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ABSTRACT:

The extent to which various symmetries of source terms in

General Relativity impose isometries is of interest. Several
linearized cases of matter symmetries are shown to give rise
to isometries. However several types of fluid and null electrovac

symmetries in the full theory are shown not to be equivalent
to isometries.

I. INTRODUCTION

It is of interest in General Relativity the extent to which various

symmetries of source terms impose symmetries on the gravitational field,

isometries on the space-time. The problem was introduced for a kinetic

and the name “matter symmetry” is here generalized for
other sources and different symmetries or collineations?.

theory source term’

That this would be
of interest is evidenced by, for example, the degree of isotropy implied on
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space-time by the observed isotropy of blackbody radiation and galaxies?.
This isotropy problem, besides being nontrivial, points to the need for a
lincarized treatment of, generally speaking, matter symmetries. In Sec. II
we treat various different linearized matter symmetries: in Sec. A we treat
the case of a kinetic theory matter symmetry which in electromagnetic theory
imposes a symmetry on the electromagnetic field tensor, mainly in order to
similarly treat, in Sec. B, the weak, or linearized, gravitational field. In
Sec. C we see the isometry imposed by a symmetry of the stress=energy
tensor, with boundary conditions, all lincarized off an isometric space-time.
In Sec. IIl se sce various cases where impositions of matter, or other sym-
metries in the full nonlinear theory does not give rise to isometries on space-
time: Scc. A uses a conformal technique to find cases where the Ricci, stress-
energy, and other tensors or objects are symmetric f Raﬁ =0, ET? 'rqB =0,
and others) but not so the metric () is not Killing and there does not exist a
scaling which makes it Killing). Sec. B shows that in electrovac space-time,
specifically when null, an isometry and a symmetry on the electromagnetic
field tensor are not equivalent so that the field is not the looked for “good”

matter symmetry. The conclusion 1s presented in Sec. 1V,

II. LINEARIZED MATTER SYMMETRIES
A. Kinetic Matter Symmetry in Electromagnetism
The distribution function f of particles with charge scaled to 1 and

variable mass produces an electric current density on the space-time point
@ . 3
x " by, with no gravity,

I = [ G2 p™ dYy (1)

The current density produces an electromagnetic field given by Maxwell’s

equations,

a8 a i

e, 8= N udl (2a)
and

L
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In the Lorentz gauge
A = 1 (3
we get

nA® = =4m)” | (4)

and then, using the retarded Green’'s function

A% ija(x'.t')‘IRR_1d3:«" : (5a)
where

R=|x-x'] (5b)
and

tp=t+*R , (5¢)

and where we shall write x instead of x. The behavior of [ 1s g()vcrncd by

the Liouville equatiun‘, for a collisionless fluid with no correlations,
Lf=p*(3/ 34 F 0 (3/3p%) = 0, (6)

3 g 7o A . .
and a matter symmetry 1S given by ()7 is a vector field which translates to
the space time point where the observed f is unchanged, and Aypg rotates the

space time axis at that point. Sce Ref. 5 for a rigorous definition.)
W =31/ 3xM+A%pP (3[/3p™) = 0, Ay =0 . (7

We will show that (7) implies, with restrictions on Aaﬁ due to the fact that

we work in flat space time (sce later), that
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and this will imply

(M

i B =) [R5
which is gauge invariant. From (7) one may derive® that

B
I =A%1" =0, (10)

and from (6) one may get charge conservation

ko, Fda (11)
e
'
Now, ] is a function,of x! and t, ] will be,u'ied to denorej t+R)
which is just J* s tp), ]a ;* will mean ar* (1, 1) )/ dx7 l whllc] er‘
r ’ R

~ Fe )
will mean B]ar'(xI » i )/ dx’ lt where ]t means * with fixed IR”), so that remember-
R R

ing Eq. (5b) one will obtain

[ ' ’ e '
st ol =8 )] e /At) R .4 (12a)
5] LY | 1 ¥
R
and
j"" = “'l =3 “'/'3: YR . = = (3% /1 ) R (12b)
=41y O IOt Ry = = (R /Beg) R yv
so, one has
a' ")l = a'+ a’ 12¢
Q fox? My =T ;¥ T 4 (12}

and then

1 ot
o=t R - R R7E = [ kT

5]

