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Al3STRACT: QuanlUm mechanical constanrs of rhe morion, Q, are defined as

Jacal invarianrs of a quanral equarion_.of morion. They are in-
hcrendy more general ob;ecrs rhan rhe invarianrs envisaged in

rhe Lie-Ovsjannikov rheory of the symmerry of differenti al

equations. Ir is shown rhar for a large and importanr dassof

Schrocdinger Hamiltonians Ho and JI( A), A a paramerer, there is
a conrinuous ane [Q one correspondence berween the constants

of the motion Q. and Q. (A) for alI finire times. The quantal'o ,
analog of the discontinuities rhat Poincaré found in dassical
first inregrals of the n-body p:"Oblem are isoJared and obviated.
The concepts of lIIaproximate constant of the motion" and "ap-

proximatc invariant of a Schroedinger equarion" can thus be
usefuJIy dcfined and che algebraic propertics of perturbed systems
related to those of the unperturbed system.

Investigation supportcd by a grant from the Research Corporation.
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l. INTRODUCTlON

Sophus Líe based his group theoretical treatrnent DE systems ol differ-
. Iequauons

upon (he concept ol an infinitesimal transfonnation DE a manifold

(x,u) ~ (x,;;)

witb coordinares oC [Wo types

( I 2 ")x= x,x , ... X ,

( 1 2 "')U=U,U, ••• U,

(1.1)

(1.2)

(1.3)

where (he ui are considered to become funccions oC (he x" by virtue ol (he
fac, ,ha, (1.1) is assumed soluble.

The functions u may be caken ro be che original unknown functions
appearing in (he ser, oc (hey may be new functions lhat have arisco in (he
reduction ol che set ro a oew ser oí first-order ~quations through (he device
ol introducing unknown functions for various derivatives appearing in (he
original seto Lie' s infinitesimal transformations are oC me fonn

(1.4 )

Using such transformarions and their first extensions2 Lie gave a definitive
treacrnenc of che concinuous syrnmetrles of f¡nice sets of firsc order ordinary
differencial equadons. lt is upon chis foundacion chac the cheory of che ca-
nonical transformadon of Hamihon's equacions has been erected.

Ovsjannikov has excended Lie's creatment to secs of pardal differential
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equ;lrions,3 but though the transformations he allows are adequare for many
purposes, rhey are not sufficiently general ro deal with the local syrnmerries
of rhe pardal differential equations of Schroedinger.-4

Ir is nor in general possible to use Lie'smerhods ro find me symmetries
of a classical system and obrain rhose for its quantum mechanieal counrer-
pan by replacing lhe momenta by diHerential operators. Ir is well known
rhat rhis leads to ambigulties in all bur rhe simplesr cases.

To trear the local symmerri~ s of Sehroedinger equations one musr in
faer allow rransformarions of the form-4

(1.5)

and make no a priori restricrions upon the maximum order of derivarlve thar
can appear in rhe transformation.

We have used rransformarions of rhe forro (1.5) to obrain the generators
of the groups of a varielY of rime-dependenr Schroedinger equarions. -4-7 Each
such transformadon can be considered to be brought about by a linear differ~
enrial operator Q. If;

(H- iO,) 'V(x,l) = O

rhe operarors Q satisfy

(1.6a)

(lJ-iO,)Q'V(x,tl=ü (1.6b)

for all 'JI sarisfying (1.6a). Frum this It tuilows rhar

{O,Q + i [J1,Q]} 'V

and rh:H

O , (1.7)

(di di) < 'Vi I Q I '1'. > = O ,

for all 'Vi and 'V. satisfying (l.6a).

(1.8)
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These operators are chus the quantum mechanical analogs oí classical
constants Di (he morion.8 Each' local symmetry is seeo to give cise to a
conserved quantity, and cvery function oí an operaror Q which is well defined
00 [he space Di states of the system is [he operator representacive DE a corre-
sponding conserved quantiry.

lt oí eouese cioes oot follow char every such Q is the generaror oí a
f¡nite dimensional Líe geoup. Sorne oí (he operators are generators of the
geometrical symmeuy group (degeneracy group) of [he Hamiltonian. These
are che explicitly time-independent operators mar cornmute with me Hamiltonian.
Sorne oí (he Q's are generarors oí what have been (eerned '.dynamical groups",
others are nOL Sorne oí [he operators are functions of others direcdy, while
sorne become so,only by vircue of identities implied by the Schroedinger
equarion.

