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ABSTRACT: Th~ unitary groups have wide applications in physics; yet the
elements (Wigner coefficients) of the unitary matrix which re.
duces the direct product of two unitary irreducible representations
remain undetermined for the mast pan, despite (he considerable
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imponance oí {hese coefficients and the efforts by many in-
vestigators to calculare thero.. The occucrence oí two problems

helps explain why: (a) (he general principIe [for Ven)] which

distinguishes amoog [he muItiple occurrences oí ao irreducibl e

representadon has not beeo fulIy uncovered; (h) explicit calcu.

laeions, even when (a) has been solved as is [he case foc n • 3.

art: ~lo':ceedingly difficult. Insight ioto each oí [hese problems
may be obtained through the conceptsof a Wigner operarar and

[he nuH space possessed by it. Thi s paper expJ aios [hese

conceprs wirhin [he fcamework-of SU(2), and danonstrates [har
an SU(2) Wigner operator is determined by its abstraer srcucrura!

form and ¡es nuH space. Ir is suggested thar the nuH space

concepr is rhe proper one ro use in rhe characrerizarion of a
general canonical Wigner operar,or in U(n).

I. INTRODUCTION

The application of symmetry techniques has played an important role
in the development of a wide variety of physical theories, ranging from atomic,
molecular, and nuclear spectroscopy to elementary particles. Applications
are stil1 appearing in such unsuspected are as as organic chemistry.l We de-
note these syrnmetry techniques generically as "unitary symmetry"; more pre-
cisely, we have in mind applications of the unitary}_ie groups SU(n) and their
subgroups. The principal tool in such applications is the theory DE tensor
operators. Despice this fundamental role of the unitary groups, a fuUy worked
out rheoty of tensor operarnrs of SU(n) (n > 2) is stilI not available. By"fulIy
worked out" we mean a presentation of an explicit set ol (orthonormaI) Wigner
coefficients such as exists for SU(2). Even for SU(3), whete a complete
theory exists2-"', explicit ca1culations are apt to be difficult, and available,
hence, only for selected special cases.3-11 Part DE the difficulty stems from
an incomplete understanding of structural principIes underlying the resaludan
of rhe multipliciry problem; pan from rhe technical difficulty of effecting -and
understanding- complicated summations.

The magnicude and scope of these problems have led to numerous possible
methods for attacking them. 8,12,13 In oue own experience, the notion of a Wigner
operator14-18 has proved to be a valuable conceptual basis for elucidating these
problems; the la~torization lemma 2,16 and the pattern calculus 15 providing the
principal calculational tooIs. A natural outgrowth of these techniques has beeo
t}te development ol the U(n) Racah-Wigner calculus (operator aIgebra)l"'.18
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and new ways of viewing the structure of explicit matrix elements. 3, 4

The essendal problem facing one in developing the canonical Racah-
Wigner caIculus is one of generalizadon: What elemcnts of me known V(2)

structure are to be preserved in this generalization? \Vhat elements are to
be c<;msidered as peculiar to U(2) alone? Simi lar questions occur for the
U(3) case where the formal (but not completely worked out) srructure IS known
to existo Certain special features that in V(3) imply the known canonical
resolution do not exist in U(4) and higher.

Qne aspect of a Wigner operator which has not yet been fully explored
is the implications of the null space of suc h an operator. 14.16 1n U (3) ,
for example, it has been demonsrrared4 that the null spaces corresponding
to the Wigner operators belonging to the same multiplicity set are simply
ordered by the lneIusion property. The null space of a Wigner operator has
thus begun ro emerge as an important struc[ural feature.

U indeed [he null space is a significant consideration, rhen ir would
seem appropriate to re-examine rhe known SU(2) Wigner coefficients £roro
this viewpoint. The result, we feel, is both inreresting and reassuring.
In rather imprecise, bur descriptive rerrns, the resulr is: Arl SU(2) Wigner

operator is unique/y determined by its general structural lorm and its nu/l
space. lbe purpose of this paper is to explain fully the meaning of this
remark for SU(2). noting thar while it is quite pleasant to view SU(2) from
yet another perspective, ir is [he implications of chis viewpoint for Ven) rhat
is significant.