+(]R-R a'x:__(; d1+'_{ ,R Ykt (12d)
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so that
[ ;
A% =_f(3]a/ax1')|‘ R <", (13)
’ R

where we have integrated by parts and assumed ]a to vanish sufficiently
fast at spatial infinity. Also, clearly,

a T (. . _ a' -1 '
A%, = 1% R = [T, R s’ (14)
Integrating (10) we obtain

] 1 . a’ N a' P '
Lg% /ax! )l‘ n"(:RH(a; /3t )l R 75" =[A ﬁ-fﬁ R4 %,
R

(15)

so that if Aj;,=AaB (thus, if the Aa’ﬁ are constant) and if
. . 1 ' ) oy a' i ' i
J(n' g) =R (3)% /357 )I‘Rd 4[] - (1 (t)=m")d x" =0

(16)

we get

B

A =0 (17)

A% g =M pA

We now show that (16) does follow for the lift> of the inhomogeneous
Lorentz group (ILG) where the Aaﬁ are constant. For the ILG,

7]0 =0,7 = 5: for space translations in the i axis,
n=1,7'=0 for time translations, (18)
and n*= eanB for space-time rotations,

. x . a
with €, constant and antisymmetric. Thus A = eaﬁ or 0, and always
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.
’

A= n“ﬁ , and then (17) gives’:8

To show (16) we consider three cases:

L.

= . < i . a
[ranslations in space-time: since 777 = constant, (16) holds.
. . 5 X .
~ . 4 ) 5 [ { A o
2. Space rotations: 7) n' =€ {x" =x")and "= 0.

Then from equations (12),

[} =7y R (’a;“/axf')lt dx' =
R

1

. B X K o a 3,
= Jel(x* xR (-],‘RRJ., t] ) dx

— f{eii(xi’-xf)R-l [-]a‘ (xf'-xj)R'l] - EI;. [(xi'—xj)R-l] ;']a } d3x’

2

=I[—Eii(xi'-xi)R'lja‘R(xf < x¥)w Ei'.(xi‘-x‘l)(xj'-xj)R'sja‘] dsx'=0,

where again we have integrated by parts and where G‘.jxixi = 0 since E(:‘j) =10,
3. Boosts: for simplicity we do it along the z axis. With 2, this may be
rotated in any direction. Then,n* = x°, n°

ture =2), and (16) may be written as

=z, €, =1 (with signa-

J’xo -x0]x0.=‘ R'l(ajCI /az')l dsx'*l'f]a' (z'-z)R'ldsx'=
R ‘R 'R

= [ @1 /32", +_[O:‘RR,I.4]d3x' =) dx =0
R

]

where we have used (12a) and integrated by parts.

Finally, if EnAa = 0, we may commute C,q with covariant derivation’
to get
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as announced in (19). The conclusion is that an electromagnetic matter
symmetry (7) which is the lift of the ILG gives rise to an electromagnetlc
field symmetry (9). As before, for a Newtonian matter symmetry , it was
necessary to impose that W be the lift of the symmetry group of space-time.
This new result could, for instance, be applied to a dilute plasma where it
would assert that a “symmetric” charge distribution implies the existence of
the same “symmetry” in the electromagnetic field.

B. Kinetic Matter Symmetry in Weak Gravitation

With gaﬁ Tla,B t €hyg, defining baﬁ N zﬂaB'J and choosing the

harmonic gauge T B,a ™ 0, the field equations are’,

BB = k[ fp%pPd’p = -4mkT® (20)
so that

BB = k[T (" 1R d " (21)

Wf = here implies’

= P Y - Y 34 -
Lo Tp= (A=, ") T g=(Ag” =1y 7) Tg, =0, (22)
which is

Cﬂfraﬁ=o (23)

if W is the lift of the ILG. We then proceed as before, using
gl g L o, (24)

and integrating,
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0 = f(.CnT“’B)(x',rR)R'ldsx' _

| | I . I [ [
:_I-[Tu'ﬁ ,n‘y_Ta’yT]ﬁ :-Ty'B "qa 7;]} R-ldsx'

