THE NON-ADDITIVE POTENTIAL IN THE He₃ SYSTEM WITHIN THE LCAO-MO-SCF APPROXIMATION*

Luis González-Tovany

Instituto Nacional de Energía Nuclear Insurgentes Sur 1079, México 18, D. F.

and

V. Beltrán-López

Instituto Nacional de Energía Nuclear e Instituto Mexicano del Petróleo Av. de los Cien Metros #500, México 14, D.F.

(Recibido: octubre 10, 1973)

(Versión modificada: agosto 23, 1974)

ABSTRACT: The non-additive three body potential of the He₃ system for general linear and triangular geometrical configurations is calculated by using the Polyatom program based on the Roothaan LCAO-MO-SCF method with a Gaussian basis set formed by 6 s-type and 3 p-type functions for each center. Tables and Figures of numerical results are presented for linear, isosceles and scalene triangular configurations. A comparison with results of other authors is made.

Work supported in part by Facultad de Ciencias, Universidad Nacional Autónoma de México.

INTRODUCTION

Some physical properties of atomic and molecular systems like the free energy, specific heat, entropy, viscosity and thermal conductivity are usually calculated under certain approximations. One of these is known as "the pair-wise additivity of the molecular forces", which means that the interaction between atoms or molecules can be expressed as a sum of contributions referring to isolated pairs. The validity of this approximation has been studied by several authors. Per-Olov Löwdin¹, on investigating cohesive forces of certain of the alkali-halide ionic crystals, has shown that in this case, the cohesive energy is non-additive.

A convenient approach to the study of these non-additive interactions is by perturbation theory. Margenau² has pointed out that first order interactions do not have the property of pair-wise additivity. The long range forces between unexcited molecules like the dispersion forces are additive in second order of perturbation theory, if a simple product type of zero order wave function is used. Third order perturbation theory was applied to the Van der Waals type interaction between neutral atoms by Axilrod³ in order to calculate three body non-additive interaction. Axilrod's results have been applied by Graben and Present⁴ and Sherwood and Prausnitz⁵ to the calculation of the third virial coefficient for Neon, Argon, Krypton, Xenon and other gases, obtaining a better agreement with experimental values than that afforded by additive Van der Waals' forces alone.

For short-range forces, Rosen⁶ using the valence bond method has obtained formulae for the ratio of triple to pair-wise contributions for two types of geometrical configurations of the He₃ system: an equilateral triangle and a linear array of three atoms equally spaced. This problem has been investigated by Shostak⁷, who employed molecular orbitals in this calculation. His results, evaluated only for linear configurations, while in general agreement with Rosen's conclusions, give increasingly larger non-additive contributions at shorter interatomic distances.

THE NON-ADDITIVE POTENTIAL IN THE He, SYSTEM

Bader, Beltrán-López and Novaro⁸, have applied the Roothaan LCAO-MO-SCF method, using the Polyatom program in the Basch and Hornback version for calculating the non-additive energy of three Helium atoms in several linear and isosceles triangular-configurations. They used a basis set consisting of the optimized 6 s-type gaussians functions of Huzinaga⁹ for the Helium atoms

Non-additive potential ...