In fact, once one has found a set of Q's which coorains for each degree
of freedom k, a pair of invadants such that

Q /] = O
x

[Qp • Q. ] = O
k t'¡ •

(1.9)

then one has available a complete set of generators ror me Heisenberg algebra
and Weyl group of the system.* With these one can construcr generators of
a tremendous variety of furrher Lie algebras and Lie groups. Ir is thus
difficult to define what one means by a "maximal" invariance group of a differ-
ential equation, or by a "minimal" group unless one.puts restrictions upon
the form of rhe generators or the algebra or group.

Because of the usefulness of consrants of rhe motion ir is unforrunate
that the generality of rhe transformadon (1.5) makes ir difficult in pracrice to
find interesting local symmetries of even quite simple Schroedinger equadons.
Ir would rherefore be most helpful to have methods foe relacing che local s~me-
tries of a complex system to those of a simpler sysrem, and methods for finding
"appeoximate" symmetries. However, one mighr anticipate that even in principie
this is a non-trivial problem .

•
The time is being considered a paeameter rachee chan a dynamical variable.
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In classical rnechanics rhe problem oí relating the consrants oí rhe"
morion of one sysrern ro rhose of another has been known ro presenr sorne
vcr)' rroublesome fearures.

In 1892 Poincaré's farnous rheorem on rhe nonexistence of uniform
inregrals of morion (or rhe n-body problem was published in his I'Merhodes
~ouvelles de la Mechanique Celesre".9 Poincaré considered bound conserva-
rive sysrems obeying rhe equivalent of Hamiltonians equations

qi = d/f I dP.
1

(1.1 O)

and supposed

11 = 11 + "11 +"'11 + + +O ,..., 1 ,..., 2 '

wirh

(1.11)

(1.12)

as happens when rhe p's are the action variables obtained via a lIarnilton-
J acobi trearmen[ of 110, Supposing I (f.l; P, ' P, ... ; q', q' .. ), to be a fi[st
integral of sys[em (1.10) [o (1.12), so that

[11,/] = O ,
PIl (1.13)

he showed rhar for t~> 2, I cannor in general be analytle and uniform for al!
real values oC rhe q' ,lor small values o()J., and for values oí rhe p. in an
arbitrary and arbirrarily small dornain. In particular lean nor be de-
veloped in a power series in ¡..L of rhe form

= I + f.ll +" '1 + + +o 1"'" 2 ' (1.14)

such rhar 10,11,12, .. are uniform in the Pi and qi, and periodic in me individual
qi.

Since rhe Pi of a flamilton-jacobi treatrncnr satisf}' (I .13) for 11 ;: 11
0
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3'lci otherwise, Poincaré's proof also shows that the corresponding action
variables are not, for the general H of (1.11), uniform functions of the vari-
ables of the uoperturbed problem. The argument of Poincaré fails when ap-
plied to second inrcgrals, and so far as we are aware a corresponding theorem
has neither beeo proved oordisproved for them.

Perusal of Poincaré's proof shows that i[ is [he existence of reso.
nances (io [he classical-mechanical sense) mat is central ro [he pathological
bchaviour that he finds. Brillouin gave an ex[ensive discussion of this poinr
and showed by examplc that the discontinuities can occur in dissiparive
systems as well. 10

Poiocaré's theorem followed closel}' upon the work of Bruos who
showed in 1887 tha[ the sevcn classical intcgrals of energy, linear, and angu-
lar momentum are the ooly independent iorcgrals of [he three-body problem
rhar are algebraic functions of the positions, momenta, and time.ll Painleve
extended Bruns theorem in 1898 by showing that every integral 01 the n-body
problem thar is ao algebraic function of the velocities is a function of me
seven classical integral s only. 12

Each of rhe theorems recounted here admits of cxceptions, and those
which arc relevant ro problems of celestial mechanics were dealt with by
their authors. Further exceptions exist for special systems, such as coupled
oscillators, so that the theorems must not be applied uncritically .•

Nevertheless Poincaré's theorem is particular1y sobering. If his dis.
continuities persist in quantum mechanics and cannot be gotten around, then
whenever one attempts to relate the invariants of an n-body system to those
of a simpler unperturbed system; one must envisage lhe use of the theory of
singular perturbations. Perhaps the happiest statement one can make about
such a situation is that quantum mechanics could then enshrine many
otherwise impossible surprises.

