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The unitary groups have wide applications in physics; yet the
elements (Wigner coefficients) of the unitary matrix which re-
duces the direct product of two unitary irreducible representations

remain undetermined for the most part, despite the considerable
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importance of these coefficients and the efforts by many in-
vestigators to calculate them: The occutrence of two problems
helps explain why: (a) the general principle [for U(n)] which
distinguishes among the multiple occurrences of an irreducible
representation has not been fully uncovered; (b) explicit calcu-
lations, even when (a) has been solved as is the case forn = 3,
are exceedingly difficult. Insight into each of these problems
may be obtained through the conceptsof a Wigner operator and
the null space possessed by it. This paper explains these
concepts within the framework of SU(2), and demonstrates that
an SU(2) Wigner operator is determined by its abstract structural
form and its null space. Itis suggested that the null space
concept is the proper one to use in the characterization of a

general canonical Wigner operator in U(n).

I. INTRODUCTION

The application of symmetry techniques has played an important role
in the development of a wide variety of physical theories, ranging from atomic,
molecular, and nuclear spectroscopy to elementary particles. Applications
are still appearing in such unsuspected areas as organic chemistry.! We de-
note these symmetry techniques generically as “unitary symmetry”; more pre-
cisely, we have in mind applications of the unitary Lie groups SU(n) and their
subgroups. The principal tool in such applications is the theory of tensor
operators. Despite this fundamental role of the unitary groups, a fully worked
out theory of tensor operators of SU(n)(n > 2) is still not available. By “fully
worked out” we mean a presentation of an explicit set of (orthonormal) Wigner
coefficients such as exists for SU(2). Even for SU(3) , where a complete
theory exists?™*, explicit calculations are apt to be difficult, and available,
hence, only for selected special cases.®"!' Part of the difficulty stems from
an incomplete understanding of structural principles underlying the resolution
of the multiplicity problem; part from the technical difficulty of effecting —and
understanding- complicated summations.

The magnitude and scope of these problems have led to numerous possible
methods for attacking them.® %' In our own experience, the notion of a Wigner
operator*"'® has proved to be a valuable conceptual basis for elucidating these
problems; the factorization lemma?' !¢ and the pattern calculus'® providing the
principal calculational tools. A natural outgrowth of these techniques has been
the development of the U(n) Racah-Wigner calculus (operator algebra)”'13
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and new ways of viewing the structure of explicit matrix elements.? *

The essential problem facing one in developing the canonical Racah-
Wigner calculus is one of generalization: What elements of the known U(2)
structure are to be preserved in this generalization? What elements are to
be considered as peculiar to U(2) alone? Similar questions occur for the
U(3) case where the formal (but not completely worked out) structure 1s known
to exist. Certain special features that in U(3) imply the known canonical
resolution do not exist in U(4) and higher.

One aspect of a Wigner operator which has not yet been fully explored
is the implications of the null space of such an operator.™''® In U(3),
for example. it has been demonstrated* that the null spaces corresponding
to the Wigner operators belonging to the same multiplicity set are simply
ordered by the inclusion property. The null space of a Wigner operator has
thus begun to emerge as an important structural feature.

It indeed the null space is a significant consideration, then it would
seem apptropriate to re-examine the known SU(2) Wigner coefficients from
this viewpoint. The result, we feel, is both interesting and reassuring.
In rather imprecise, but descriptive terms, the result is: An SU(2) Wigner
operator is uniquely determined by its general structural form and its null
space. The purpose of this paper is to explain fully the meaning of this
remark for SU(2), noting that while it is quite pleasant to view SU(2) from

yet another perspective, it is the implications of this viewpoint for U(n) that
is significant.

II. SU(2) WIGNER OPERATORS

In this section, we present a brief summary of the Wigner operator
concept for SU(2), using only the language of SU{2), for the purpose of
making the present viewpoint accessible to a larger audience.