2.1

2.2

2.4

2.3

-8.429151

-8.435677

TABLE I

	Energies of linear configurations. (a.u.) R_{ab} and R_{bc} are distances from central atom to the other two							
R _{ub}	R _{bc}	Total energy of the He ₃ system E (He ₃)	Total two-body interaction ΣE_2	Total three-body interaction E_3	Non-additive energy △E ₃			
			$R_{ab} + R_{bc} = 6.0 a_0$					
2.0	4.0	-8.460536	0.122485	0.122816	0.000331			
2.1	3.9	-8.483438	0.099596	0.099915	0.000319			
2.2	3.8	-8.501884	0.081156	0.081469	0.000313			
2.3	3.7	-8.516659	0.066395	0.066694	0.000299			
2.4	3.6	-8.528370	0.054690	0.054983	0.000293			
2.5	3.5	-8.537526	0.045539	0.045826	0.000287			
2.6	3.4	-8.544524	0.038545	0.038829	0.000284			
2.7	3.3	-8.549670	0.033402	0.033683	0.000281			
2.8	3.2	-8.553190	0.029883	0.030163	0.000280			
2.9	3.1	-8.555240	0.027832	0.028112	0.000280			
3.0	3.0	-8.555915	0.027158	0.027438	0.000280			
			$R_{ab} + R_{bc} = 5.5 a_0$					
2.0	3.5	-8.456990	0.125515	0.126363	0.000848			
2.1	3.4	-8.479150	0.103386	0.104203	0.000817			
2.2	3.3	-8.496666	0.085899	0.086687	0.000788			
2.3	3.2	-8.510260	0.072327	0.073093	0.000766			
2.4	3.1	-8.520502	0.062101	0.062851	0.000750			
2.5	3.0	-8.527824	0.054795	0.055528	0.000734			
2.6	2.9	-8.532538	0.050086	0.050815	0.000729			
2.7	2.8	-8.534846	0.047782	0.048507	0.000725			
			$R_{ab} + R_{bc} = 5.0 a_0$					
2.0	3.0	-8.446463	0.134816	0.136890	0.002074			
2.1	2.9	-8.466376	0.114980	0.116977	0.001997			
2.2	2.8	-8.481081	0.100332	0.102272	0.001940			
2.3	2.7	-8.491174	0.090279	0.092179	0.001940			
2.4	2.6	-8.497068	0.084408	0.086285	0.001900			
2.5	2.5	-8.499006	0.082488	0.084347	0.001859			
			$R_{ab} + R_{bc} = 4.5 a_0$					
2.0	2.5	-8.415844	0.162709	0.167508	0.004799			
2.1	2 /	0 /001 51			1. molto (1997) C. S. A. M. M. M. M.			

0.149509

0.143036

0.154202

0.147676

0.004693

0.004640

....

plus 3 *p*-type gaussian functions of exponents 0.25, 1.25, and 5.00 to account for the deformation of the charge cloud in the He_2 and He_3 systems. This basis set, while above the Hartree-Fock limit, is still good enough for extrapolating safely to it throughout the range of distances from 2.5 a_0 to 5 a_0 .

Beltrán-López and Novaro¹⁰ obtained an approximate energy surface for the three-body part in the He₃ by plotting points calculated as above, plus others found by linear interpolation. Their results were presented as potential surfaces for linear and isosceles triangle configurations. One of our objectives in this work is the calculation of more accurate potential surfaces for linear and isosceles triangles and other configurations.

Linear Configurations. - The potential surface for linear configurations obtained by Beltrán-López and Novaro presents certain "wiggles" which where not expected but could not be ignored in view of the results found by interpolation.

We investigated the reality of these "wiggles" by increasing the density of calculated points, rendering unnecessary the interpolation of results for obtaining the energy surface. The results thus obtained are presented in Table I and Figure 1. In these it is seen that the correct three body energy

Figure 1. Equipotentials of the non-additive energy for linear configurations of the He₃ system ¹¹

Non-adaitive potential ...

for a linear configuration is very nearly a function of the sum of the distances between atoms, i.e., the equipotentials are very nearly straigth lines.

An analytical equation which closely fits our results has been obtained by the method of least squares. This equation is:

$$\Delta E_{3} = 21.019424 \exp \left[-1.8783606 \left(R_{ab} + R_{bc}\right)\right] + \left\{ \left[0.00363/(R_{ab} + R_{bc})\right] - 0.000588 \right\} \left(R_{ab} - R_{bc}\right)^{2}$$
(1)

where R_{ab} and R_{bc} are the distances between the outer and the central atoms. This expression is useful for the calculation of other physical properties such as the third virial coefficient. In Table II and Figure 2 the values given

R _{ab}	Rbc	ΔE_3	R _{ab}	Rbc	$\triangle E_3$
	R_{ab} +	$R_{bc} = 6.0$	2.3	3.2	0.000744
2.0	4.0	0.000336	2.4	3.1	0.000721
2.1	3.9	0.000323	2.5	3.0	0.000703
2.2	3.8	0.000312	2.6	2.9	0.000692
2.3	3.7	0.000301	2.7	2.8	0.000686
2.4	3.6	0.000292		R_{ab} +	$R_{bc} = 5.0$
2.5	3.5	0.000285	2.0	3.0	0.001891
2.6	3.4	0.000279	2.1	2.9	0.001841
2.7	3.3	0.000274	2.2	2.8	0.001803
2.8	3.2	0.000270	2.3	2.7	0.001775
2.9	3.1	0.000269	2.4	2.6	0.001759
3.0	3.0	0.000268	2.5	2.5	0.001753
	R _{ab} +	$R_{bc} = 5.5$		R_{ab} +	$R_{bc} = 4.5$
2.0	3.5	0.000847	2.0	2.5	0.004534
2.1	3.4	0.000807	2.1	2.4	0.004504
2.2	3.3	0.000773	2.2	2.3	0.004487