2. QUANTAL FIRST INTEGRALS

To determine the effect of changes in a Uam illonian H (j-L) upon ex-
plicitly time-independent constants oí the motion in [he Schroedinger
picture we require in this section that

il

[11(1.<), y] ljI o (2.la)
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Because}' satisfies (2-1) il in general becomes a function of JL and we wish
to determine wherher rhis funcrional dependence is a continuous one. We
shall suppose [har the system lS confined lO a box of large but finite size.
so thar [he Ilamiltonian has a diserete spectrum over the entire range of f.L of
interesr. Ler lI(p.o) be defined by its matrix representation ¡!'<f.Lo) on the
basis of its eigenfunctions. In this representation we shall suppose that
1J(f.Lo + bJ.L) is a bounded operator oot equal to U(f.Lo)' and continuously con-
neceed [O !J(f.Lo) :

(2.2)

As 1j(f.Lo) is a diagonal mauix, a rypical elemene of i(s commurator with iln
arbitrary maulx ~ is

[!!(f.Lo)' ~]. = x .. (11(" )
1/ -'1 - o ji

(2.3)

Thus if ~ is [O cornrnuee wilh !!(f.Lo) and so becorne a ¡¡1st i'nlegtal X(f.Lo) ie
is neeessary thae eiehe, Xi; = O, i,. j, o, thae 1I(f.Lo) .. -H(f.Lo). = O. Thae

" 11
is, a11 off-diagonal clemenrs of X musr vanish excepr (hose that eHect a
mixing of degenerare s[ates. In a1l other respects the elements of ~ are
arbitrary.

lf !.!(f.Lo) is an N x N matrix and it has degenerate submatrices
of di me n s ioo nI x nI ' n2 x n2 •••• \\! i rh ;£ni = N, rh en th ere are M = ~n¡
independent elements in a matrix !:(f.Lo) that cornmutes with ir. From
chis i[ follows tha( th~re are M linearly independent firsr inregrals,
which we will denote r. We may choose (hese (o be linear combinarions
of matrices ;jJ&/ whose sole non-\'anishing elemen( is a 1 a( me intersection
of ,ow k and colurnn I such Ihae F.k = F.l. Then Xi = Y~l ókl• The Akl

sarisfy the commurarion relatioos

(2.4)

and rogerher generate (he group
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(2.5)

This is a degeneracy group of rhe system.
If [he perru[bation engendered by letting).Lo -).Lo + S).L lifls lhe de-

gc:neracies in ane or more of rhe submarrices 0'£ l!(j..Lo) rhen rhe Qriginal
arbitrariness of lhe off-diagonal demenrs of ().Lo) is removed if X\).Lo + S).L)

is ro commure with !l(J.Lo + 8¡..L). These off-diagonal elements must become
zero no matter haw 5mall the perturbation and remain zero far sorne non-
trivial range of ¡..L. Consequently, they musr in general undergo a discon-
t¡nuous changc as ¡..Lo -. ¡..L+ o¡..L. If the change in par~meter produces oew
degeneracies "then there are also matrix elements in X' thar became freely
vari able as ().Lo) ~ Xi ().Lo + S).L), rhough lh ey h ad lo be zero in X ().Lo) .

Thus, in general, X' undergoes a discontinuous change as the Uamiltonian
changes continuously. Furthermore rhe group U(n;)x U(n;) ..... changes
discontinuously to U(n')' x U(n;) ...

