrix rl';"suhs of Soyeur and Zuker.
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rhe spectrum extremes. This in face does happen, anocher indicarion, thar
rhe energy range over which (he density is Gaussian is limited; che occupancy
curves give lIS a very usefuI way of measuring chis range. The forbidden
values of course disappear when we inelude corrections oc make partitions.

There is a very wide range oí other applications oí rhe locallyaveraged
expectation values, foc example ro calculating correlated occupancies, and
to comparing d¡Heteot intcractions, and diffcrent pares of rhe same interne rioos,
(pairing and quadrupole-quadrupole foc example), at a given excitarÍon cnergy.

Considerable attention has beco given [Q rhe studyoí synunetries by
sratistical merhods, especially, leaving out rhe eonfiguracion symmetries,
lO spin- isospin SU(4)'" and to pairing31• One may study a symmetry by asking
f¡rst for the inrensity distribution of irs irrcps; the rwo-body Casimir operaror
IoeaIly averaged as in 96 would rell us somerhing about [his, but in faet has
nor yet been really used for the purpose. Insread one has dcal [ separa[ely wi [h
eaeh irrep. The teehnieal quesrion then is abour [he ea1cularion of [he low-
order momen[s, a problem however whieh has no[ eeaIly been faeed foe rhird
and fourth-oedee momeots, rhough these wiII in [he loog ruo be necessary; in
[he mean[ime ooe gets aloog wirh Gaussian densities. 1£, io a given domaio
of exei[arion (whieh in peaetice would be ocar rhe grouod sta[e), ool}" ooe
irrep has ao appreciable inteosiry, [he symme[ry is nccessariIy gooo. O[herwise
rhe symmerry may be brokeo, or i[ may be rha[ rhe eoergy regioo eoo[aios
s[ares of differeo[ (good) symme[ry. Bur in an even~eveo (ds)-shell nucIeus,
for example, one is nor prepared ro believe [har [he lowesr 0+,2+ ... sra[es
could have diHereor good SU(4) symmcuies, so ma[ one would aseribe [he
inrensiry admix[ures, as Parikh~o has done, ro an SU(4) breaking. For SU(4)

[he specrrum of [he cenrroids is rhe same foe all (O + 1 + 2)-body I/'s ro wi[h
a scale factor (we ignore the possibiliry of a sign change); moreover, and
much more gene rally rhan for SU(4), rhe widrhs of [he various irreps are
closely equal.'" One expects rhen [har me ratio of che widrh ro the cen[roid-
spec[rum seaIe facror should be [he parameree which has mos[ [o do wi[h
[he symmetry breaking, rhis then giviog a simple classificarion of /I's and
for exampIe displaying explicitIy the symmetry beeaking due ro spin-orhi[
effecrs30. Nonerheless one musr nor really expecr [ha[ a one-paramercr
[[('a[menr of syrnmetry breaking will be adequare and, for rhe more general
[r('a[menr in reems of [he densi ties, one would be happier ro know more abour
thc distribution shapes.

Pairing symmerries have he en srudied by Nissimov er al31 in rerros of nco:.:;
quasiparricles, rhe necessary exrensions of rhe formalism being made [o Jeal

-This has b~en used32 fO,rSU(3) whose.cencroid energies are easily calculated even
though the trreps are onented: Then tf we a~sume ,(he widths to be the same the
value follows from a calculatlOn of the m.parttcle wldth.
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wi [h ferm ion non.conservat ion. The se authors moreover ha ve not re lied on
in[cnsi[y considerations alone (in this case the intensities for different quasi-
particlc numbers) but have evaluated the ¡nrtial widms (an elementary example
of which we have given at the end oí .93) and have used these along with
the c('ntroids in considering what truncations of the quasiparticle space are
allowed, and other related matters.

Identical-particle pairing theory has been worked om.31 and applied to
~i and Sn isotopes by IIsu ano,' recently and in much more detail, by Quesne
and Spi[z, in tcrms of the symplcctic group and R(3) quasispin; there is in
facr a useful combination of the [WO, in which propagation is carried out via
[he symplectic group (whose identical-particlc irreps are not oriented with
respect lO each othcr), and a partical-width decomposition is made by using
[he R( 3) Hacah al};chra. Thcre are two separate hnos oí pairing eHects
(and inrermediare cases as well) according as the fundamental pair (rhe two-
particl(' wave functioo) spans all the orbits of the system or whether we
consider a different paie foc each orbit. In [he £irst case the group is Sp(N)

and the whole strucrure of [he theory is similar to BeS, withou[ however
[he Bes degrees of freedom which permit [he pair to adjust its structure to
take best accoun[ of the interaction; in the Sp(N) case the paie struc[Ure is
fixed (lO within phases) by [he single-particle states considered. Little
atteotion has yet beco given [o rhe secono kind ofpairing,in which che group
is essen[ial1y a diren sum of symplectic groups; it is c1ear [hou&;!hthat rhis
will be very much b(,trer symmerry.

8.CONCLUSION

Much of the beha\'iour oí spectroscopic sysrCfTls is determined by the
opera[ion of symmcrries and central limir [heorems. lllere are close connection5
berween them ana wirh rhe norion of the ¡nformarioo carded by specrroscopic
spaces.
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RESUMEN

Se determina en gran medida la densidad de estados de un sistem es-
pectroscópico de muchas panículas interactuando, por medio de la aplicación
de un teorema de límite central que fija la forma promediada, mientras que, a
través del espectro completo, las fluctuaciones alrededor del promedio siguen
muy de cerca leyes, derivadas para alta energía, por consideración de ensam-
bles de matrices estocásticas. Las fluctuaciones son pequeñas, la descrip-
ción de Dyson-Mehta de los espectros de ensambles estocásticos como "esen-
cialmente cristalinos" se encuentra que es más generalmente aplicable. Los
mismos resultados generales se obtienen, tanto para promedios como para
fluctuaciones, al hacer una restricción a estados de una simetría exacta dada,
y para los promed.ios, se obtienen aún para simetrías rotas. Otras propieda-
des del sistema, números de ocupación, por ejemplo, se determinan análoga-
mente.