Let:l] = @U each U € §U(2), be a representation of SU(2) by unitary
operators on the abstract Hilbert space possessing the orthonormal basis!®

2j 0
, 2j=0,1,2,... , (1)
jtm

where for each half-integer j the values which m can assume are =1y =f 1,
., j. The action of ©U on the set of basis vectors (1) is given by
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20 , 2j 0
6y =3 0, (V) (2a)
; ¢ mm : '
I+m r ]+m

Instead of the standard notation D;’rm (U) for the elements of the irreducible
unitary matrix representations of SU(2), we will also use a more suggestive
notation employing Gel’fand patterns:

jtm )
D |2 0 (U):D:‘;m(U). (2b)

jm'

We next define each of the operators

J+A
2] 0 ,A:—f,—]+1,...,1 ’ (3)
TN = - o P s
for each 2] = 0,1,2,..., by giving its action on the basis (1):
J+tA ¢ peh. .
2] 0 |2j X =¢ 2 +0) 0 .
J+M j+m mMm+M j+A+m+M
(4)

where the coefficient is an SU(2) Wigner coefficient.?® An immediate conse-
quence of this definition is the property:

J+A J M J+A
C, (27 0) 6 =3opl27 o)W {2 g3 .5
J+M utom! J+M' Jtm'

that is, each of the operators (3) corresponding to particular | and [\ is the
component of an irreducible tensor operator of type J. A second consequence
of the definition is the property:
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]y i
- s & (@ o (6)
R 7 JM

in which TA{ denotes an arbitrary irreducible tensor operator of type | and

&J denotes an invariant operator with respect to SU(2). This property is
]uSt an operator expression of the Wigner~Eckart theorem. Taking matrix
elements of this equation between basis states (1) of the underlying Hilbert

space on which the operators (3) act, one sees that the eigenvalues of the

invariant operator are, in fact, just

g G+m=<j+alr >, )

where the right-hand side is the conventional notation for a reduced matrix
element. From a vector space point of view, Eq. (6) expresses the fact that
the 2J +1 irreducible tensor operators enumerated by A = -], -] +1,...,]
(each such operator also has 2] 1 components, enumerated by M) are a basis
for tensor operators of type J. Note, however, that the scalars in this oper-
ator basis are not complex numbers, but group invariant operators.

Using definition (4), one might now proceed? to reformulate the whole
Racah-Wigner angular momentum calculus in terms of the Wigner operator
concept, thereby obtaining new insights into the structure of the algebra.
Since it is our purpose to discuss another aspect of Wigner operators -the
null space properties-, we will omit this reformulation.

III. AN ILLUSTRATIVE EXAMPLE

In order to make clear the essential ideas in the null space concept,
it is convenient to discuss first an elementary example which will lead us
directly to the more abstract general formulation.

Let us suppose that we knew nothing of the group theoretical background
of angular momentum theory, but wanted to determine explicitly the set of

11
diagonal multipole operators: C_ .

unit operator. The vector operator, | = 1, we know is proportional to m, the

The scalar operator | = 0 is just the

magnetic quantum number. How can one determine the proper normalization?
The answer is to use multiplet averaging, a method of almost prehistoric

origin in quantum mechanics. That is:
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4
2 iry il

% G Gsum = Op
multipler MHVM MUM

, (dimension of multiplet)
(dimension of operator)

Applying this to the vector case, one finds:

i . |
2(("”\

‘mOm’

=(2j+1)/3=N" X m?

m

Since X m* = j(j+1)(2j+t1)/3, one obtains the familiar result:
m

i 17 %
F 12 e Y]

‘mQOm

The complete set of diagonal multipole operators follows in this way. One
recognizes that one is simply using the Schmidt orthonormalization process

on the ordered set 1, m,m?

, ..+, and using multiplet averaging as the inner
product.
To see how null space concepts can fit into this problem, let us con-

sider the quadrupole operator. This operator has the general form:

72j

- 3 5 2
O fnormallzatlon)(aim i bjm + c].) 5

where a;, b’. and c; are polynomials in 2j +1 of degrees 0,1, and 2, respective-
ly. We now introduce new information: (a) the knowledge that a quadrupole
operator vanishes when connectingj = 0toj=0o0rj= %t j= % — this is
the null space of the diagonal quadrupole operator; and (b) the knowledge
that a‘fm2 tb.m+c. is invariant under the reflection symmetry j = -j- 1.
(Note that this transformation leaves the dimension |2j # 1[ invariant, as well
asj(j+ 1)). This information determines the quadratic form in m up to a
multiplicative constant, i.e.,

J2q
‘mOm

( = (normalization) [3m? - j(j + 1))

Instead of normalizing by multiplet averaging —a tedious method
really—, let us apply the null space idea once again, using also the reflection
symmetry:
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7 2

S [3m*-j(j+1)] = fifth degree polynomial in j which
m -} vanishes for j =0, %, -1, =¥, and
contains the dimension of the multiplet,

2j+1, as a factor

= # (27 +1)(2/)(2j -1)(2f +2)(2j +3) ,

where # denotes a numerical constant. Thus, the normalization of the
quadrupole operator is reduced to evaluating a numerical special case.