TABLE II

Approximate non-additive energy of linear configurations calculated by using the empirical equation:

 $\Delta E_3 = 21.019424 \exp\left[-1.8783606(R_{ab} + R_{bc})\right] +$

Figure 2. Non-additive potential energy surface for a He₃ system in linear configurations, as obtained by using the equation. $\Delta E_3 = 21.019424 \exp \left[-1.8783606(R_{ab} + R_{bc})\right] + \left[0.003630/(R_{ab} + R_{bc}) - 0.000588\right](R_{ab} - R_{bc})^2$

by equation (1) are compared with those obtained with Polyatom. A comparison of our results with Shostak's results is made in Tables III and IV and Figure 3 and with Rosen's results in Table V and Figure 4.

Isosceles Configurations.- For isosceles triangular configurations, we find a smoother surface than that obtained by Beltrán-López and Novaro. This is shown in Table VI and Figure 5.

We have also calculated the non-additive energy for isosceles triangular configurations of constant base and varying sides. The results as a function of the length of the two equal sides are shown in Figures 6 and 7 and Tables VII and VIII. From these we see that the non-additive energy decreases from its zero value at $R \rightarrow \infty$, to a minimum near $R = 3a_0$ from which it increases again. The non-additive energy is then seen to contribute to the 'stability of certain geometrical configurations, whereas others, such as the linear configurations, are made more unstable.

A comparison of our results with Rosen's results is made in Table IX and Figure 8.

306

Non-additive potential...

TABLE III

Comparison of our results for non-additive energies of symmetrical linear configurations and those calculated by Shostak⁷.

R _{ab}	Shost ak non-additive	Polyatom non-additive
	energy	energy
1.78	0.121646	
2.00		0.010870
2.37	0.018559	
2.50		0.001859
2.96	0.000048	
3.00		0.000280
3.50		0.000039
4.74	0.000000	

TABLE IV

Comparison of our results for the ratios of triple to pair-wise additive contributions of symmetrical linear configurations and those calculated by Shostak.

 R_{ab} = Distance between the central and the outer atoms

R _{ab}	Shostak's results	Polyatom results
1.78	0.260629	
2.00		0.044623
2.37	0.180035	
2.50		0.022538
2.96	0.001789	
3.0		0.010310
3.50		0.004479
4.74	0.000000	

Figure 3. Comparison of our results for the non-additive energies of symmetrical linear configurations and those calculated by Shostak.

г	Δ	R	I	F	V	
1	Λ	D	1	L	v	

Comparison of our results for the ratios of triple to pair-wise additive contributions of symmetrical linear configurations and those calculated by using the Rosen's formula

R_{ab} = Distance between the central and the outer atoms			
R _{ab}	Rosen's results	Polyatom results	
2.0	0.049906	0.044623	
2.5	0.013332	0.022538	
3.0	0.003561	0.010310	
3.5	0.000951	0.004479	

1000		
TA		

Energies of some isosceles triangular configurations. (a.u.)

Length of equal sides	Length of Base	Total energy of the He, system	Total two-body interaction	Total three-body interaction	Non-additive energy
R	X	$E(He_3)$	ΣE_2	E_3	$\triangle E_3$
2.8	2.8	-8.527448	0.063700	0.055905	-0.007793
2.8	4.8	-8.540851	0.042666	0.042502	-0.000162
3.3	3.3	-8.564478	0.020650	0.018875	-0.001773
3.7	3.7	-8.575645	0.008219	0.007708	-0.000511
3.7	4.2	-8.577325	0.006324	0.006028	-0.000296
4.3	3.2	-8.573614	0.009971	0.009739	-0.000232
4.6	2.3	-8.519330	0.064294	0.064023	-0.000271

Figure 5. Equipotentials of the non-additive energy for isosceles triangular configurations of the He, system.¹¹

Figure 6. Non-additive energy of isosceles triangular configurations, with base constant at 4 a.u.

Figure 7. Non-additive energy of isosceles triangular configurations, with base constant at 5 a.u.

TABLE VII

at 4.a. u. Energies of isosceles triangular configurations, with base constant at 4 a.u.

