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ABSTRACT: Quantum mechanical constants of the motion, Q, are defined as
local invariants of a quantal equation of motion. They are in-
herently more general objects than the invariants envisaged in
the Lie-Ovsjannikov theory of the symmetry of differential
equations. It is shown that for a large and important class of
Schroedinger Hamiltonians H  and H(A), X a parameter, there is
a continuous one to one correspondence between the constants
of the motion Qio and Q. () for all finite times. The quantal
analog of the discontinuities that Poincaré found in classical
first integrals of the n-body problem are isolated and obviated.
The concepts of “aproximate constant of the motion” and “ap-
proximate invariant of a Schroedinger equation” can thus be
usefully defined and the algebraic properties of perturbed systems

related to those of the unperturbed system.

-
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1. INTRODUCTION

Sophus Lie based his group theoretical treatment of systems of differ-
ential equations'

F'(x,u,aju,afaku...):ﬂ; F LB i B (1.1)

upon the concept of an infinitesimal transformation of a manifold

(x,u) =~ (x, u) (1.2)

with coordinates of two types

2 7
F= Uk e X )

{1.3)

where the 4’ are considered to become functions of the x™® by virtue of the
fact that (1.1) is assumed soluble. |

The functions u may be taken to be the original unknown functions
appearing in the set, or they may be new functions that have arisen in the
reduction of the set to a new set of first-order equations through the device
of introducing unknown functions for various derivatives appearing in the
original set. Lie’s infinitesimal transformations are of the form

' = fl(xu, 80, with 5 = f¥(x,4,0)

(1.4)
@ =g (x,u, 8a), with &’ = g(x,u,0) .

Using such transformations and their first extensions? Lie gave a definitive
treatment of the continuous symmetries of finite sets of first order ordinary
differential equations. It is upon this foundation that the theory of the ca-
nonical transformation of Hamilton’s equations has been erected.
Ovsjannikov has extended Lie’s treatment to sets of partial differential



Connection between constants. . . 259

equations,” but though the transformations he allows are adequate for many
purposes, they are not sufficiently general to deal with the local symmetries
of the partial differential equations of Schroedinger.*

It is not in general possible to use Lie’s methods to find the symmetries
of a classical system and obtain those for its quantum mechanical counter-
part by replacing the momenta by differential operators. It is well known
that this leads to ambiguities in all but the simplest cases.

To treat the local symmetri.s of Schroedinger equations one must in
fact allow transformations of the form*

7

" ji(x,u, a}.u, ajaku ...; 0a)
(1.5)
ul = gj(x,u,aju, ajaku ——

and make no & priori restrictions upon the maximum order of derivative that
can appear in the transformation.

We have used transformations of the form (1.5) to obtain the generators
of the groups of a variety of time-dependent Schroedinger equations.*”7 Each
such transformation can be considered to be brought about by a linear differ-
ential operator 0. If;

(H—iat)‘l’(x,t)=0 " (1.6a)
the operators Q satisfy

(H~1i3,) @¥(x,) =10, (1.6b)
for all ¥ satisfying (1.6a). From this 1t toilows that

{9,0 +i[H,0l}¥ =0, .75
and that

(d/dt)<‘Pj|Q|‘Ph>:O ; (1.8)

for all ‘l’j and ‘Pk satisfying (1.6a).
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These operators are thus the quantum mechanical analogs of classical
constants of the motion.® Each local symmetry IS seen to give rise to a
conserved quantity, and every function of an operator Q which is well defined
on the space of states of the system is the operator representative of a corre-
sponding conserved quantity.

It of course does not follow that every such @ is the generator of a
finite dimensional Lie group. Some of the operators are generators of the
geometrical symmetry group (degeneracy group) of the Hamiltonian. These
are the explicitly time-independent operators that commute with the Hamiltonian.
Some of the Qs are generators of what have been termed “dynamical groups”,
others are not. Some of the operators are functions of others directly, while
some become so,only by virtue of identities implied by the Schroedinger
equation.

In fact, once one has found a set of Q's which contains for each degree
of freedom &, a pair of invariants such that

then one has available a complete set of generators for the Heisenberg algebra
and Weyl group of the syStem.* With these one can construct generators of

a tremendous variety of further Lie algebras and Lie groups. It is thus
difficult to define what one means by a “maximal” invariance group of a differ-
ential equation, or by a “minimal” group unless one puts restrictions upon
the form of the generators or the algebra or group.

Because of the usefulness of constants of the motion it is unfortunate
that the generality of the transformation (1.5) makes it difficult in practice to
find interesting local symmetries of even quite simple Schroedinger equations.
It would therefore be most helpful to have methods for relating the local symme-
tries of a complex system to those of a simpler system, and methods for finding

“approximate” symmetries. However, one might anticipate that even in principle
this is a non-trivial problem.