We conclude from this example the following fact: Knowledge of the

117 ;
null space of the diagonal multipole operator, C_ . completely determined

the explicit functional form of this operator, using only abstract properties
of the SU(2) structure. We will show in the following sections that the more
general result is also true: A Wigner operator is completely characterized
by its null space properties.

IV. THE NULL SPACE CONCEPT IN THE GENERAL CASE

Let us now examine definition (4) more closely. This equation de-
fines a Wigner operator for each A in the set -J, -J +1,...,]. Recall
that a Wigner coefficient vanishes unless the so-called triangle rule is satis-
fied by the triad j J j+/A. How then are we to interpret Eq. (4)? First let
us recognize that if we wish to study the properties of a specific Wigner
operator on our underlying Hilbert space, we should in our defining equation,
Eq. (4), consider that | and A are specified (fixed), but that 2/ in the basis
vector should run over all possible integral values 0,1,... With this viewpoint
in mind, let us now consider the origin of the triangle rule — the direct product
relation

A
@&u@ﬁ;+A)H ) (8)

Asof

This expression is just the Clebsch~Gordan series written in a form appropri-
ate to this discussion. The intertwining number &(} ®j;j+4) denotes the
number of occurrences of irreducible representation (irrep) j + 4\ in the direct
product of irrep | by irrep j. In accordance with our viewpoint of associ-
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ating J and A with a fixed Wigner operator, we present the intertwining number
as a function of 2j:

1 for2j2]-A
e j;j+h) = : 9)
0 for2j <J-A

Thus, in our language, the familiar triangle rule becomes the statement that
the intertwining number is a step function which has value 0 at all points
27 in the set

{0,1,...,7-A-1} (10)
and value 1 at all points 2 in the set
{r-4,7-4+1,...} . _ (11)

(The set (10) is the empty set for A = J.) Returning to the study of Eq.(4),
we see that the preceding observations may be stated: The null space of
the Wigner operator

JtA
2y 0 (lower pattern arbitrary) (12a)
®

is the set of irrep spaces {[2j 0]} for which 2j belongs to the set
{0,1,...,7-4A-1} . (12b)

Remarks. (a) Observe that the concept of the null space of a Wigner oper-
ator is basis independent to the extent that it does not depend on how one
introduces a basis into the carrier space of a given irrep j. Note that the
only Wigner operator of type J which has a non-empty null space is the one
having A = J. This property may be attributed to the fact that maximal
Wigner operators (A = J) may be considered as generating the state vectors
themselves from the “vacuum” ket:
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2j 0 2j 0 0
> = 2j 0> ' (13)
jtm jtm 0

Since our principal concern is to determine the generality of the null
space concept, we next examine directly the known SU(2) Wigner coefficients,
noting subsequently the extent to which one can turn the procedure around.
The literature contains many different forms for these coefficients, but it is
Racah’s form®* which is pertinent to our discussion. However, it is con-
venient to introduce new labels which help to distinguish between “operator
labels” and ®irrep space labels (variables)”, and which exhibit more directly the
symmetries of subsequent interest:

A1=]+A, AZ:]—A
Operator related labels (14a)
P r
AI =]+tM, 8, =]-M

%, = == Ltm, z,=jtm
Irrep space variables . (14b)
z=2j+t1= z, -z,

In terms of this notation, the SU(2) Wigner coefficients may be written in the
following form:

i ] itA 2(j+ ) 0 J+A 2j 0
Conak s = 2 4
jtO+m+M J+M jtm

Al - A %
_ 1 ’ '
=1t lanranentl « (15a)
_ , %
(-2, +0 - A -D(z)! &k 8
« = (Ai (A2 (k) By @’ 2],
k otk = A _‘kl g k k,
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where the denominator function is given by the generalized pattern calculus
rules?