? Yy b4

=t [ R"[BT“W/BH'}‘ nf'(:R)+(BT“"3'/8:R)77”'(:R)] L'+
R

¢ 1 o0
-7 JT%7 4, )R"d%'-n“,yf'r"’ﬁ (te)R™ d’x’

Berezdivin,

. a - -
since 7) 5 1s constant; hence we may proceed as in Sec. A to conclude
r

oo
Enb =0 ,

and since b = baBT)aB,

(25)

(26)

LiFP=g,
n
This result, as in Sec. A, is not gauge invariant. With a gauge transformation
a a a
X T X ~Ed

I
bag = bagt €LoTag

and one gets8

Enbaﬁ = EE[’T,G]T}QB .

(27)

(28)

Since [ is of order €, from (7) it may be seen that 7n® is only defined to

zero order so that one may add to it any vector field q,

-

T}a=nﬂ+€qﬂ-,

and then, choosing g% by

(29)
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¢ ==[n0" (30)

one obtains, using (29), Ennaﬁ, and (28),
£5gap = L5 Mag* €hag) = Eqmap ¥ € 1hnbap * Lqnapl =

=€ [E[mU]+q~an] =0 , (31)

Thus, the first order terms of 7% may be used to eliminate a gauge transfor-
mation, and viceversa. We can again conclude that a matter symmetry implies
an isometry if W is, to zero otder, the lift of the ILG. Although it is not clear
it seems to us that without the restriction to the ILG the result would not

follow.

C. Linecarized Ricci Collineation Off Non=flat Space-time

10, 11 we

Using the Green's functional technique of Gilman and Sciama
shall see that a linearized T’”’v symmetry will give rise, if we impose some
boundary conditions, to an isometry. The Green’s functional technique is
particularly appropriate for the treatment of perturbations, that is, linea-
rizations of possibly non-flat space-time, unlike A and B where the base
el 2

space was Minkowsky. They have g B = gaﬁ + 8¢ and a gauge such that,

raising and lowering with g 5,

pHY ocT

uv
oT g - kT 1] (32)

DM 8T = = kKHY | (33)

with

Sk = % (g (Y, = 5 T8Y) + g MT#y= 5 T80 = (T# = % Tgh),
(34)

TH = T i
T, TV+5TV, (39)

and



374 Berezdivin

D = kB by ¥ e by YV, ¥ i R g R 136)

To first order the operator D has an elementary solution E*A 'Lw(x',x), de-
pendent on £a3 only, and integration then yields

g8 + 598" = 2&]5“‘3 L(THY = % gBV T 4 KMV vagd's +
N N Gl O Rl P WALy e WP s (37)
B ® pv;p'8 £ = po 0851V =g dS,
The equation is of course linear so that one obtains
= oa'g’ P [ o
5“‘6 Zka K’U'be_—dx'f'l[ag ﬁ’m/pgg
a'g’
-ETF (") 1v=gds, (38)

with

SKHY = 5 [gHM(BT¥, = 58T%,87,) + g¥ M (8TH, - 4 8T ) §~, ] .
(39)

It is immediately clear that if the perturbation is localized (there is some
closed hypersurface d9r where 6g#” and (8g*Y). are zero) non-matter (31”’”' =0)
perturbations cannot exist. If for example we take Or to be a tube hounded
att =1,, t = and at spatial infinity, and assuming that perturbations
vanish at infinities fast enough, we simply have an initial value result for
non-matter perturbations; that is, if we do not have the geometry perturbed
at one time, and if we may assume that whatever perturbation there may be
will die off fast enough at future infinity as well as spatial infinity, then
there will not exist any non-matter perturbations of the space time geometry,
In Sachs and Wolfe’s paper®, with A=B =E = constant so as to eliminate density

perturbations, if C Dp.v and its derivatives are zero at one time, then they

will always remam zero.
Taking Lie derivatives with respect to 7) on equation (33), if Cngaﬂ =0,