-
The time is being considered a parameter rather than a dynamical variable,
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In classical mechanics the problem of relating the constants of the
motion of one system to those of another has been known to present some
very troublesome features.

In 1892 Poincaré’s famous theorem on the nonexistence of uniform
integrals of motion for the n-body problem was published in his ‘‘Methodes
Nouvelles de la Mechanique Celeste”.® Poincaré considered bound conserva-
tive systems obeying the equivalent of Hamiltonians equations

p; =-H/3; ¢ = OH/ %, (1.10)
and supposed
H=H +uH +p?H + + + {.11)

with

=By, Vs BmB 0w, o5 @070, 620, @27

as happens when the p’s are the action variables obtained via a Hamilton-

3 . 1 2 .
Jacobi treatment of H, . Supposing I (u; D2 Byersi @ »q . ), to bea ficst
integral of system (1. 10) to (1.12), so that

(H,1] =0

- 3 (1.13)

he showed that for n > 2, I cannot in general be analytic and uniform for all
real values of the ¢’ for small values of i, and for values of the p, in an
arbitrary and arbitrarily small domain. In particular I can not be de-
veloped in a power series in & of the form

_ 2
f—10+,ull+,u,12+++, (1.14)
such that [ I, ... are uniform in the pf. and qj, and periodic in the individual

0’1’2
7
q .

Since the ?; of a Hamilton-Jacobi treatment satisfy (1.13) for H = H
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and otherwise, Poincaré’s proof also shows that the corresponding action
variables are not, for the general H of (1.11), uniform functions of the vari-
ables of the unperturbed problem. The argument of Poincaré fails when ap-
plied to second integrals, and so far as we are aware a corresponding theorem
has neither been proved nor disproved for them.

Perusal of Poincaré’s proof shows that it is the existence of reso-
nances (in the classical-mechanical sense) that is central to the pathological
behaviour that he finds. Brillouin gave an extensive discussion of this point
and showed by example that the discontinuities can occur in dissipative
systems as well. 1

Poincaré’s theorem followed closely upon the work of Bruns who
showed in 1887 that the seven classical integrals of energy, linear, and angu-
lar momentum are the only independent integrals of the three-body problem

1 Painleve

that are algebraic functions of the positions, momenta, and time.
extended Bruns theorem in 1898 by showing that every integral of the n-body
problem that is an algebraic function of the velocities is a function of the
seven classical integrals only.?

Each of the theorems recounted here admits of exceptions, and those
which are relevant to problems of celestial mechanics were dealt with by
their authors. Further exceptions exist for special systems, such as coupled
oscillators, so that the theorems must not be applied uncritically.

Nevertheless Poincaré’s theorem is particularly sobering. If his dis-
continuities persist in quantum mechanics and cannot be gotten around, then
whenever one attempts to relate the invariants of an n-body system to those
of a simpler unperturbed system; one must envisage the use of the theory of
singular perturbations. Perhaps the happiest statement one can make about
such a situation is that quantum mechanics could then enshrine many
otherwise impossible surprises.

2. QUANTAL FIRST INTEGRALS

To determine the effect of changes in a Hamiltonian H(y) upon ex-
plicitly time-independent constants of the motion in the Schroedinger
picture we require in this section that

[H(w), Y] ¥ =0 (2.1a)

if
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H(p) ¥ () = E(u) Y(u) . (2.1b)

Because Y satisfies (2-1) it in general becomes a function of i and we wish
to determine whether this functional dependence is a continuous one. We
shall suppose that the system is confined to a box of large but finite size,
so that the Hamiltonian has a discrete spectrum over the entire range of u of
interest. Let H(x ) be defined by its matrix representation H(j,) on the
basis of its eigenfunctions. In this representation we shall suppose that
Hp, + o) is a bounded operator not equal to H(x ), and continuously con-
nected to H( ) :

li H(w +3u)=H g 2.2)
lmspﬂo"('u“ w) = Hw,) (

As H(p ) is a diagonal matrix, a typical element of its commutator with an
arbitrary matrix X is

(), ¥ = X, () - He) ) (2.3)
1] 13 17

Thus if X is to commute with H(;)) and so become a first integral Yy, it
is necessary that either Xij =0,i#j, or that H(,u,n)” - H(#O) = 0. That
it

is, all off-diagonal elements of X must vanish except those that effect a
mixing of degenerate states. In all other respects the elements of X are
arbitrary.

