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KETS OF BROKEN SYMMETRY IN THE DERIVATION
OF MODEL HAMILTONI ANS*
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ABSTRACT: Model Hamiltonians are often defined on a space providing a
simple zero-order picture of the system under investigation.
While the simplest basis kets of this zero-order eigenspace
may be of broken symmetry with respect to the full group of the
perturbed Hamiltonian, the basis kets'often may be transformed
into one another by the action of appropriate group elements.
In such a case we describe a variational development of the
model Hamiltonian. This scheme is based primarily on a single
basis ket of broken symmetry; the scheme provides an alternate
to the usual perturbative development and is, in principle, exact.
Particular reference to the Heisenberg exchange Hamiltonian

is made,

-
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1. INTRODUCTION

In computational work the vector space on which a Hamiltonian is
defined may be truncated to a manageable size through the use of physical
intuition and experience. Sometimes the calculations are restricted to a
space which may be generated from a single “primitive” ket through the action
of the elements of a group which commutes with the Hamiltonian. Indeed in
simple treatments of Van der Waals interactions, Frenkel excitons, minimal
basis Hartree-Fock theory, crystal field theory, atomic shell theory and the
theory of interatomic exchange interactions, one often encounters such a
restricted “zero-order” space. The typical treatment of these restricted
problems invokes the extensively studied methods of symmetry adaptation
(see, for instance, references 1,2 or 3) and then diagonalization in the symme-
try subspaces. In extending the treatment beyond this zero-order space one
may extend the space and merely symmetry adapr again. Another conven-
tional alternative is to employ degenerate perturbation theory* to construct
an effective Hamiltonian on the zero-order space and again symmetry adapt
and diagonalize.

Here we describe yet another alternative which uses group theory to
avoid symmetry adaptation, in the sense that the desired eigenvalues are ob-
tained through a computation of a ket which is of broken symmetry and which
resembles the single primitive ket referred to above. Indeed this single
primitive ket may be regarded as a zero-order description of the multistate
ket which we wish to compute.

Although multistate kets have arisen in a vast number of wide-ranging
applications as an approximate concept, the realization of a more exact concept
in this regard has only infrequently been found in the literature. One early
realization of this general concept is found in papers by Koster® and Parzen®
where they propose the use of localized Wannier-type Hartree-Fock orbitals
for band theory calculations rather than the common symmetry adapted de-
localized Bloch-type Hartree-Fock orbitals. They point out that these local-
ized orbitals are physically appealing and may be obtained by minimizing
expectation values of the one-electron Hartree-Fock Hamiltonian subject to
symmetry constraints requiring the kets to be of mixed space group symmetry.
The group-theoretic aspects arising in this application were further developed
by des Cloizeaux’ and Ruch and Schonhofer®. Other schemes not invoking
the use of group-theoretic ideas have also been described? to directly com-
pute these localized Hartree-Fock orbitals.

Another realization of the general concept of a refined multistate ket
occurs in the work of Herring10 where he proposes a perturbative treatment
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for the multistate ket representing a collection of weakly interacting “ex-
change-coupled” atoms or molecules. In this case the zero-order multistate
ket is a simple product of atomic kets and is of mixed permutational symmetry.
Several computations using Herring’s method have been made'' . Different
perturbation expansions of this multistate ket were suggested by Hirschfelder

1 4. These perturbative schemes have been'®

and Silbey *?, Kirtman'? and others
carried out on simple atoms and molecules. Klein!® suggested a variational
scheme for this multistate ket, and applications exhibiting computational
advantages have been made'” . Adams!? has formulated this multistate
variational scheme in a different manner. In fact the formulations of Klein
and Adams turn out to be formally similar to the group-theoretic’ ® and non-
group-theoretic’ procedures earlier described for localized Hartree-Fock orbit-
als.

In the following we shall consider the group-theoretic multistate ket
variational scheme indicating some potential computational advantages. An

application in deriving the Heisenberg spin Hamiltonian is discussed too.