Length of equal sides	Length of base	Total enetgy of the He ₃ system	Total two-body interaction	Total three-body interaction	Non-additive energy
R	X	E(He3)	ΣE_2	E ₃	ΔE_s
2.0	4.0	-8.328887	0.243596	0.254466	0.010870
2.1	4.0	-8.381704	0.197098	0.201649	0.004551
2.2	4.0	-8.423000	0.159310	0.160353	0.001043
2.3	4.0	-8.455535	0.128650	0.127818	-0.000832
2.4	4.0	-8.481295	0.103808	0.102058	-0.001750
2.5	4.0	-8.501758	0.083712	0.081594	-0.002117
3.0	4.0	-8.556250	0.028505	0.027113	-0.001392
4.0	4.0	-8.579480	0.004068	0.003873	-0.000195
5.0	4.0	-8.581775	0.001 599	0.001578	-0.000022

R	X	$E(\text{He}_3)$	ΣE_2	E ₃	$\triangle E_3$
2.5	5.0	-8.499006	0.082488	0.084347	0.001859
2.6	5.0	-8.516148	0.066242	0.067205	0.000963
2.7	5.0	-8.529796	0.053142	0.053557	0.000415
2.8	5.0	-8.540669	0.042588	0.042684	0.000096
2.9	5.0	-8.549336	0.034096	0.034017	~0.000079
3.0	5.0	-8.556248	0.027271	0.027104	-0.000166
.0	5.0	-8.580581	0.002834	0.002772	-0.000062
i.0	5.0	-8.582996	0.000365	0.000357	-0.000009

TABLE VIII

Energies of isosceles triangular configurations with base constant at 5 a.u.

TABLE IX

Comparison of our results for the ratios of triple to pair-wise additive contributions of equilateral triangular configurations and those calculated by using the Rosen formula

R _{ab}	Rosen' results	Polyatom results
2.0	-0.158780	-0.185692
2.5	-0.096787	-0.146629
2.8	-0.071917	-0.122339
3.0	-0.058999	-0.106961
3.3	-0.043839	-0.085860
3.5	-0.035964	-0.073589
3.7	-0.029504	-0.062173
4.0	-0.021923	-0.047935
4.5	-0.013363	-0.030819
5.0	-0.008146	-0.024590

 $R_{ab} = Length of sides of equilateral triangle$

Figure 8. Comparison of our results for the ratios of triple to pair-wise additive contributions of equilateral triangular configurations and those calculated by using the Rosen' formula.

Scalene Configurations.— For scalene triangular configurations, we calculate the non-additive energy as a function of the angle between two sides whose lengths are kept constant. The corresponding results are shown in Tables, X, XI, XII, XIII, XIV, XV and XVI and Figures 9 and 10.

Axilrod's long-range formulae predicts positive energies when one of the inside angles is greater than 117° . From our results at shorter ranges we find that, as *R* increases, this critical angle decreases from 128° at $R = 2a_0$ towards Axilrod's value.

R _{ab}	R _{bc}	R _{ac}	$E(\text{He}_3)$	ΣE_2	E ₃	ΔE_3
.0	2.0	2.0	-8.287465	0.363360	0.295888	-0.067473
.0	2.0	2.5	-8.341791	0.282418	0.241562	-0.041856
.0	2.0	3.0	-8.348048	0.255815	0.235305	-0.020510
.0	2.0	3.5	-8.339750	0.246592	0.243603	-0.002990
.0	2.0	4.0	-8.328887	0.243596	0.254466	0.010870

FABLE X

Energies of scalene triangular configurations with two sides constant at 2.0 and 2.0 a.u. R_{ab} , R_{bc} and R_{ac} are the lengths of the sides of the atomic triangle

TABLE XI

Energies of scalene triangular configurations with two sides constant at 2.0 and 2.5 a.u.

R _{ab}	R _{bc}	R _{ac}	$E(\text{He}_3)$	ΣE_2	E_{3}	$\triangle E_3$
2.0	2.5	2.0	-8.341791	0.282418	0.241562	-0.041856
2.0	2.5	2.5	-8.407598	0.203476	0.175755	-0.027721
2.0	2.5	3.5	-8.423550	0.166654	0.159803	-0.006851
2.0	2.5	4.5	-8.415844	0.162709	0.167508	0.004799

TABLE XII

Energies of scalene triangular configurations with two sides constant at 2.0 and 3.0 a.u.