If H(p ) is an N xN matrix and it has degenerate submatrices
of dimension mxn ,n,%xn,.... with %n.= N, then there are M = En?
independent elements in a matrix Y (4 ) that commutes with it. From
this it follows that there are M linearly independent first integrals,
which we will denote f . We may choose these to be linear combinations
of matrices /ju whose sole non-vanishing element is a 1 at the intersection
of row £ and column / such that E, = E; . Then }:i = yilxju. The A*
satisfy the commutation relations

kil r k !
(4, 47°] = 4*°8,- 45, 2.4

and together generate the group
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Uln,)x Uln,) . .. (2.5)

This is a degeneracy group of the system, _

[f the perturbation engendered by letting Mo ™ My T o lifts the de-
generacies in one or more of the submatrices of H(u,) then the ?riginal
arbitrariness of the off-diagonal elements of xl(p,o) is removed if ¥ (1, + L)
1s to commute with Hip, + i) . These off-diagonal elements must become
zero no matter how small the perturbation and remain zero for some non-
trivial range of .. Consequently, they must in general undergo a discon-
tinuous change as 44 — 1+ &u. If the change in parameter produces new
degeneracies then there are also matrix elements in Y' that become freely
variable as xl(,uo) = Y'(i,* 8u), though they had to be zero in Y(u,).
Thus, in general, )_" undergoes a discontinuous change as the Hamiltonian
changes continuously. Furthermore the group U(n:)x U(nz') ..... changes
discontinuously to U(n;)' x U(n,;) s

The generators 4“ in the eigenrepresentation of H (1) may provide
the operator basis for representations of other groups. Commonly one is
interested in groups such as O(3) and 0(4) that are degeneracy groups no
matter what the size of the basis. Thus if one were to diagonalize the energy
matrix for the hydrogen atom one would find the invariance group U(1)x U(4) < U(9) ...
corresponding to the n? fold degeneracy of the n-th energy level. However
the eigenrepresentation provides a basis not only for the defining representation
of this group, but also for a direct sum of the 1,4,9 ... dimensional repre-
sentations of 0(4) . Let l(,uo) be the matrix representation of a generator |
of such a group on the eigenbasis of H(w)). Then we may write

J=1.4"7, (2.6)

where
oo = <Y, (u)| I ¥ (u)> . (2.7)

If as p, = 41, + O any degeneracy E; = E; is lifted and [, (1) # 0, then J

suddenly ceases to commute with H; the J’s themselves in general inherit

the same kind of discontinuous behaviour as do the Y's. Contrariwise, if

for somel the ]H(,u.o) = 0 for all levels &,/ whose degeneracy is lifted, then
the ] remains a constant of the motion. In general however, the quantal first

inzegrals and degeneracy groups of the perturbed and unperturbed Hamiltonian
are not continuously connected.
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If we remove our system from its container it becomes possible for
discrete spectra to become continuous, and vice versa, as well as for spectral
concentration points to develop and disappear. Under these conditions it is
sometimes possible for a first integral of one system to change continuously
into a-quite different first integral of another, though this is by no means a
common occurrence. However an example is provided by the Hamilton-Runge-
Lenz vector of Keplerian systems

|
%

A=(-20(2) {%(pr-prHzF'}

which, as Z— 0, changes continuously into a first integral of the resulting
free-particle Hamiltonian H(0). Poincaré’s theorem tells us not to expect

this to happen when three or more bodies are involved in the system of inter-
est.

3. JOINT TRANSFORMATION OF TIME-DEPENDENT AND
TIME-INDEPENDENT INVARIANTS

Let H_ be the Schroedinger Hamiltonian of an n-particle system and

2
let it be self adjoint on the Hilbert space H = [ (R*"  of functions
Pix), x = (xl — xs”) , with scalar product

(@', ) = [d3"x () P(x) . (3.1)

Let the time evolution operator § be defined by the usual Dunford-Taylor

integral13

def
S =exp(+illt) = 2miy ' [ dy explynty-imy . © (3.2)
Then

(H,-id) ¥ (x,0) =0 (3.3)

for all
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¥ (x,0 = {exp (- ill) }p(x) = S, P (x) (3.4)

for all pe D(H )"
Let O be an invariant of H, so that

s -1
{9,0,+ilH,,0,1}s; =0 (3.5)

i ~a

for all ¢, and let Q_ be self adjoint in ¥ with §(9,)= R(Q_)= 0(H )= R(H)
so that Q_ is the operator corresponding to an observable, and Q. and = iat
are simultaneously diagonalizable. Then by the Stone-von Neumann operator
calculus™ exp il t is a unitary operator for all finite £, and Qa , the Heisenberg
representation of Qa exists for all finite ¢, is self- ad;omt and is given by

@, =0 g (3.6)

a*a a
Now let the Hy be the Schroedinger Hamiltonian of another system b involving

the same degrees of freedom as H_, and let Hy be self-adjoint on the same
Hilbert space as H . Then

(Hy-i0,) ¥ (x,8) =0, 3.7

‘}Jb(x, )= {exp - z'Hbt} Pix) , (3.8)

and QﬁEIO(Hb).