2. GENERAL THEORY

We consider a Hamiltonian H which commutes with a group Q,

[H,6] =0 , Gey . (2T}

We let ]0 > be a zero-order primitive ket from which we may generate a set
of kets

{Glo>; GeG} . (2.2)

which span a space containing zero-order approximations to the eigenkets of
interest. We assume this spanning set (2.2) is linearly independent, although
the formalism goes through'® with only slight modification if it is symme try
adapted to a subgroup of . If (} is a “complicated” group such as the
symmetric group éN with N sufficiently large, then diagonalization of H just
in the simple zero-order space of (2.2) can pose a difficult problem. If one
symmetry adapts with respect to an irreducible representation a of C}, the
Hamiltonian matrix still has the dimension f% of a. Further evaluation
of each individual matrix element on the symmetry adapted basis can be diffi-
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cult, if they are to be constructed from first computed primitive matrix elements,
as <0 | GH | 0>, Ge(}. Extension of the vector space to obtain a more ac-
curate result merely compounds these difficulties.

Some of these problems can hopefully be eased if we vary the multi-
state ket I\DZ’ to minimize the Hamiltonian expectation value

E=<y|H|y> (2.3)

subject to a set of predetermined symmetry constraints
a _—
<T‘ff}|e,5‘¢>_aa.rs . (2.4)

Here efs is a matric basis element (or Wigner element) of the group algebra

of G,

a
=" = (6] G, (2.5)
Geq. sr
1
a
where g is the order of Q and [G'l] is the (s, r)th element of the a? jire-
sr
ducible representation of (. In addition to the multiplication property
a B8 _ a
Crsu 8043 85! €ru (2.6)
the matric basis elements also satisfy the relation
() = e (2.7)
&s! T st i

if the representation matrices are unitary. The constrained minimization
problem is conveniently expressed in terms of lLagrange multipliers Sars
associated with each of the constraints in (2.4),

s<ylu-3 € e |p>=0 (2.8)
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v v v
Letting [H] and [efs] be the representations of H and e:; in the space U
over which [y> is varied, we then obtain

((nl'-3 €, _ [e2 ) y>=0 . (2.9)
The term
H=3 €& [eo] (2.10)

which occurs in the multistate ket equation (2.9) may be interpreted as an
effective potential or Hamiltonian, which produces the same effect when

acting on ]yb) as does [H]v. We hence expect these Lagrange multipliers
ars 'O contain information concerning some of the eigenvalues of H.
To help identify this eigenvalue information, we define the matrix
Ea_ with (r, s)'" element €4,s . Then noting that (2.4) and (2.7) imply that
Ea is Hermitean, we let U‘1 be a unitary transformation which diagonalizes

E

a’

s U] €, ) -5 €. (2.11)

~
sSs rs

Further, defining transformed matric basis elements

T
a _ a
efa= X [Ua];r ol [Ua]sg (215
we find that the multistate ket equation (2.9) becomes
v b 4
([H] - € [e2])|y>=0 . (2.13)
ar Fr

v
Should the space U , on which the calculation is to be carried out, be invari-

- r v
ant to (4, then we may apply [e%.] to (2.13) and obtain
rr
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([H)V-E-]a;)[eg;]vw>=o . (2.14)

v v
= a i
Hence the Sa; are eigenvalues to [H] and the [e2 ] ll.,b> are eigenkets,
rr
at least when U is invariant to (.

In practice we might construct an approximate but accurate multistate
ket by variation in a space not invariant to (. In this case we still define

the Lagrange multiplier matrix Ea and take its eigenvalues to be approxi-

v
mations to the true eigenvalues. Using a space U which is not invariant
to (4 can introduce significant computational savings if it is of significantly

v
smaller dimension than the invariant space induced from ) . Also because
v

U is not necessarily invariant under Q,' some integrals which would otherwise
appear need not. A particular case of interest is when (} is taken as the

symmetric group éN acting on electronic indices and when the basis of Uv
is taken to consist primarily of products of atomic kets with given electrons
associated with given atoms; in this case multicenter exchange integrals
may be avoided. This variational scheme has been successfully carried out!’

for the lowest 'S’ and 32: states of the H, molecule with G = 62 and the
avoidance of most of the two-center exchange integrals. These H, calcu-
lations illustrate the method and some of its possibilities, but the full po-
tential is not realized till larger systems are considered.