[

i B I/2 -z +A z+&
L % = [(A)HHA N/ 2] AW 21y t
Dz;o)(’) [apra/epd o, A, A,) . |

(15b)

In these results the binomial coefficients are defined for arbitrary variable
¥ and non-negative integer a by

:7(')’-1)...(7—a+1)/01 . (16)

Before turning to the null space aspects of Eq. (15a), we wish to
analyze its structure a bit further. The motivation for doing this comes
from the observation that the polynomial part (the summation over k and &,
part) is not always in érreducible form, i.e.
the integers A, A, A7, A}, the polynomial factorizes into a product of linear
factors in z and z, multiplied by a new polynomial z and z,. We wish to

remove all such linear factors. The appropriate technique for carrying out
23

, unless A’z is the smallest of

this analysis is the pattern calculus.
Depending on the relative magnitudes of the Az‘ and A; , there are

four arrow patterns which can be drawn for the arrows going between row 2
and row 1. The possible cases are illustrated below (a single arrow repre-
sents one or more arrows) along with the numerical factor which is associ-
ated with the arrow pattern by the pattern calculus rules. Our interest here
is only in the factors associated with arrows going between rows, and we

refer to this quantity as the numerator pattern calculus factor (NPCF) :

NSNS N/

In terms of the four non-negative integers defined by

u; = max(O,Ai—Ai) , 4= max(‘O,A;—Ai), #= 1. 2. (17)
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the numerator pattern calculus factor is given for each of the four cases by

the expression.

% - zZ.
(NPCF) = IT Guyrezyt | *
i=1 u; l

(18)

The point in introducing this factor is the following: We can now write

L

L 2

=(NPCF) / T )t [ %), (19
=1 u

(z, + B - A -1 1(z ) i

(21—1)!(22 +A; “Az)!

a result which is valid for all four cases. It is the set of linear factors in
the denominator of this expression which always [actors out of the summation
expression in Eq (15a).

Thus, we may rewrite Eq. (15a) in the following form:

J+4
(2(;‘+A) 0| 2j 0 ,2;‘ 0
itA+m+M J+M jtm

! 4 5 (o A
= (-1 [AHHANYN] T [(NPCF) /D g3 02) (2)] %

% By (LB G 5 ) (20)
where P, denotes a polynomial of degree &£ = min(Al,Az,A; , A;) in z, and

z,. The polynomial B, has the following form:

P, (AlazA'IA'z %y )

(21)

Further properties of these polynomials are given in Appendix A. In particu-
lar, we prove there the following symmetry property:
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Pk(A1A2A;A;;z1Z2) = Pk(AZAIA;A;'; zzzl) : {22}

It is the form (20) and the symmetry (22) which 1s most appropriate for our
discussion of the null space properties of the SU(2) Wigner coefficients.

V. THE VANISHINGS OF THE POLYNOMIALS P,

Equation (20) has a rather rewarkable form. It becomes even more
interesting when we recognize that the denominator

IAl AZ
2] 0

D (z) {23)

is just the normalization factor discussed earlier in Sec. II for our motivating

example. The un-normalized form of Wigner coefficient is accordingly

L

(NPCF) " (polynomial in z and z,) . (24)
The form given in Eq. (24) implies that the polynomial part of this expression
must vanish for each point (zl . zg) which belongs to the null space (12b) and
for which the numerator pattern calculus factor is nonvanishing. Let us next
give the explicit determination of these points.

Using the definitions of z and z, given by Eq. (14b), we can enumerate
the set of points Z = {(zl, 2:2)} belonging to the null space (12b). These
points are conveniently enumerated in a triangular array:

/(-1,0)
(-1,1) (=2,0)

Z:{(zi,zz)}: < f] ) (-2,1) = . >

.

CLA-D (-2,8,-2) - - - - (<4,,00 ) (25)

On the other hand, the subset of points of Z on which the numerator
pattern calculus factor vanishes may be read off directly from Eq. (18). De-
noting this set by Z', it is expressed generally by
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' (.. %) (z,,z,) €Z, and either z, ZAl—Al' or -
.
<X ALY b
z, 0~ 1——1 or both

For later reference, let us remark that this set of points Z'is also completely
characterized by the following property: Z' is the set of points of Z for which
the final labels

207+ A 0
(j +4) (27)
jtA+tm+M

appearing in the Wigner coefficient (15a) fail to satisfy the betweenness
conditions' 2(j+ DAY 2 j+AN+m+M 20 .

