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ABSTRACT: A comparison between different aspects of generalized hydro-
dynamic equations, when one considers a relaxation time to
solve difficulties of ordinary hydrodynamics is made from three

different points of view, both macroscopic and microscopically,

It is well known that the linearized hydrodynamic equations are satis-
factory to describe the behavior of a system near its equilibrium state (long
times), however, if we extend their range for shorter times, we find some
phenomenological difficulties as well as microscopic ones. In this note we
show that the introduction of a relaxation time enables us to solve these
difficulties.

We consider three aspects of the problem: a) Firstly, the results ob-
tained in experiments on dispersion of sound have shown that the dispersion
relation obtained from the linearized hydrodynamic equations is in disa-
greement with experimental data for short times. Consider the linearized
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equations for a one component system.

%(8/31) v(r, 3\ = |0 0 \% -p(r,t)
st o ovnv oo T, | |
v(r1) Y 0 NV + (Y, n+m IV [\ vir,

(1)

where 0 is the equilibrium density, v(r,t), s(r,2), p(r, 1) and T (r,t) are spe-
cific volume, specific entropy, pressure and temperature deviations from
equilibrium values, v(r,?) is the hydrodynamic velocity; A, Ty and 1) are
the thermal conductivity and the volumetric and shear v1scosmes Fourier
transformation of eq. (1) enables us to obtain the classical Kirchhoff! dis-
persion equation, and a comparison with experimental data aboit sound dis-
persion shows a discrepancy for large frequencies’. Recently some people® *
suggested a modification of eq. (1) by the introduction of a relaxation time
for each constitutive equation flux-thermodynamic force: M. Carrasi and
A. Morro® suggested the phenomenological relations:*

7,(3/30 P ; = - [n(Bup/3x )+ (B /3x)+ () - %) div v s +P, -8 ;]

a,8=1,2,3. 2
7;;(6/3:) Jq — (,\VT-FJq) , (3)

where P and J are the pressure tensor and the heat flux, 7, and Tq are the
reiaxauon times aSSOCLated with these fluxes. Substituting the constitutive
equations (2) and (3) in the balance equations for the momentum density and

entropy, we obtain, after linearization, the generalized hydrodynamic equations

Actually Carrasi and Morro used a slightly different constitutive equation for the
pressure tensor, however this does not modify essentially any of these results.
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these new equations yield to a generalized Kirchhoff's equation which agrees
with experimental data for large frequencies when 7, = T 2 10 sec, which
is of the same order of magnitude as the collision time. It is clear that
equations (4) reduce to the usual linearized equations (1) when the relaxation
time goes to zero. We remark that eq. (3) has been proposed by several
authors to explain the fact of non instantaneous temperature changes in the
system*.

b) From a fluctuation theory point of view, R. Zwanzig5 showed that
the Langevin equation yields to contradictions when the transport processes
are not slow, and he proposed a generalized Langevin equation

4
(3/3n a; k,0) = - [ dt K (k,t")a;(k,t-1") (5)
0

where the E:' (k, ) are the Fourier transform in r of the average deviation from
the equilibrium values of the dynamical variables which describe the system,
and K, (k, ) is the memory function. Equation(5) and a parameter of slowness
drop out the difficulties presented by the Langevin equation, furthermore,
we obtain the relationships between the time-correlation functions and the
transport coefficients. We propose the simplest memory function for the
generalized Langevin s‘:quation6

Kk, ) =(L; (k) g . /T.) exp (= t/7,) , (6)

where g_. is the matrix corresponding to the second derivatives of entropy,
the 7, are the relaxation time for each flux J; (k,#) = (0/91) a; (k,t) and L'.S(k)
is the transport coefficients matrix which in the case of a simple one component
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fluid reduces to

L; (k) = (T /,%) 0 0 -1k
0 - (W/T,) k? 0
- ik 0 -nk? - (1, +%m) kk

(7

Substituting eq. (6) in the generalized Langevin equation (5) we can
write the flux-force generalized relationships which have the following form

7;.{3/8:)1,. (k1) = L;;(k) X].(k.:)-]t-(k,t) ; (8)

where the X]. (k; 1) = = g}.szs(k, t) are the Fourier transforms in r of the gener-
alized thermodynamic forces.