Furthermore the Schroedinger operator

Q. = Lexp - it 1} O, {exp il 1} (3.9)

exists for all finite f.

Now one has formally

NiG) signifies the domain of the operator G, H(G) its range.
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wil o = |
(% Qap) S = (=i [Hy, Qg 1) 5, +

A e, 0. ] ¥00 st (Gan

and rigorously, for all € lQ(Ha) ,

Sb{atQab % i[Hb’ Qab]} Sl;l(,b = Sa{aégaf*-i['qa’ Qa}} Sc;l¢ .
(3.11)

1£ 0(9,,) = R(Q,,) = DH,) = RiH,), then for all finite £, Q_, is a constant
of the motion of system b, and we have established a one-to-one correspondence
between constants of the motion of H, and those of Hy. As

- | il
Qab - Sb SaQaSa Sb d (3.12)

time-independent invariants (first integrals) may he converted to time-de-
pendent invariants (second integrals) and vice versa.

This transformation of a constant of the motion of one system into
that of another is perhaps most simply exemplified by the case where the
systems are two-dimensional isotropic and anisotropic oscillators respectively.
The isotropic oscillator has the first integral of angular momentum,

L, =0, - yb, (3.13)

as one of the eight generators of its dynamical group SU(2,1). The corre-
sponding generator for the anisotropic oscillator is (.Lz commutes with Ha):

Qup =L, = {exp - ity e} L _{exp it} . (3.14)

~a

The matrix elements of L. on the basjs exp - iHbth are given by

<¢55f55,1’~zsb|53,1¢>=<¢’|sz|¢> . (3.15)
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It is evident that though L _ is an explicit function of the time, its matrix
elements in this basis are constant. The matrix elements on the basis of
cigenstates of H, may be written

<P, 5|5 L5158, >= <4 |1 14, > . (3.16)

They may be evaluated by expressing (f)b(x) as a superposition of functions
- . 4 . .
@ (x), the eigenfunctions of . As this is a clearly convergent process
a2 . a

these matrix elements are well defined.

As ancihicr example we consider the behaviour of a time-dependent
Constant of the motion wher a Hamiltonian is changed. The classical free
particle possesses the second integral

x. =x-(p/m)t , (3.17)

. : 16
as does the corresponding quantum mechanical system.'® Let us setm = 1
and consider the change from a free particle system @ to a harmonic oscil-
lator system with force constant k. Then

S =exp % ip’t Sb=exp'/?i(p2+kx2)t , Saxﬂsa'l:x (3.18)

This gives rise to the hamonic oscillator invariant

|
-%

| I
S, x8, = x cos k?2t-k p sin k7t . (3.19)

It is a linear combination of the generators of SU(1, 1) that shift the oscil-
lator level by one unit. In this example it is not possible to choose the
states ¢ to be free particle eigenstates in the Heisenberg representation,
viz., (27)" 2 exp 70x, as these are not members of a Hilbert space. However,
a complete set of wave packets may be chosen instead.

Let us now consider the question of whether the correspondence
between the Q.4 and Q_ is a continuous one when H, and H, are continuously
connected. LetH = H_ +AV. H, will certainly be self-adjoint on the same
Hilbert space as H,_ if Hy is relatively bounded with respect H,, with H
bound less than 1.17 Furthermore, whenever H, and H, are self adjoint on
the same Hilbert space, §,, strongly converges to S,asA—0,i.e.
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{exp i(H, +A\V) t}p - {exp iHat} Ppas A= 0 for el ,. (3.20)
and it does so uniformly for all finite £.'® Consequently

QN P —Q,d (3.21).

in the same manner, as A~ 0. Hence in both this sense and in the sense of
weak convergence, Q,p is continuously connected to Q, under the hypothesis
made.

As an example of the theorem, one may let H, be the kinetic energy
operator of n particles, and let

V= jgl(e]./rf.) t ,;%k(ef’*/'fk) (3.22)

with 0€ A< 1, so that Hy represents the Hamiltonian of a coulombic system,
while H_ is that of a system of free particles. Karto has shown that for this
case Hy is H bounded with relative bound zero.!® The constants of the motion
of the interacting system are thus continuously connected to those of the
free-particle system.