3. APPLICATION TO THE DERIVATION OF THE
HEISENBERG SPIN HAMIL TONIAN

In this section we consider a regular lattice of N equivalent sites
each with one unpaired electron for the isolated site limit. A simple Hubbard
model is treated which takes into account only one orbital (possibly multiply
occupied) on each site, and the limit N o is ultimately assumed. The group
(4 is the N-electron symmetric group 'BN - Letting ¢; be the orthonormal orbital
on the ith site, we see that in order for the multistate ket |-,b > to approach
the simple product form

0> = go](l)@cp2(2)®...®cpN(N) (3.1)
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in the isolated site limit, a reasonable choice for a,.is

(3.2)

<oler]o>=1L3
dars: 0 ers 0 =_N—I rs

Hence we take this choice. |
Rather than working with the matric basis, which we found useful to
prove some general characteristics of the scheme, we wish now to employ

the group basis of the group algebra. Hence in terms of the group basis the

symmetry constraints of (3.2) become

<plply>= 3 [P <pled|y> =3, , Pedy (3.3)
ars [ ?
The multistate equation is
s<ylu-#ly>=0, (3.4)
with
=3 (P €3.5)
PeéN

corresponding to (2.9) and (2.10).
Next to describe the Hubbard model H and the multistate ket ansatz

we introduce some notation

Xy = R (1) ><q ()| = ..
(3.6)

mn _nm 7
X:’ Xz. = MQ n
1 3

The commutation properties

e xf"] = 5,(8,,x7- 5, X" (3.7)

i ”

[x
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of these X-operators show that they span a Lie algebra associated? with the
N-fold direct product of the unitary group WN). Further products of these
X-operators may be diagrammatically indicated by ordering the arrows such
that lower-lying arrows correspond to operators further to the right in a
product. In terms of these X-operators the Hubbard model is

H=T3 3 X""*1 3 ExT™x" (3.8)

ime~n i<jm Y '

where m ~ n indicates sites m and n are nearest neighbors. As is well-known %
this model embodies the simplest description of a metal ( | T | >>1) , the
simplest description of an array of isolated atoms (|T|<<I), and a variety
of interesting situations intermediate between these two extreme limits.

The variational ansatz for the unnormalized multistate ket [ > is
taken to be of the form

[p>=e"]0>

5" e B »k ¥ 3 . (3.9)
m

il
Y= x § b

(3.10)
Sn =Y Xy X"

This ansatz is similar to that already described elsewhere?! for antisym-
metrized single-state kets. The particle excitation operators all commute
with one another, although they do not commute with their adjoints, denoted,
for instance, by § = shHt.

Since there are just two variational parameters, x and ¥, in the ansatz
of (3.9), we expect not to be able to simultaneoulsy satisfy all the constraints
of (3.3). However, for the variational aisatz we have taken, we do see that
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these constraints will in general be very closely satisfied for permutations

Pe éN,which transfer electrons among distant sites or which transfer a great
number of electrons between near sites. Hence we see that the most important
constraints to consider are those for which P is the identity or a nearest
neighbor transposition. Further, because of the space group symmetry im-

posed on our ansatz, the constraints for all nearest neighbor transpositions

will be satisfied if any one is satisfied. Hence all the nearest neighbor

transposition Lagrange multipliers may be taken as equal. Considering only
the constraints for these nearest neighbor transpositions, we are then to

minimize

E=<y|H-§ 3 Gply>/<yly> (3.11)
=y

subject to the single constraint

<ylaply>=o0 . (3.12)

The resulting effective Hamiltonian

=10 2 G (3.13)

R ]

is seen to be of the form of the conventional nearest neighbor Heisenberg
spin Hamiltonian. This present derivation of the Heisenberg spin Hamiltonian
differs markedly from the usual general derivations!® 22" which have pre-
viously been of a perturbative nature.