Moreover taking irto account that the r-Fourier transform of the line-
atized hydrodynamic equation (i) is related to the Langevin equation®, we
can establish the relationship between the generalized hydrodynamic equations
and the generalized Langevin equation. In particular we immediately see
that the constitutive equations (8) have the same form that the relations (2)
and (3) which have been propcsed from purely phenomenological arguments.

c¢) Lastly, L.P. Kadanoff and P.C. Martin® have used the susceptibili-
ties (Fourier-Laplace transfor of the response function), obtained from the
linearized hydrodynamic equations to calculate sum rules. This procedure
leads to discrepancies with the calculation of the same rules based on the
continuity equations satisfied by the quantum-mechanical operators associ-
ated with the dynamical variables of interest. Such discrepancies appear
because one extrapolates to large frequencies the information contained in
the linearized hydrodynamic equations.

Kadanoff and Martin studied the spin diffusion problem and solved these
difficulties through the @d hoc introduction of a relaxation time. The same
problem appears in the hydrodynamic equations for a simple one compenent
fluid, i. e. , one can calculate the commutation relations corresponding to the
sum rules, from the conservation equations satisfied by the operators such
as density, momentum and energy; in fact the third sum rule (second derivative
of the Fourier transform in R=r~r"' of the relaxation function) is proportional
to k% when the operators satisfy conservation laws. Thus
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[(3°/0:%) [dR exp(-ik'R)(fua"T(l/iﬁ)([A(r',l').B(r,f)}Zq)]: ak’
t =0

(9)

where A(r, t) and B(r, 1) are any of such operators and 7= ¢t-¢".

The same sum rule'” calculated from the susceptibilities obtained
from the linearized hydrodynamic equations is proportional to &*, which shows
that the linearized hydrodynamic results do not satisfy the microscopic
requirements imposed by the commutation relations.

Then, it is straighcforward to use generalized hydrodynamic equations
the simplest set being obtained with flux-force relationships which contain
a rcelaxation time as in eqs. (8), (2), (3) and give us the correct &? dependence
in the sum rule.

Furthermore, using the value which results from the calcu[a;ion of the sum
rule using the generalized hydrodynamic equations in terms of relaxation
times, it is possible to compare with the sum rule value in eq. (9), which
can be calculated from a microscopic model. This procedure determines
directly the value of the relaxation time. In this form some rule calculations!!
lead us to associate with the momentum density a relaxation time

T, = (/) =107 seg

where * is given in reterence (11) and contains only microscopic parameters
associated with the intermolecular potential and the pair distribution function

Now, we ask about the relationship between different aspects of this
problem. First of all, we know that the phenomenological relations which
contain relaxation times of the order of magnitude of collision times give
some agreement with experimental data on sound dispersion. Secondly, if
we interpret the linearized equations as Langevin ones, it is remarked that
the inconsistencies pointed out can be eliminated by introduction of gener-
alized equations (time-dependent transport coefficients), and the simplest
generalization yields the flux-force relation we mentioned before.,

Finally,
the microscopic restrictions imposed by the sum rules lead us to the same
generalized hydrodynamic equations. Thus we can say that this simplest

generalization enables us to solve the problem in the phenomenological level
consistently with the microscopic one.
Furthermore, we are proposing a method to evaluate the relaxation

time which appears in the phenomenological relaxations. In fact we point
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out that the order of magnitude of 7, is that needed to have a good agreement
with the experimental data. Moreover these times give us the order of magni-
tude of frequencies in which it is possible to neglect non-Markoffian contri-
butions to the generalized Langevin equation.
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RESUMEN

Usando tres diferentes puntos de vista, tanto Mmacroscopicos como mi-
croscopicos, se hace una comparacién de diversos aspectos de las ecuacio-
nes hidrodinamicas generalizadas considerando un tiempo de relajamiento pa-
ra eliminar dificultades en la hidrodinamica ordinaria.