The generators
1

.;].,'1 in"the eigenrepresenration of !J(j..Lo) may pravide
rhe operator basis for representations of orher groups. Commonly one is
intcrested in groups such 3S 0(3) and 0(4) thar are degeneracy groups no
maner what rhe size of che basis. Thus if ooe were ro diagonalize the energy
marrix for the hydrogen alom one would find lhe invariance group U(l) x U( 4) x U(9) ...

corresponding ro the t1
2 fold degeneracy of rhe n-rh energy level. Uowever

the eigenrepresenrarion provides a basis nor ooI}' for che defining representar ion
of rhis group, but also for a direct sum of rhe 1,4,9 ... dim~nsional repre-
sentarions of 0(4). Ler J(j..L ) be rhe matrix represenration oí a generator J_ o
of such a group 00 rhe t:igeobasis of // (j..Lo)' Then we may wrire

where

J = J ,\"_ rs - (2.6)

(2.7)

lf as ,Lo -).Lo + S).L any degeneracy E. = El is lifled and J./().Lo) I O, lhen L
suddenly ceases [o commure with IJ.; rhe l's rhemseIves io general inherir
rhe same kind of disconrinuous behaviour as do rhe ,ts. Conrrariwise, if
for Sorne L rhe JIt/(j..Lo) = O for all level~ k,l \\nose degeneracy is lifred, rhen
rhe 1 remaios a consran[ of rhe mo[ioo. In general ho\\'cver, [he quanral firsr
inregrals and degeneracy groups of rhe perrurbed and unperrurbed Hamilronian
are not conrinuously conoecred.
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lf we remove our system from its eonralner it beeomes possible for
diserete spectra to become continuous, and viee versa, as well as for spectral
concentration points ro develop and disappear. Undcr these conditions it is
sometimes possible for a first integral of one system to change continuously
ioto a quite diHerent first integral of another, though this is by no means a
common oecurrence. However an example is provided by the Hamilton-Runge-
Lenz vector of Keplerian systems

.1
A = (- 21I(Z)) {J¡ (L x p - p x L) + Z,-}

whieh, as Z-- O, ehanges eontinuously into a first integral of the resulting
free-particle Hamiltonian 1/(0). Poincaré's theorem tells us not to expect
this to happen when thrce or more bodies are involved in the system of inter-
est.

3. jOINT TRANSI'ORMATION 01' TIME-DEPENDENT AND

TIME-INDEPENDENT INVARIANTS

Let H be the Schroedinger Hamiltonian oC an n-particle system and
a. 2

le, i, be self adjoin' on ,he lIilbert space Ji = J:: (R3• of func,ions
q,(x), x = (x, ... x

3
.), wi,h scalar produc,

(3.1)

Lct the time evolutioo operator S be defined by the usual Dunford- Taylor
intcgrallJ

Then

for all

der _ 1 r ' O
S _ exp(+ illt) = (217i) -T dy exp(yt)ly - iII)" .

(11 - id) '1' (x /) = o.a t a '

(3.2)

(3.3)



ljI (x, t) = {exl' (- iIIl) }q,(x) = S.'q,(x)
d •

ror al1 q,E 1)(11)'

Let Q a be an invariant of !la so that
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(3.4)

(3.5)

ror al1 q" and let Q. be selr adjoint in Ji with fJ(Q.) " R(Q.)" 1)(11.)" R(lla)
so that ºa is (he operator corresponding to an observable, anJ Qa anJ l/a - JOI
are simul(aneously diagonalizable. Then by me Stone-von Neumann operator
calculus 1" exp ¡l/al is a unitary operator for all fioite 1, and Qa, the IIeisenberg
represcnti.\tion of Qa cxists for all finite 1, is self-adjoint,15 and is given by

() = S () S.1
-a a'>';'aa

(3.6)

No\\: let (he 11" l:l(' [he Schrocdinger Hamiltonian of allo(her sys(cm b invol\'ing
the samc Jt'grcc ..s of fr('cdom as lIa • anJ lec I/b be self-adjoinr on [he same
Hilbert spac(' as Ha. Then

(3.7)

ir

(3.8)

and q, E 1)(111))'
Furthermore (he Schroedinger operator

(3.9)

eXlS[S tor all (¡nitc l.

~'ow one has formally

• /;)(G) si~nifies ,he Jomain of the opcrator G, R(G) its rangc.
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and rigorously, for aH cPf. IJ(lla) ,
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0.10)

O.ll)

If IJ(Qab)= R(Qab)= !J(IIb) = R(l1b) , rhen for aH finite 1, Qab is a constan<
oí the morion oE system b, and we have established a one-to-one corresponden ce
between constants oí the mocion oí Ha and those oí Hb. As

0.12)

time-independent invariants (£irst integral s) may he con verted to time-dc-
pendent invariants (sccond iotcgrals) and vice versa.