II. SU(2) WIGN ER OPERATORS

In this section, we presenr a brief surnrnary of rhe Wigner operator
concept for SU(2). using only the language of SU(2). fot the purpose of
making che presenr viewpoint accessible ro a larger audience.

Let U - iliU each U E SU(2). be a representatioo of SU(2) by unitary
operators 00 [he abstraet Hilbert space possessing rhe orthonormal basis1Q

/2i. 0)
,+m

2j = 0,1,2, ... (1)

where for each half-integer i the values which m can assume are -j, -j + 1,
.", j. The anioo of (bU on the set of basis vectors (1) is given by
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2j 0)
=:£ Di, (U)

,,' m m j +m '
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(2a)

lnstead oí me standard notarion DÍ I (U) for (he elements of (he irreduciblemm
unitary matrix representations oí SU(2), we will also use a more suggestive
notarioo employing Gel'fand paneros:

[) (2/ +m o) (U) = Di, (U) . (2b)
, m "'j+m

\\le nexc define each of the operators

~ /+6)
2/ 0, 6 =

/+.11 .11=
-/,-/+1, ...,/
-/, -/ + 1, .. " /

for each 2J = 0,1,2, ...• by giving i(s action 00 rhe basis (1):

//+ó\
\2// +/1 I 2j 0)

j+m

i f i + /',=c
mMm+M

1
2(j+6) 0)
j+6+m+.1I

( 4)

whcre (he coefficient is an 5U(2) Wigner coefficient. 20 An immediate conse-
qu{'nce oí (his definidon is (he property:

~

/ +6 >
2/ °
f + .If

(
/ +M )

Ó =:£ D 2/ ° (U)
u.1 M' J +.\1' ~ /+6)

2/ °
f + M'

,(5)

rhar ¡s, each oí (he operators (3) corresponding (o particular J and 6 i5 (he
component of an irreducible tensor operator oí typc J. A secono consequ('nce
oí (he definilion j." rhe propcrty:
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+J
" n

J
- JÓ

Ó=-J ~

J +6)2J O
J+.If

(6)
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in which TI denotes an arbinary irreducible tensor operator of type J and
:/ Mf:j, denotes an invariant operator with respect to SU(2). This propeny is
just an operacor expression of the Wigner-Eckart_ theorem. Taking macrix
elements ol this equation between basis states (1) of the underlying Hilberc
space on which the opcrators (3) act, one sees that the eigenvalues of the
invariant operator are, in fact, just

(7)

where the right-hand side is the conventional notation for a reduced matrix
elemento From a vector space point of view, Eq. (6) expresses the fact that
,he 2J + 1 irreducible tensot opetatots enumetated by 6 = - J, -J + 1, ... ,J
(each such operator also has 2J + 1 components, enumerated by.'ti) are a basis
for tensor operators of type J. Note, however, that the scalars in this oper.
atar basis are not complex numbers, but group invariant operators.

Using definition (4), one might now proceed21 to reformulate the whole
Racah-Wigner angular momentum calculus in terms of the Wigner operator
concept, thcreby obtaining new insights into the structure ol [he algebra.
Since it is our purpose to discuss anomer aspect of Wigner operators -the
null space properties-, we wilI om(t this reformulation.

IlI. AN ILLUSTRATlVE EXAMPLE

In order [o make clear che essential ideas in the null space concept,
it IS convenient to discuss £irst ao elementary example which will \ead us
directl)' to the more abstract general formulation.

Let us suppose that we knew nothing of me group theoretical background
of angular momentum theory, but wanted to determine.: explicitly the set of

iJi
diagonal multipole operators: CmOm. The sealar operator J = O is ¡ust the
unlt operatnr. .Ibe vector operator, J = 1, we know is proportional to m, [he
magnetic quantum number. How can one determine [he proper normalization?
The answer is [O use multiplet averaging, a method of almost pr<.'historic
o[i~in in quan[um mechanics. That is:



jJ¡
~ >- e o

multipl {'t m m

jJ' ¡
e om m

I.ouck anJ Bicd('nhJ.rn

(dimension of mulri,?!~
(dimension of operawr)

Applying rltis tu rh{. \Tctor case. one finds:

" ( j I ¡\'
Cm O m .

m
(2j + 1)/3 ~ 1'/ ~ m2

m

Sincc ~ m2 = j (j + 1) (2j + 1)/3, one obtains rhe fami liar resul r:
m

¡ 1 i
CmO m

%
m/[j(j+l)]'

The complerc ser of diagonal mulripole operarors follo\\'s in rhis way. On{'
n:cogniz(:'s rhar ooe is simply using the Schmidr orthonormalizarion proc{'ss
00 rheordercd S{'r l,m,m2 ••.• , andusingmulripler an:ra,gin,gas rhe inner
produc r.