R _{ab}	R_{bc}	R _{ac}	$E(\text{He}_3)$	ΣE_2	E_3	ΔE_3	
2.0	3.0	2.0	-8.348048	0.255815	0.235305	-0.020510	
2.0	3.0	3.0	-8.445586	0.148262	0.137767	-0.011495	
2.0	3.0	4.0	-8.449450	0.136051	0.133903	-0.002148	
2.0	3.0	4.5	-8.447841	0.135106	0.135512	0.000406	
2.0	3.0	4.8	-8.446956	0.134895	0.136397	0.001502	
2.0	3.0	5.0	-8.446463	0.134816	0.136890	0.002074	

Non-additive potential ...

Energ	rgies of scalene triangular configurations with two sides constants						
R _{ab}	R _{bc}	R _{ac}	E(He ₃)	ΣE_2	E ₃	ΔE_3	
2.0	3.5	2.0	-8.339750	0.246592	0.243603	-0.002990	
2.0	3.5	2.5	-8.423550	0.166654	0.159803	-0.006851	
2.0	3.5	3.5	-8.457296	0.129825	0.126056	-0.003786	
2.0	3.5	4.5	-8.458098	0.125884	0.125255	-0.000629	
2.0	3.5	5.0	-8.457472	0.125594	0.125881	0.000287	
2.0	3.5	5.4	-8.457070	0.125519	0.126283	0.000764	
2.0	3.5	5.5	-8.456990	0.125515	0.126363	0.000848	

TABLE XIII

Energies of scalene triangular configurations with two sides constant at 2.0 and 3.5 a.u.

TABLE XIV

Energies of scalene triangular configurations with two sides constant at 2.0 and 4.0 a.u.

Rab	R _{bc}	R _{ac}	$E(\text{He}_3)$	ΣE_2	E_{3}	ΔE_3
0	4.0	2.0	-8.328887	0.243596	0.254466	0.010870
.0	4.0	3.0	-8.449450	0.136051	0.133903	-0.002148
.0	4.0	4.0	-8.460816	0.123832	0.122536	-0.001296
.0	4.0	6.0	-8.460536	0.122485	0.122816	0.000332

TABLE XV

Energies of scalene triangular configurations with two sides constant at 2.0 and 4.5 a.u.

R _{ab}	R _{bc}	R _{ac}	$E(\text{He}_3)$	ΣE_2	E ₃	$\triangle E_3$
2.0	4.5	2.5	-8.415844	0.162709	0.167508	0.004799
2.0	4.5	3.0	-8.447841	0.135106	0.135512	0.000406
2.0	4.5	3.5	-8.458098	0.125884	0.125255	-0.000629
2.0	4.5	4.5	-8.461841	0.121942	0.121511	-0.000432

TABLE XVI

Non-additive energies of scalene triangular configurations. R_{ab} , R_{bc} and R_{ac} are the lengths of the sides of the atomic triangle ΔE_3 is the non-additive energy.