[t is now apparent that the polynomial P, must vanish on the set of
poings Z =2 -Z7%;

7= {(zl,zz): (2ypm,) 6Z, 21$A1-A;*1,223A2—A1'} . (28)

(In implementing the conditions appearing in the sets (26) and (27), it is
useful to recall the relation AI+A2 = AI"FA; )

Let us illustrate the preceding results for P, by considering Case 1
where we have “,=w,=0,1 = A:—AI vy = A;—AQ . The set Z" becomes

Z”:{(21,2'2):(2!,:2)EZ,ZISAI—A;—I} , (29)
and the polynomial

() {J
i (A1A2A1A2; z z,))

2

2]

- Az ' z:+A2_kz
, (k) (k,)! (30)
17 e Nk k k k

1 2 1

. . r "
must vanish on the set of points 7",
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The remarkable property of the polynomial (30) is this:

LEMMA 1. Up to a multiplicative factor which is independent of z and z,
the polynomial (30) is the unique polynomial of degree A in z and z, wbtcb
possesses the symmetry (22) and which vanishes on the set of points (29)

The proof of this result is given in Appendix B. Let us illustrate
the result by giving two examples:

Example 1. AJ=1. The polynomial in question has the form
Az t+Bz +C, and 1t must vanish on the point (- A , 0) from the set (29)
and on the point (0, -4 ,) because of the symmetry (22). These two
conditions require that R ;D5 B = A,D, € =A A D, where D is arbi-
trary, that is, the solution is proportlonal to

A1z1+A2z2+A1A2 : (31a)

Example 2. A; = 2. The polynomial in question has the form
Azl2 i Bz:z2 t+Cz z,+Dz tEz, +F. It must vanish on the six points

(_A2+1,0) (0,-Al+1)
and

(-A,+1,1) (-4,,0 (L= +1)  (D=Dy)

where the first three points come from the set (30) and the second three
points come from the symmetry (22). The six equations for the six un-

knowns A, B, ..., F yield the information that the polynomial is proportional
to

A](A]-l) 2yl < 1] +A2(A2-1) 2, L~ 1) +A1(A1—1) Az(Az- 1)

+ mlazzlzz + 2A1(Al- 1) A2z1 * 2A1A2(A2—1) z,

(31b)

The generalization of Lemma 1 may now be stated:

LEMMA 2. Up to a multiplicative factor which is independent of z and z,
the polynomial Pk(A A A A' ;z,z,) is the unique polynomial of degree
k= mm(A A A' A )m z, ana’z which bas the symmetry (22) and which
vanishes on !he sef of pomts be!ongmg to 2"
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The proof may be given by a method similar to that of Appendix B,
and we omit it.

[t is instructive to give an example of Lemma 2 (other than for Case 1)
to illustrate how one utilizes the symmetry (22). Consider Case 2 with

A, = 1: then A 2&; 21,42 A; 2 1. The polynomial we seek is of the form

PI(AIIA;A;; zlzz)=Azl+Bzz+C : (32)

and it must vanish on the point (-1,0)[Z" = Z = (-1,0)] . In order to find a
second point where the linear form (32) vanishes, we consider the symmetry

PI(AIIA:A; y X zz) = F‘l(IAIA'l A;; z,z) . (33)

The linear form on the right-hand side of this equation falls into the category
under Case 3 having A = 1. Thus, we find that under the conditions of Case
3 the linear form Pl(lﬂzﬂ; A;; z z,) must vanish at the point (—A;,A;—l).
Renaming A  to be A, z, to be z,, and z, to be z, we see that
P14.A] A; ; 2,z) must vanish at iz y2) = (= A;, Az'—l), i.e., at
(z,,z)= (A;-— I, —A; ), which from Eq.(33) is a second point where the linear
form (32) must vanish. The vanishing of the linear form (32) at the two points
(-1, 0)-and (A;- 1 —A;) requires that the form be proportional to

A:(zl"' 1) +A;z2 . (34)

VI. CONCLUSIONS

Let us now summarize and interpret the results we have obtained in
Secs. IV and V. Starting with the set of Wigner coefficients and the triangle
relations, we developed the equivalent notions of a Wigner operator and its
associated null space. We then demonstrated that the structural form, Eq. (20),
had interesting properties.