To scc how nul! spacc conceprs can fir ioro rhis problcm, \c( us coo-
sider rhe quadrupole 0r~:raror. This operarar has rhe gen{.ral form:

¡ 2 ¡
CmOm = (normalizarion)(a.m2 + b.m + c.),

] ] ].

wh{'re a¡,b¡ and c¡ are po/)'1UJ1nials in 2j+l ofdegrc('s 0, 1, alld 2, r<:specri\'e-
Iy. \\'(' no\\' introduce nt:\\' infarmarion: (a) (he knowl('dge rhar a quadrupole
operaror \'anishes \\'hen connecring j = O ro j = O or j = ~ ro j ----::!s - rhis is
rhe null spac(' of rhe diagonal quadrupole operarar; and (b) rh(, knowl<:,dg<-'
rhar a.m2 + b.m + c. is in\'arianr under rhe reflecrion s}'mmerrv ,. ~ -,'- l.

JI] -
(~or(' (har rhis transformarian lea\'es rhe dimen ...•ion j2j + 11 in\'arianr, as well
asj(j+ 1)), This informarion derermines rhe quadraric form in m up (O él

mulriplicarin." cuns(an!, i. e.,

¡ 2 ¡
CmO m (normaliz.llion) [3m2 - j(j+ I)J

Insreaci of normalizing by multiplcr a\"eragin~ - a [l'dious m('rhod
really-, 1er us apply rhe null spac(' id('a once again, using also uw r('fkcrinn
symm(' rry:
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i ,
~ [3m' - j (j + I)]

m'" - j
fifth degree polynomial in i which
vanishes for i = O, ~, -1, -% and
contains (he dimension of the multiplet,
2j + 1, as a factor

~ # (2j+I)(2j)(2j-I)(2j+2)(2j+3)
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where 11 denotes a numerical cons(an(. Thus,_ the normalization of the
quadrupole operator is reduced to evaluating a numerical special case.

We conclude from this example the following facc KrlOu'ledge al/he
¡Ji .

nuJ/ spacf:' fJ j the diagofloJ mul lipol e opera/or, Cm Om' comple/ely de/ermmed
Ihe explicil jurlclional lorm 01 /hi S opera/or, using orzly abstrae/ proper/ies
o/ the SU(2) structure. We will show in me following sec(ions that the more
general result is al50 [fue: A \t'igner operator is completely characterized
by its nuH space properti es.

IV. TIIE ~ULL SPACE CO~CEPT IN TIlE GE~ERAL CASE

Let us now examine definidon (4) more c1osel)'. This equation de-
fines a \1/igner operator for each !:J. in the set - J, - J + 1, ... , J. Recall
that a Wigner coefficient vanishes unless the so-called triangle rule is satis.
fied by <he triad j j j + 6. Ilow <hen are we <o inteipret Eq. (4)' First le<
us recognize that ir we wish to study the properties of a specific Wigner
operator on our underlying lIilhert space, we should in our defining equation,
Eq. (4), c"nsider ,hat j and 6 are specified (fixed), but <ha< 2j in the basis
vector should run over all possible integral values 0,1, ... Wich this vie""point
in mind, let us now consider the origin of dle [riangle rule - [he direct produc(
relation

J

"
/',=- J

i + /',
$ !J(j" j; j + 6) [} . (8)

This express ion is just [he Clebsch-Gordan series \\Tiuetl in a form appropri-
~l[e (Q [his discussion. The intenwining number J..O 0 j; j +!:J.) denotes the
number of occurrences of irreducihle representarion (irrep) j +!:J. in the direct
product of irrep J by irrep j. In accordancc with our viewpoint of associ-
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ariog J and 6. wirh a fixed Wigner operarar, we present (he inrertwining number
as a tunccioo of 2j:

3(J«/;/+6) = {
l for 2/ > J - 6

° for 2/ < J - 6
(9)

Thus, in oue Ianguage, the familiar triangle rule becomes [he statement thar
che intertwining number i5 a step funceioo which has value O at all points
2j in the ser

{0,1, ... ,J-6-1}

and ,'alue 1 af all points 2j in the ser

{J - 6, J - 6 + 1,... }

(10)

(JI)

(The set (10) is ,he emp'y set for 6 = J.) Returning 'o the study of Eq. (4),
we see rhar (he preceding observations may be stated: The nutl space 01
the Wigner operator

~

J+6)
2J °
•

(lowcr pattern arbitrary) ( 12a)

is Ihe sel o/ iTTep spaces {[2/ O]} /or which 2/ belongs lo Ihe sel

{0,1, ... ,J-6-1} (l2b)

Rcmarks. (a) Observe rhar [he concept of che null space oC a Wigner oper-
atar is basis indcpendent to [he extent chat ir cioes nor dependon how one
introduces a basis inro (he carriee space of a given irtep i. Note that the
onI)' \Vigner operator of type J which has a non-empty null space is the one

having 6. = J. This property may be attributed ro the fact that maximal
\t'igner opcrators (6. = J) may be considered as generating the state vectors
themsdves from the "vacuum" ker:
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2j 0)
j+m

03 )

Since Qur principal concern is lO determine the generality oí the null
space concept, we next examine directly the known SU(2) Wigner coefficients,
noting subsequently the extent to which one. ca? turo the procedure around.
The literature contains many different forms for these coefficients, but it is
Racah's forrn22 which is pertinent to our discussion. 1towever, it is con-
venient to introduce new labels which help to distinguish between "operator
labels" and airrep space labels (variables)", and which exhibit more directly the
syrnmetries of subsequent interese

6, = J +6, 6, = J - 61

6'=J+M,6'=J-M¡ ,

Operator related labels 04a)

z=-¡'-I+m z=¡'+m, ' ,
z = 2j +1 = z - z, , I Irrep space variables o4b)

In terms of this notation, the SU(2) Wigner coefficients may be wriuen in the
fo\ lowing form:

ci J i + te. = (2(j + 6)
~mM m+M

j+6+m +M
° < J + 6> 12j 0)

2J J + M° j + m

(I5a)

[

(-z -J)!(z +6' -6 )!]y,/ (6
x 1212 DI

(-z+6-6'-I)'(Z)! 2J
1 1 1 2

x ~

k, +k = b. I, ,
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\l/here the denominator funedon lS glven by the generalized pattern ealeulus
rules 3

~
( ) ( )~

%
!;; -%+6 .1'+6 2

[(6 )' (6 )'/(2/)'] 1(6 \1 2 (6)1 1 I
l' 2' . 1" 6 2' 6

1 2

(lSb)

In these resules the binomial coefficients are defined for arbitrary variable
y and non-negative integer a by

(:) )'(")'-1) ... ()'- 0+1)/0! (16)

Before turning to the null space aspects of Eq. 05a), we wish to
analyze its structure a bit further. The motivation for doing this comes
from the observation that the polynomial pare (the summation over k¡ and k

2
pan) is not always in irreducible lorm, i. e., unless 6; is the smallest of
the integers 61,62,6; ,6;, [he polynomial fa('torizes into a product of linear
factors in %1 ;¡nd 2:2 multiplied by a new polynomial %1 and 2:'2' We wish to
remo ve all such linear [actors. The appropriate technique for carrying out
this analysis is the panern calculus.23

Depending on the relative magnitudes of the 6; and 6;, there are
four arrow panerns which can be drawn for the arrows going between row 2
and row l. The possible cases are illustrated bel~"w (a single arrow repre-
sents one or more arrows) along with the numerical factor whieh is associ-
ated with the arrow paneen by the pattern caleulus rules. Our interest here
is onl}" in me factors associated with arrows going between rows, and we
refer to this quantity as the numera/or pattem ca/cu/us factor (NPCF):

• •
\/•
Case 1 Case 2

• •\/•
Case 3

• •\/•
Case 4

In [erms of [he four non-nega[ive integers defined by

u.=max(O,6.-6'), 1.=max(O,6'-6.), ;=1,2, (17)
, J 1 t 1 J
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the numerator pattern calculus factor is given for each of me four cases by
the expression

%,
(NPCF) (18)

The point in introducing this

1

~

(Z,-I)!(Z2 +6; - 62)!J

(z +6 -6'-I)'(z)!1 I I . 2

factor is the following:

%/2= (NPCF)' n (u.)!
. i = 1 I

We can now write

( :;) ,(9)

a result which is vaIid for all four cases. 1/ is /he se/ 01 linear laclors in
/he denomina/or o/ /his expressjon which a/ways lac/ors out 01 /he summa/ion
express ion in Eq 05a).