The evaluation of the Hamiltonian matrix element is straightforward
to obtain the result,

E= <0| {xT : by T —— 4471 0 GO "
me~n m—)n xy - ’n X m___}’_' }lo A(mn) &
£ |
"7 " e =
+ 2 <0[{sM1+2x) OO 42,21 GO +atyl GO
g 2 ¥ 92 +AyN 1001+ Yl B0 HorA L,
N 4 : .op 2 (—-P
m n ﬂl_)n m:_,”
=N{ﬂ...(xT+xyT+x21) A(12)+n{\(x4+6x6+12y2+x4y]’A } (3.14)

(123)
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wherc we have left out the electron-index labels on the arrows, since there

is only one allowed choice. The graph-theoretic numbers n..and na, which
depend only on the lattice”®, are % the number of sites bonded to a given
site and ' the number of triples of bonded sites involving a given site. The

quantities A m ) are residual overlap matrix elements

(Mg v M

<0lexp(5(m1__-ma)) exp(Sm_ ” )),0 >
o

b <yly>

IH]

{3.15)

Recurrence relations for ratios of these residual overlaps are easily obtained,

— -

: A
(m ...m) ' : L =g (m ...m np)
e _col{1+3 R Hlo>+x"<o]y2 o> ")
A(ml...man) p ,,'_’p ? ng)p (ml...man)
=il
' A(m ...man)
=1+x2(n__—l)+y2 b R S (3.16)
14 (ml...maﬂp)
where p™~n and npFm,... ,m, . Iterating this recurrence relation several

times then approximating all the remaining ratios, say by 1, gives an approxi-
mation to the desired ratio on the left of (3.16) ; the more iterations carried
out, the more accurate is the result. Convergence appears to be quite rapid
for values of x?n. . and y*n. . less than one, as occurs for the values n. .lT]<< I
of the Hamiltonian parameters. '

For the case of a linear chain an analytic solution to these recurrence
relations may be obtained . Carrying out numerical computations for such
a linear chain, we obtain values for the “exchange” Lagrange multiplier Q.
The solution to the Heisenberg model is expected to be simpler® than to the
full Hubbard model. Since the ground state energy of the linear Heisenberg
model is known®, we obtain a numerical prediction for the ground state energy
of the linear Hubbard model. This multistate ket predicted energy is dis-
played in figure 1, where a perturbation result”® ?* and the exact?’ Hubbard
model ground state energy are also shown. The present simple ensatz is

seen to improve significantly on the perturbative result, at least for sufficiently
large l T [ /T
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Fig. 1. Comparison of the ground state energies of the linear half<illed
Hubbard model as computed by (a) a second-order perturbative
method, (b) by the current multiscate ket ansatz, and (c) an exact
treatment,
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4. CONCLUSION

It appears that the multistate ket variational scheme has promise as
a computational alternative to more conventional schemes. Indeed its charac-
teristics, relating to avoidance of multicenter exchange integrals in molecular
calculations and relating to Heisenberg spin Hamiltonian derivations,
may be turned to distinct advantage in treatments of suitable problems.
Exploration of other characteristics and problems may also be of interest.
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RESUMEN

Los hamiltonianos modelo se definen frecuentemente en un espacio
que proporciona una imagen simple, de orden cero, del sistema investigado.
Mientras que los kets de la base, mas simples de este eigenespacio de orden
cero, pueden tener simetria rota con respecto a todo el grupo del hamiltonia-
no perturbado, los kets de la base pueden frecuentemente transformarse uno en
otro, por la accion de los elementos apropiados del grupo. En tal caso des-
cribimos un desarrollo variacional del hamiltoniano modelo. Este esques=
ma sc¢ basa principalmente en un solo ket basico de simetria rota; el esquema
proporciona una alternativa al desarrollo perturbativo usual, y es, en principio,

exacto. Se hace particular referencia al hamiltoniano de intercambio de
Heisenberg.