This transformadon of a constant of the morion of O!lC system ioto
chat of another is perhaps mosr simply excmplificd by the case where the
systems are two-dimensional isotropic and anisotropi~ oscillators respectively.
The isotropic oscillator has the first integral oí angular momentum,

L = xp - ypz y x' (3.13)

as one oC che eight generators oE ¡ts dynamical group SU(2, 1). The corrc-
spondiog generator for che anisotropic oscillator is (Lz commutes with 1Ja):

(3.14)

The marrix elements oí l~z 00 the bas;s cxp - illb tcP are given by

(3.15)
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It is cv¡dcot char though Lz i5 an explicit funetian oC che time, its matrlx
elements in chis basis are constant. The matrix elements 00 [he basis oC
eigenstates oí I/b may be written

(3.16)

They may be cvaluated by eX,E'ressing cPb (x) as a superposition of functions
cP)x), (he cigenfunctions oC /la' As [his is a elearly Convergent process
(hese matrix elements are well d"{ioed.

A:;: dO':;l:'~l cA:éiiiJph:. wi: consider [he behaviour
Constant oC [he motion when a Hamil ton ian i5 changed.
particle possesses (he sccond integral

"o = •.- (p/m) I ,

oC a time-dependent
The classical free

(3.17)

'"as does (he corresponding quantum mechanical systi2m. -

and consider the change froro a free particle sys[(~m a lo
lator system with force constant k. Then

Ler us ser m ::::1
a harmonic oscil.

(3.18)

lñis glves Clse [O rhe harmonic oscillaror invaríanr 16

(3.19)

Ir is a linear combinarion of rhe generators of SU(l, 1) (har shift rhe oscil-
lator leveI by ane unir. In this example it is not possible ro choose the
srates cP [Q be free particle eigensrates io the lIeiseobcrg represen(ation,_ J.c
,"iz., (277) <1exp ipx, as {hese are nor members of a lIilben spacc. lIowever,
a complete set qf wave packets may be chasco instead.

Ler us now consider the quesrion of wherher (he correspondcnc(
be(ween rhe Qab and Qa is a continu,?us ane when {fu and /lb are continuously
connecrcd. Ler /1:::: 1/a +J\.V. /lb \\'ill certainly be self-adjoinr on (he same
Hilbert space as /la if /lb is relatively bounded wirh respect l/a' wirh /la
bound less than 1.17 Funhermore, whenever /la and /lb are self adjoint on
the same Hilbert space, Sb srrongly converges to Sa as /...--o 0, i. e.
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{expi(Ha+\'V)t}q, - {expiHat}q,as\.- O forq,éU,. (3.20)

and it does so uniformly for all finite 1.18 Consequently

(3.21),

in the same manner, as A-- O. Ifence in both this sense and in the sen se of
weak convergence, Qab is continuously connected to Qa under the hypothesis
made.

As an example of the theorem, one mal' let l/a be the kinetic energy
operator of n particles, and let

n

(3,22)

with O(..A~ 1, so that /lb represents the Ilamilto~ian of a coulombic system,
while /la is that of a system of free particIes. Kato has shown that for this
case IIb is lla bounded with relative bound zero.19 TIte constants of the motion
of the interacting system are thus continuously connected to those of the
free-panide system.

lt is imponanr ro note that we have in this section, as contrasred
wirh section 2, freed ourselves from reference to a panicular basis, e. g.,
an eigenbasis of lla' This has made it possible to _eliminate from consideratior.
the discontinuous change in basis that would in general occur if Qne insisted
upon refering each opcraror Q(A) to an eigenbasis of /Ib(A), (whenever the vari-
ation in Alead to a destruction of degeneracies or spectral concentration
points). In the usual perturbation theories one implicitly or explicitly seeks
to establi sh rhree rypes of analytic connections between cheir eigenvalues,
and between their eigenfunctions. We here need only che analyticity of the
!Iamil'onians //(\.) and ,he operators Q(\.) in ,he sense tha, ,hey are well de-
fined self-adjoint operators. To see rhat this freedom lS important and that
there is realIy a hierarchy of conditions here,consider the previous examples:
The eigenfunctions of an anisotropic oscilIator are not in general analytically
connected ro rhose of the isotropic oscillaror. lbere is no analyricconnecrion
betwcen the specrrum of a harmonic. oscilIator and rhar of a free particle.
Th(, Hamiltonian operarors of an atomic sysrem and of a system of free particles
are hoth unbounded from above. Yet in each case we have been. able ro es-
tablish analyric connections between rhe constants of che motion of rhe sysrems.