It is important to note that we have in this section, as contrasted
with section 2, freed ourselves from reference to a particular basis, e.g.,
an eigenbasis of H,. This has made it possible to eliminate from consideratior.
the discontinuous change in basis that would in general occur if one insisted
upon refering each operator Q(A) to an eigenbasis of H,(A\), (whenever the vari-
ation in A lead to a destruction of degeneracies or spectral concentration
points). In the usual perturbation theories one implicitly or explicitly seeks
to establish three types of analytic connections between their eigenvalues,
and between their eigenfunctions. We here need only the analyticity of the
Hamiltonians H()A) and the operators Q(A) in the sense that they are well de-
fined self-adjoint operators. To see that this freedom is important and that
there is really a hierarchy of conditions here,consider the previous examples:
The eigenfunctions of an anisotropic oscillator are not in general analytically
connected to those of the isotropic oscillator. There is no analytic connection
between the spectrum of a harmonic oscillator and that of a free particle.
The Hamiltonian operators of an atomic system and of a system of free particles
are both unbounded from above. Yet in each case we have been able to es-
tablish analytic connections between the constants of the motion of the systems.
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4. CONCLUSION: APPROXIMATE CONSTANTS OF THE MOTION

In the previous section we have established a continuous connection
between Q(A), in the sense of strong convergence, and hence also in the
sense of weak convergence. It is not possible to do this for first or second
integrals separately. It is also not possible if one considers only invariants
of the Lie-Osvjannikov type. It is only by allowing quantum mechanical
constants of the motion to be unrestricted functions of the position and mo-
mentum operators, as well as explicit functions of the time, that one can
obviate the difficulty unearthed by Poincaré.

In classical mechanics it may often be considered that a function
W(p,q,t) is a good approximate constant of the motion during the time interval
LEe<e if

t
l(tl- :0)"f 1dt(dll’/a’t)]< €
t

0

where € is a quantity that is small in some useful sense. This is a gener-
alization of the more straightforward requirement Idli’/dtl < € and is useful
when one wishes to separate secular from non-secular effects. We shall
adopt a similar definition for an approximate constant of the motion of a

system with Hamiltonian H by defining W t be a good constant of the motion
on the manifold of states ¥ = §£, £€¥H | during the time interval nEEse,

if

4

l(:l-:o)'lf ' <&'|saw/de) st £>| <€ |
t

0

We have seen that for an n<body system with Hamiltonian H,(N=H,+AV,
only constants of the motion that are allowed to take on an explicit time
dependence can in general be expanded in power series about A = 0. It is
thus important to allow approximate first integrals to be objects that may have
an explicit, though weak, time dependence. As

i[H,W]s™'¢ = (aw/dt) s"'db - (OW/31) s,

we define W 0 be a good approximate quantal first integral on the manifold
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of functions & el during the time interval 1 £tE€ ' iff

t
l(tl—‘o)-lf ld‘<§'|5i[H,W}S'1|§>]<g

With this definition W need not be an exact second integral to qualify as an
approximate first integral. However, we can ensure that dW/dt vanishes on
the Hilbert space if we construct W from the Q_;(A) defined in section 3 and

arrange that W is self-adjoint on the same ¥ = L (R*”) as are the Q_, . As
one can differentiate the Q_,(A) with respect to A, and ¢, it is in principle
straightforward to investigate the dependence of W and its matrix elements
upon A and ¢ in the neighbourhood of A=0, t = 7, -ec <7 <o . However the
seuse in which a power scries in either or both of these variables approxi-
mates the original function W for times in the remote past or future must be
investigated separately in each case.
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RESUMEN

Las constantes del movimiento Q, en mecanica cuantica, se definen
como invariantes locales de una ecuacién del movimiento cuantica. Ellas
son inherentemente, objetos mas generales que los invariantes considerados
en la teoria de Lie=Ovsjannikov sobre la simetria de ecuaciones diferencia-
les. Se muestra que para una clase grande e importante de ‘hamiltonianos de
Schroedinger Hyy H(A), A un parametro, hay una correspondencia continua
uno a uno, entre las constantes del movimiento Q;o ¥ Q;(A) para todo tiempo
finito. Se aisla y evita el analogo cuantico de las discontinuidades que en-
contro Poincaré en las primeras integrales clasieas, del problema de los
cuerpos. Entonces, se pueden definir atilmente los conceptos de “constante
del movimiento aproximada” e “invariante aproximada de una ecuacién de
Schroedinger”, y se pueden relacionar las propiedades algebraicas de siste-
mas perturbados con aquellas del sistema sin perturbar.