Thus, we mar cewci[e Eq. 05a) in [he (ollowing (ocm:

(
2(;+6) 01

;+6+m+M ~
] +6)

2' °
, ]+.If /2/ 0)

,+m

where Pk denotes a polynomial ofdegree k = minU\,L\2,L\;,6;) 10 zl and
Z2' The polrnomial Pk has ,he (ollowing (ocm:

(
Z+6-U-k)(k )' , 2 2 2

1 •

k, (
Z2k-2

U2
)(k

2
) !

( 21 )

Further properties of these polynomials are given in Appendix A. In particu-
lar, \\'C pro\'e there [he following symme[ry properry:
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Ir is che form (20) and che symmeuy (22) which lS mase appropriate for our
discussion of the null space properties of the SU(2) Wigner coefficienrs.

V. TillO VANISIIINGS 01' TillO POLYNOMIALS Pk

Equation (20) has a rather rt"u.drkable formo It becomes even more
interesting when we recognize that the denominator

(23)

is ¡ust the 1Jonnalizatiúll lactor discussed earlier in Sec. II for our motivating
example. The un-normalized form of Wigner coefficient lS accordingly

~
(NPCF) (polynomial In '¡ and ',) . (24)

The form givcn in Eq. (24) implies that the polynomial part of this expression
must vanish for each point (zl' z2) which belongs tQ the null space (l2b) and
lor which the numerator pattem calculus jactor is nonvanishing. Let us nexc
give the explicit determination of these points.

Using the definitions of zl and z2 given by Eq. (l4b), we can enumerate
,he se, of poin,s Z = {(z¡, z,)} belonging 'o ,he null space (l2b). These
poincs are conveniently enumerated in a triangular array:

(-1,6
2
-1) (-2,6,-2)

Z={(Zi'Z,)}=

(- 1, O)

(-1,1)

(- 1,2)

(-2,0)

(-2,1)

(25)

On the other hand, the subset of points of Z on which the numerator
paneen calculus factor vanishes may be rcad off directly from Eq. (lB). De-
noting this set by Z', it is expresscd generalIy by e
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{

(Z" z,): (z,' %,) EZ, and eiehec %, ,,6,-6:
z'-

% (6 -6'-1 oc boeh, , , (26)
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For bter reference, Ic[ us remark [ha[ mis set of poin[s Z' is also comple[ely
ehacaererized by ehe following properry: Z. is Ihe sel 01 poinls 01 Z lor whieh
Ihe linal Iahels

(
2(; + 6) 0)

;+6+m+,If (27)

appeariog io Ihe Wigoer roelliel"JI (l5a) lail lo salisly Ihe helweenness
coodilio'JS 19 2(; + 6) ,,; + 6 + m +,If "O.

Ir is now apparen[ [ha[ [he polynomial Pk. must vanish on [he set of
. Z" Z Z'pOlnrs . := J - • :

(In implcmenring [he condi[ions appearing in [he se[s (26) and (27), i[ is
u,eful ro reeall rhe relaeion 6, + 6, ~ 6: + 6; .)

Let us iIlustrate [he preceding resuhs ror lit by considering Case 1
wh(.'re we have u = u := O I := 6' -6. , := 6.' -6 The set Z" becomes

I 2 ' 1 1 l' 2 I 2 .

and [he polynomial

(29)

mUS[ \'ani sh on che ser o( points Z 11 •

(k ) I
1 (:: ) 00)
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The remarkable property 01 ,he polynomial (30) is ,his:

LBI~IA 1. Up lo a multiplicative {actor U"hich is independent o{ z¡ and z2'
the polynomial (30) is the unique polynomial o{ degree 6; in z, and z2 !Lhich
possesses the symmetry (22) and uhich vanishes on the set o{ points (29).