The essential remark now is that this process may be completely re-
versed: the structural form given in Eq. (20) is abstractly deducible from general
principles, including the degree and bermulational symmetry of the polynomial
(permutational symmetry always refers to the symmetry under the simultaneous
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exchanges A = A, and z <'z)). Since the polynomial is then uniquely
determined (up to an unimportant factor) by the zeroes it possesses in conse-
quence of the null space, and since the denominator is determined by normal-
ization, we see that an SU(2) Wigner operator is uniquely determined by its
abstract structure and its null space. L
More particularly, let us examine each of the three parts— (NPCF)?
polynomial, and denominator— of Eq. (20). We have already given a complete
discussion of the polynomial part. Consider the numerator pattern calculus
factor part. While the presence (and explicit form) of this factor in Eq. (20)
is deducible abstractly, it is also uniquely determined by permutational
symmetry and the points belonging to the null space which correspond to
final labels which fail to satisfy the betweenness conditions. Finally,
consider the denominator part. Its square must be of degree &1 +A2 = 2J in
z=z,-z = 2j +1, contain the dimension 2j+1 as a factor, vanish on the
null space points z€ {1,2, ..., Az}' and be invariant under AI e A2 ,
z < - z. Hence, except for numerical factors independent of z, the form of
the denominator squared is

2.

Al AZ -z'f'AZ Z+Al
D (z) =F_ *
2] 0 z+A1—/_\2 Az Al

(35)

in agreement with Eq. (15b). Thus, the numerator pattern calculus factor
and/the denominator as well are essentially determined by the null space.
(In the final form of a Wigner coefficient, the only factor undetermined is a
numerical factor which is independént of z, and z,, and this factor is de-
termined by examining a special numerical case.) While of little interest to
verify all the details of the properties outlined above, it is content of our
interpretation that such a procedure exists in principle.

It is our belief that the null space concept is the proper concept to
abstract from the known results of SU(2) and SU(3), and that it is this concept
which may be the proper characterization of a general canonical Wigner oper-
ator in U(n).
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APPENDIX A: SYMMETRY OF THE POLYNOMIALS P,

The main purpose of this appendix is to prove the symmetry relation,
Eq. (22). Consider the following expression in which the fi and z; are in-
determinates:

k
0= Tt E 6 /. (A.1)

The ¢ ...9 bracket around the enclosed linear form in z, and z, symbolizes
the following operations: Expand the form by the usual trinomial thc;xorem,
collect together the powers of each variable, and map each power {  into

g
al ‘ . Thus, the explicit definition of the expression (A.l1) is®* %
a

k
Q‘i 2 te, z, t é1 gzé /!

_y BRI rRy [ 6 &, I’-; %
(k) (k)1

y  (A.2)
k tky k, Tk, \ki k,

where the sum is over all non-negative integers (k) = (k k,k,) such that
k tk,t £, =k

Observe that the symmetry relation
* k
3 -
@‘lel+§222+§1§29 o (szzz{bé]zl*-gzgl& (AS)

is an obvious property of the definition (A.2) .

One of the internal summations occurring in the right-hand side of
Eq. (A.2) can be carried out by using the binomial addition theorem. There
are two ways of doing this, leading to the fol lowing forms:
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k
$f = # €, x, % E LA /R

§1 552 zl+§2—k2 2

A BIRTS]
k otk =k |

k| \k, k k,

. él 52 o'l z2+§1'k1
. k(kl)f (kz)! : . (A.4)
+ =
f "%y lzl k2 kl k2

Notice that while the symmetry relation (A.3) is transparent in the expression
(A.2), it is lost in the individual expressions occurring in the right-hand

side of Eq. (A.4), but is regained through the equality of the two summation
expressions in the right-hand side of Eq. (A.4).