R _{ab}	R _{bc}	R_{ac}	ΔE_3	R _{ab}	R _{bc}	Rac	ΔE_3		
Const	ant sides	$s = 2.5a_0$	& 2a ₀	Const	ant sides	$a = 2.5a_0$	& 3a ₀		
2.5	2.0	2.0	-0.041856	2.5	3.0	2.5	-0.010943		
2.5	2.0	2.5	-0.027721	2.5	3.0	3.0	-0.006924		
2.5	2.0	3.5	-0.006851	2.5	3.0	5.5	0.000734		
2.5	2.0	4.5	0.004799	Const	ant sides	$= 2.5a_{o}$	& 3.5a		
Const	ant sides	$s = 2.5a_0$	& 2.5a	2.5	3.5	2.0	-0.006851		
2.5	2.5	2.0	-0.027721	2.5	3.5	2.5	-0.005750		
2.5	2.5	2.5	-0.018115	2.5	3.5	3.5	-0.002485		
2.5	2.5	3.0	-0.010943	2.5	3.5	6.0	0.000287		
2.5	2.5	3.5	-0.005750	Const	ant sides	$= 2.5a_{o}$	& 4a		
2.5	2.5	4.0	-0.002117	2.5	4.0	2.5	25 C		
2.5	2.5	4.5	0.000332	2.5	4.0	4.0	-0.000854		
2.5	2.5	5.0	0.001859	Const	ant sides	= 2.5a			
				2.5	4.5	2.0	0.004799		
				2.5	4.5	2.5			
				2.5	4.5	4.5	-0.000284		
Consta	ant sides	$= 3a_0 \&$	2a ₀	Const	Constant sides = $3a_0 \& 3.5a_0$				
3.0	2.0	2.0	-0.020510	3.0	3.5	925.0	-0.002582		
3.0	2.0	3.0	-0.010495	3.0	3.5	3.5	0.020704		
3.0	2.0	4.0	-0.002148	Const	ant sides	$= 3a_0 \&$	4a		
3,0	2.0	4.5	0.000406	3.0	4.0		- 0.002148		
3.0	2.0	4.8	0.001502	3.0	4.0	3.0	-0.001392		
3.0	2.0	5.0	0.002074	3.0	4.0	4.0	-0.000541		
Consta	int sides	$= 3a_0 \&$	2.5a ₀	3.0	4.0	5.0	-0.000153		
3.0	2.5	2.5	-0.010943	Const	ant sides	$= 3a_0 \&$	4.5a		
3.0	2.5	3.0	-0.006924	3.0	4.5		0.000406		
3.0	2.5	5.5	0.000734	3.0	4.5	3.0	-0.000642		
Consta	int sides	$= 3a_0 \&$	3ao	Constant sides = $3a_0 \& 5a_0$					
3.0	3.0	2.0	-0.010495	3.0	5.0	2.0	0.002074		
3.0	3.0	2.5	-0.006924	3.0	5.0	3.0	-0.000166		
3.0	3.0	3.0	-0.004356	3.0	5.0	4.0	-0.000153		
5.0	3.0	3.5	-0.002582	3.0	5.0	5.0	-0.000058		
3.0	3.0	4.0	-0.001392	Const	ant sides	$= 3a_0 \&$	5.5a ₀		
3.0	3.0	4.5	-0.000642	3.0	5.5	2.5	0.000734		
8.0	3.0	5.0	-0.000166	3.0	5.5	3.0	0.000113		
3.0	3.0	5.5	0.000113						
3.0	3.0	6.0	0.000280						

Figure 9. Non-additive energy of scalene triangular configurations with two sides constant. Here one side is always equal to 2 a₀.

Figure 10. Non-additive energy of scalene triangular configurations with two sides constant. Here one side is always equal to 2.5 a₀.

ACKNOWLEDGMENTS

We wish to express our gratitude to Engineer Ramón Medina of the Pemex Computer Center for his valuable help and to Instituto Mexicano del Petróleo for its help throughout the development of this work. We wish also to thank Dr. Octavio Novaro for enlightening discussions.

REFERENCES

- 1. Per-Olov Löwdin, A theoretical investigation into some properties of ionic crystals. Almquist and Wiksells Boktryckeri A. B., Uppsala (1938).
- 2. H. Margenau, Rev. Mod. Phys. 11 (1939) 1.
- 3. B.M. Axilrod, J. Chem. Phys. 19 (1951) 719.
- 4. H.W. Graben and R.D. Present, Phys. Review Letters 9 (1962) 247.
- A. E. Sherwood and J. M. Prausnitz, J. Chem. Phys. 41 (1964) 413, 41 (1964) 429.
- 6. P. Rosen, J. Chem. Phys. 21 (1953) 1007.
- 7. A. Shostak, J. Chem. Phys. 23 (1955) 1808.
- 8. R.F.W. Bader, O.A. Novaro and V. Beltrán-López, Chem. Phys. Letters 8 (1971) 568.
- 9. S. Huzinaga, J. Chem. Phys. 42 (1965) 1293.
- 10. O.A. Novaro and V. Beltrán-López, J. Chem. Phys. 56 (1972) 815.
- Reproduced with due permission by the Journal of Chemical Physics from L. González-Tovany, V. Beltrán-López and O. Novaro J. Chem. Phys. 60 (1974) 1694.

RESUMEN

Se calcula el potencial no aditivo de tres cuerpos del sistema He₃ para configuraciones geométricas lineales y triangulares en general, usando el programa Polyatom, basado en el método LCAO-MO-SCF de Roothaan, con una base gaussiana formada por 6 funciones tipo "s" y 3 tipo "p" para cada centro. Se presentan tablas y figuras con resultados numéricos para configuraciones lineales lo mismo que para triángulos isósceles y escalenos. Se hace una comparación con los resultados de otros autores.