The peoor of chis result is given in Appendix B. Lec us ¡Ilustrare

the result by giving two examples:

Example l. 6; = l. The polynomial in qucstion has [he form
A':
l

+ HZ
2

+ e, and ir must vanish on [he p~int (-8.2' O) froro che ser (29)
and on ,he poin' (0,-6,) because 01 ,he symmetry (22). These ,wo
conditions require chat A = 6

1
D, B = 62D, e = 6162LJ, where D is arbi-

trary, chat ¡s, [he soturion is proportional to

6z+6z+66
1 1 2 2 1 2

(3la)

Example 2. L); = 2. The polynom¡al in question has (he form
Az

l
2 + nz; + CZ1 %2+ Dz¡ + EZ2 + F. It muse vanish on [he six paints

(-6
2
+1,0)

and

(- 6 + 1 I) (- 6 2' O)
2 '

wherc [he flesr (hree points come froro [he ser (30) and the second (hree

poines come froro (he symmctry (22). The six equations fOf [he six un-
knowns A, 1J, ...• 1"yield the information that the polynomial is proportional

to

6 (6 - I) z (z -1) + 6 (6 -1) z (z -1) + 6 (6 - I) 6 (6 -1)
1111 2222 1122

+ 26 6 z z + 26 (6 - 1) 6 z + 26 6 (6 - I) z .
121211211222

(3lb)
Thc generalization of Lemma 1 may now be stated:

LE~t~'A2. Up lo a mulliplicative lactor which is i1ldependent 01 % and % •
1 2

the po~)'nomial Pk~.6.1~2~:.6.;; Xl %2) is .the unique polynomial 01 degre.e
k = mln(6,,62,6, ,62) trJ z, and z2 U'h'Ch has the symmet,..y (22) and UhlCh
t:allishes on the set 01 points belongi1lg to ZIJ.
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The proof may be given by a method similar 'o ,ha, of Appendix B,
and \\'e omir ir.

Ir is insrructive ro give an example of Lemma 2 (odIer rhan for Case 1)
10 ¡Ilustrare how one urilizcs (he syrnrnetry (22). Consider Case 2 wirh
6, ~ l. ,hen 6 ~6' ~ l 6 ~6' ~1. The polynomial we seek is of the form. I 1 '1 2

(32)

and i, mus' vanish on ,he poin, (- 1,O) [Z" ~ Z ~ (- 1,O)]. In order 'o find a
second point where the linear forro (32) vanishes. we consider rhe syrnmerry

(33)

The linear form on the righr-hand side of mis eq.Jation falls in[o [he category
under Case 3 having ~1 :::: 1. Thus. wc find [hat under dIe conditions of Case
3 ,he linear form ~(I6,6; 6;; z¡ z, ) mus' vanish a, ,he poin, (- 6; ,6~-1) .
Renaming 6.2 to be 6.1' Zl lO be Z2' and %2 [Q be 4

1
, we see that

PI(1616~6;; %241) muse vanish at (z2'%I) = (-6;.6;-1), Le .• a[
(z, ' z,) ~ (6~-1, -6;), which from Eq.(33} is a second ¡x>in' where ,he linear
form (32) mus, vanish. The vanishing of me linear fo,m (32) a, ,he 'wo ¡x>in,s
(-1,0) and (6~-1,-6:) requires [hat rhe form be JXpponional to

(34)

VI. CONCLUSIONS

Let us now summarize and interprer the results we have obtained in
Sccs. IV and V. Starting wirh rhe ser of \t'igner coefficients and the [riangle
relatioos. we developed rhe equivalent norions of a Wigner operator and its
associated nulI space. \t'e [hen demonsrca[cd [hat me stnJc[ucal formoEq. (20).
had iO(eresting properties.