Making the identifications §; = AA;, we now see that the summation
part of Eq. (15a) is

I
M

Al
2
A =z +hz +A DY AT, (A.5)

which from Eq. (A.3) is invariant under the interchanges (ll L Az , il T
By definition, the polynomial B, is given by

A'
2
Pk(A1A2A'1 A'z; z, z2) = @Alzl +Azzz +A1A2§) /(A;)! x

2 z;
x 1/ 11 (ui)!( 3 (A.6)
t =1 u,

The symmetry relation, Eq. (22), follows directly from this expression.
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APPENDIX B: EXPLICIT CONSTRUCTION OF THE POLYNOMIALS
P, FROM THEIR ZEROES

Lemma 1 is proved in this appendix. The method of proof is by giving
the explicit construction of the polynomials from their zeroes. We prove below
that the polynomial given by Eq. (A.4) is determined up to a multiplicative
factor in & and £, by the sets of zeroes {(zl , z2)} given by

T,={(k-£,-B,2): B=1,2,...,k=a} , (B.1)
where . = 0,1,..., k-1;
So= e, k-&-B8): B=1,2,...,k-a} |, (B.2)

where & = 0,1,..., 8-1. Under the identifications & = Az- and k = [\; ;

the sets T, T ,..., T, ; contain precisely the points of Z" given by Eq. (29),
and the sets §, S, ,..., $,, contain the points obtained from the I, by

permutational symmetry. Thus, the proof of Lemma 1 follows from this
somewhat more general result.
Let PkfzI 22) denote a polynomial of (toral) degree in & in z, and z,

which vanishes on the sets L. 85 =il oy k-1 "The vanishing of
: 3t &,
Pk(z:1 zz) on the set of T yields the result Pkle 0) = ao(:fl §2) ; , where

is a polynomial of degree not greater than & -1, we obtain Plzl)=Q, (z.1)=0"
z, +§2-1
on the set T1 , and therefore Qk—l(z11) = alffl fz) \ . Putting
-1
Pk(.z1 zz) = Pk(z](]) + zzgk_ltzl 1)+ 22(z2 -1) Qk-z(zlzz)’ where Qh-z is of
degree not greater than £ -2, we obtain Pk(zEZ) = 2Qk_2(z1 2) = 0 on the set

z, * éz -2
T,, that is, 20, ,(2,2) = "2(51 §2) . Continuing this procedure
k-2
in an obvious manner, we come to the conclusion that the most general poly-
nomial of degree & which vanishes on the points in the sets Tc| . 'I'] —
is

azo(§1 -52) is arbitrary. Putting Pz z) = Bz, 0)+ zzok—l("’]zz)’ where 0, ,
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k z1+§2—s .'zz
Ii(zlzz)= séoas(é'lfz) S (B.3)
k-s s

in which the zzs(§1 zfz) are arbitrary.
We now repeat the argument using the points of the sets 5, S, ,..., 5,
to come to the conclusion that

Pk(zl zz) = s{‘obs(gl §2)

k AN ES +§1—s,
) (B.4)

5 k-5

in which the b$(§1 §2) are arbitrary.
The two expressions (B.3) and (B.4) must agree identically in z and z

-
Setting z, = 0 and equating the expressions gives

k §1 N % ol T éz
S b(£,E) = a,(£,£) . (B3
S k-s s k
We now set B = 0,1,2,..., in turn, in Eq. (B.5) to obtain a triangular system
of equations which uniquely yields
&
a,(£.€) = a(€ ) : (B.6)
k
AVRS
b (£,5) = a(£, &) s!(k-s)! , (B.7)
s k-s

in which d(f1 §2) is arbitrary. Using this result in Eq. (B.4), we obtain the
second expression in the right-hand side of Eq. (A.4), multiplied by a(fl =Y
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RESUMEN

Los grupos unitarios tienen amplias aplicaciones en fisica; aln asi,
los elementos (coeficientes de Wigner) de la matriz unitaria que reduce el pro-
ducto directo de dos representaciones irreducibles unitarias, permanecen in-
determinados en su mayoria, a pesar de su considerable importancia y de los
esfuerzos de muchos investigadores por calcularlos. La existencia de dos
problemas ayuda a explicar el porqué: (a) el principio general [para U(n)] que
distingue entre las ocurrencias miltiples de una representacién irreducible no
se ha cubierto completamente; (b) calculos explicitos, atin cuando (a) se ha
resuelto como es el caso p-ara n = 3, son excesivamente dificiles. Se puede
obtener comprension en estos dos problemas a través de los conceptos de un
operador de Wignery su espacio nulo. Este articulo explica estos conceptos
dentro del marco de SU(2) y demuestra que un operador de Wigner de SU(2) esta
determinado por su forma estructural abstracta y su espacio nulo. Se sugiere
que el concepto de espacio nulo es el apropiado para usarse en la caracteri-
zacion de un operador de Wigner, canénico general en U(n).