270 Anderson et al

4. CONCLUSION: APPROXIMATE CONSTANTS OF THE MonON

In (he previous section we have esr~blished a continuous conoeerÍan
between Q00, in (he sen se DE strong convergence, and hence al50 in [he
sense oí weak convergence. Ir is Dor possible to do this foc fiest oc second
integral s separately. Ir is a150 Dor possible if ooe considers only invariants
DE [he Lie-Osvjannikov rype. Ir is only by allowing quantum mechanical
constants oE [he motion to be unrestricted functions oí [he position and mo-
mentum operators, as well as explicit functions of [he time, thar ane can
obviare [he difficulty unearthed by Poincaré.

In classical mechanics ir may aheo be considered [har a function
W(p, q, t) is a good approximare constant of che motion during [he time interval
t~t:{.tifo ,

where € is a quanriry rhar is small in sorne useful sense. This is a gener~
atizaríon ol [he more straíghtforward requirement I áWIdt I < E and is useful
when Qne wishes to separare secular from non-secular effefts. We shall
adopt a similar definitían for aD approximate consrant oí [he morian DE a
sysrem with Hamiltonian H by defining W tI> be a good constant oí the motioo
on (he manifold ol states 'V = Se, ~€u, during (he time .¡ncerval fo ~ t ~ tI'if

I

IU1-lof1J 'dI <eIS(dWldt)S-'I~>1 < E •

'o

We have seeo thar for an n-b<xly sysrem with Hamiltonian Hh00 = Ha + AV,
only constants of (he morion char are allowed to cake 00 aD explicit time
dependence can in general be expanded in power series abour A= o. It is
dlUS imponant to allow approximate firsr integrals to be objects mar may have
an explicit, though weak, time dependence. As

we define W .0 be a good approximate 9Uan[al first integral 00 [he manifold
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of functions t E Ji during the time in[erval lo ~ I ~ 11 iff

"1(1 -1 r'J dl<';-'is;[II,W]s"I.;->I<E, o ,
o

271

U'ith chis defini[ion W need not be an exact second integral [O qualify as an
approxima[e (irse integral. 1I0wever, we can ensure [ha[ dWldt vanishes on
che lIilbert space if we consCruCI W from lhe QabU.,J defined in seclion 3 and

2
arrange lhal W is self.adjoinl on che same Ji = .c (R'") as are lhe Qab. As
one can diffcren[iate the Qab(A) with respect [O A, and 1, it is in principie
s[raightforward [o investigare the dependence of Wand its ma[rix elemen[s
upon A and I in the ne ighbourhood of A= O, I = T, _00 < T < lIQ • lIowever [he
sel1se in which a power series in either or bo[h of these variables approxi-
mates the original function W for times in the remote past or future must be
investigatcd separately in each case.
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RESUMEN

Las constantes del movimiento Q, en mecanlca cuántica, se definen
como invariantes locales de una ecuación del movimiento cuántica. Ellas
son inherentemente, objetos más generales que los invariantes considerados
en la teoria de Lie-ovsjannikov sobre la simetría de ecuaciones diferencia-
les. Se muestra que para una clase grande e importante de hamiltonianos de
Schroedinger /lo y JI CA.) , A. un parámetro, hay una correspondencia continua
uno a uno, entre las Constantes del movimiento Q;o y Q¡ (.\.) para todo tiempo
finito. Se aisla y evita el análogo cuántico de las discontinuidades que en ..
contró Poincaré en las primeras integrales clásicas, del problema de los n
cuerpos. Entonces, se pueden definir útilmente los conceptos de .constante
del movimiento aproximada" e &invariante aproximada de una ecuación de
Schroedinger", y se pueden relacionar las propiedades algebráicas de siste-
mas perturbados con aquellas del sistema sin perturbar.