The esscntial remark now is [hat this process may be completely rc-
versed: Ihe slructural lorm given in Eq. (20) ;s ahslraclly deducible 110mgenerai
prirlciples. including Ihe degree (bId permulal;onal symmelry 01 Ihe polynomial
(permutational symmeuy always refers ro the symmeu)' under the simultaneous
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exchangcs ~1 •....•6.
2
and 4

1
"""'%2)' Since (he polynomial is (hen uniquely

determined (up to an un importan e factor) by (he zeroes ie possesses in conse-
queDee of (he null space, and sinee (he denominaror is determined by normal-
¡zalion, we see (har an 5U(2) Wigner operator is uniquely determined by ¡es
abstraer structure and its null space. 1

%
More particularly, let us examine each of the three parts- (NPCF) 2

poIynomial, and dcnominator- of Eq. (20). Wehave already givcn a complete
discussion of me polynomial part. Consider [he numerator partern calculus
factor parto While the presence (and explicit form) of (his factor in Eq. (20)
is deducible abstractly, ir is also uniquely d-ete-rmined by permurarional
symmetry and the points belonging to me nuH space which correspond to
finallabels which fail to satisfy the betweenness conditions. Finally,
consider the denominator pare Its square must be of degree 6

1
+ 6

2
= 2J in

Z = %2 - ZI = 2; + 1, contain the dimension 2; + 1 as a factor, vanish on the
nuH spacc points z E {l, 2, ... , 6

2
}, and be invariant under 6

1
•....• 6

2
'

% •....• - %. lIence, except for numerical factors independent of %, the form of
me denominator squared is

(35)

in agreement with Eq. (lSb). Thus, the numerator pattern calculus factor
andlthe denominator as well are essentially derermiried by me nulI space.
(In the final forro of a Wigner coefficient, me only factor undetermined is a
numerical factor which is independent of %1 and %2' and this factor is de-
termined by examining a special numerical case.) Whilc of little interest to
verify all the details of me properties outlined aboye, it is contenr of our
interpretation that such a procedure exists in principIe.

lt is our be'ief that the nuH space concept is rhe proper coneept ro
abstraet from the known results of SU(2) and SU(3) , and mar it is this coneept
whieh may be the proper characterization of a general canonieal Wigner oper-
ator in U(ll).
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APPENDIX A: SYMMETRY OF TIIE POLYNOMIALS Pk
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The maio purpose of this appendix is to prove the symmetry relation,
Eq. (22). Consider the following expression in which the ~i and %i are ¡n-
determinates:

(A.!)

The ~ ... ? bracket around the enclos~d linear form in %1 and %2 symbolizes
[he following operations: Expand the form by the usual trinomial theorem,

acollect together the powers of each variable, and map each power ~ ioto

a' 1:) . Thus, ,he explieit nefinition DE ,he expressioo (A.!) is". 2S

- "- -(k)

(k, + k
J
)! (k,+k

J
)!

(k )'J •
(A.2)

wherc the sum is over aH non-oegative integers (k) = (k¡ k
2
k
3
) such that

k+k"k~k1 2 3 •

Observe that the syrnmc[ry relatioo

k

~S',z, +.;, z, + ';,';,<1 k
<ji .;, z, .• .;, z I + .;, .; I~ (A.3)

is an obvious proper(y oC the definition (A.2).

00(' of (he internal summations occurring in (he right-hand side of
Eq. (A .2) can be canied out by using (he binomial addition theorem. There
are t"""oways of doing this, leadio~ to [he following forms:
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~ kA,=k(kY(k,)! (~:)(~:)lZI+:'I-k2)(::)

- ,A" ",'''','' (~:)(~:)(::)("'~:-"I ( A.4)

Notice thar while (he symmetry relacioo (A.3) 1Stransparcn[ in (he express ion
(A.2), ir is lose in (he individual expressions occurring in (he righ t-hand
si de of Eq. (AA). but is regained through (he equa.lity of (he two summ,ttion
expressions in the right-hand si de of Eq. (AA).

Making (he identifications ~i = 6.•.• wc now see thar (he surnmation
par< of Eq. (I5a) is

(A.5)

which from Eq. (A.3) is invariant under me interchanges 6
1

•...• 62, %1 •...• %2 •

By de{inirion, (he polynomial lk 15 given by-

ó'
i,", z +,", z +,",,", p 2/(,",,)! x

112212 2

(A.6)

The syrnmcuy rdalion, Eq. (22). follows directly from (his expression.
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APPENDlX B: EXPLIClT CONSTRllCTlON OF THE POLYNmUALS

Ph FROM T/lEIR ZEROES
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Lrmma 1 is pro\'ed in this appendix. The metbod o/ proo/ is by g,v,ng
/nf! explici/ cotlstructioll oj /h" púlynomia/s lrom their reroes. We prove below
rhat {he polynomial gi,'en by Eq. (A.4) is detcrmined up ro a multiplicative
factor in';, and,;, by the sets of zeroes {(z,' z2)} given by

Ta ~ {(" - ,;, -,13, a): ,13~ 1,2, ... , k - a}

wherc a = 01 1, . , . , k - 1;

(B.l)

(B.2)

wherc 0, = 0,1, ... , k -l. Undcr [he idcntifications fi = ~i and k = L\;,
the SHS~, TI"" 1 'Jk.¡ contain precisely the poims of Z" g¡".ven by Eq. (29),
and the sets 50' SI •...• Sk_l contain the points obtained from the Ta by
permutational syrnrnetry. Thus, [he proof of Lernma 1 follows from this
somcwhat more general re.sult.

Let Pk(z! z2) denote a polyoomial of ([otal) degree in k io %1 and %2

which vanishes on the seIS Ta, Sa' a ~ O, J, ... , "-1. Th(ez::n~:h)ingof

Pk(z, 22) on the set of 1;; yields the tesult P,,(z, O) ~ ao(';, ';2) k ' where

ao(';,S',l isarbitrary. Putting Pk\Z,Z2)~Pk(Z¡0) +Z2ºk_¡(Z¡Z2)' where ºk-¡
is a polynomial o£degreenot grearer mank-I, weobtain Pk(z 1) ~ Q

k
(Z 1) ~O

on rhe set J;, and merefore ºk_¡(z¡l) ~ a¡(';]';2) (Z¡ +';/1) . :ut:ing
k -1

Pk(z¡ z2) ~ Pk(z¡O) + z2ºk_¡(z¡1) + Z2(z, -1) Qk-2(z¡z,l, where ºk-2 is of

dI:g,r::a:~rs~r:::~: (r:~::~ :,:, ;~:a(i:¡p~~:~~)~2Q::::~::g ~m~so:':::r:r

k-2
in an obvious manner, we come to the conclusion mat the most genera! poly-
nomial oí degree k which vanishes on the points in the sets To' TJ

' •••• Tk_1is
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(B.3)

in which the I1s(l;¡ 1;2) are arbitrary.
We now repeat the argument using me points oí [he sets So' SI' ... , SIc_l

to come to the conclusion thar

(B.4)

in which the bs(l;, 1;2) are arbitrary.
The two expressions (8.3) and (B.4) must agree identically in %} and %2.

Setting %2 = Oand equating the expressions gives

(B.5)

We now ser %1 = 0,1,2, .... in turn, in Eq. (B.5) to obtain a triangular system
of equations which uniquely yields

(I;s') (kl;_2s)bs (1;, ¡;') = 11 (I;¡ 1;2) s! (k - s) !

(B.6)

( B.7)

in which a(t"l t2) is arbitrary. Using (his result in Eq. (B.4), we obtaio (he
second expression in ,he right-hand side of Eq. (A.4) , multiplied by 11(1;, I;i.
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RESUMEN

Los grupos unitarios tienen amplias aplicaciones en física; aún así,
los elementos (coeficientes de Wigner) de la matriz unitaria que reduce el pro-
ducto directo de dos representaciones irreduc ¡bies unitarias, permanecen in-
detenninados en su mayor'a, a pesar de su considerable importancia y de los
esfuerzos de muchos investigadores por calcularlos. La existencia de dos
problemas ayudaa explicar el porqué: (a) el principio general [para U(,,}] q.¡e
distingue erare las ocurrencias múltiples de una representación irreducible no
se ha cubierto completamente; (b) cálculos explícitos, aún cuando (a) se ha
resuelto como es el caso para n = 3, son excesivamente difíciles. Se puede
obtener comprensión en estos dos problemas a través de los conceptos de un
operador de \\Iigner y su espacio nulo. Este artículo explica estos conceptos
dentro del marco de SU(2) y demuestra que un operador de Wigner de SU(2) está
determinado POt su forma estrucrur3l abstracta y su espacio nulo. Se sugiere
que el concepto de espacio nulo es el apropiado para usarse en la caracteri-
zación de un operador de Wigner, canónico general en V(n).