we get
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(o - S 1122
D (L, 8g°T) = =k (L 8K) (40)

so that, since it has the same form as (33), the solution is

1! i 4
En:ﬁgaﬁ = ijr EGB#I/(EWSK‘LV)VF:EJ x +

+farg”°[f~?“'ﬁ' £ 5 = B%B (L8P, 1V=gds, . (41)

pv; PN o

Then, with a linearized matter symmetry of the form

By (7%, +87%,) =0 (42)

we must have to zero order
u —
Lok, =10

so that the sufficiency (but not the necessity) of 7) being a zero order isometry
is exhibited, and to first order,

L sr#, +L, T, =0 . (43)

However, ‘CS-:,T# is a source solution to a gauge transformation ' Esngaﬁ

v
so that if .C_nSg’u'y + Esng'u'v and its covariant derivatives are zero on Or,
then they are zero on r. Hence a localized matter symmetry will, after
gauge terms are transformed away, give an isometry,

Lg¥=0. (44)

A related problem, the initial values on 5 gaﬁ necessary and suf-
ficient to assure us of an isometry, for 7) non-lightlike, for analytic non-linear
empty space-time, has been solved®®. If some such boundary or initial con-
ditions are not imposed in the full theory, a symmetry of T‘“v or Taﬁ or a
Ricci collineation will not generally imply an isometry.
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III. NON=-LINEAR EXAMPLES WHERE MATTER SYMMETRY
IS NOT EQUIVALENT TO ISOMETRY

A. Fluid Examples with Conformal Techniques

We will find space=times with 1) not Killing and with

Lr,=0 (45a)
and
LRy =10 (45b)

From the Einstein equations we must then have in the space=time a conformal
. i a .
motion, so that with R = R(g)= R a(g'yﬁ) we will have

Lobyy=L,(Rg,,) =0 . (46)

. 1
Then, from well known conformal equations'™,

R.5(8) = Ryp(h) + 20,5 +[A o + 20 0] by , (47)
with

o ==%InR, exp 20 =R , (48)

AIO'E cr,acr’ﬁba’e= & .'i',a.‘t,ﬁR'zbc""8 . (49)
and

Bo=bPa, o =%b" (R /R)., (56)

where metric operations are taken with respect to ‘baﬁ , and

Uaﬁ=cra,ﬁ-0'a0'ﬁ . (R
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Taking Lie derivatives on (47), with? £_ Tye#) =L R4 =0,
L Rape) =2 [L04)8 - Lo, (V- gRIR [b”s(ﬁnor,y);s *
+ 7L 0 )00 )] b - (52)

We notice that a particularly simple way for EnRa (g) to be zero,
4

with £, 0 # 0, is for £, 0 to be zero. This will, by the way, make L, Tay )

also zero since it is homogeneous15

ino ,. Ina local coordinate system
a a a s E Ze
adapted o n®, n*= 8, , and since L_0 , = (L o) , we have
t n,a n .t

¥ = constant (53)
so normalizing,

co=t+4%1In (<)
and

R = exp (28) [(x*) (54)

One must only be sure that, with

8y = exp (=20) 1B, (<) (55)

R(g) should equal exp (=20). From (47) and with'*

exp (=20) = R(g) = exp (=20) [R(h) + 6(L o + A )] , (56)
we g(_’fw
T,5(8) = Gaplg) = T, g (h) + 20,5 =by g (20,0 # A o) (57)

If Taﬁ(b) is due to a perfect fluid we then have
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TaB(g) = [(,0- ZAZLJ SAVod s < (p + 2A20+ L\IO')] exp (=20) x

“(exp (@) iy B Wexp () ) + [(p +20,0 +4,0) exp(=20)] gy =20, 4(5)

(58)
with O constrained by (56) (if it is not, (45a) will not hold but (45b) will).
That a class of solutions exists is demonstrated by taking, for ba,ﬁ’

the k = 0 Robertson=Walker metric. If we take T)a =~ BTE 5: so R(g) =exp(2x),

and with 1 = = 5(; (here sign, +2) we have

-0,0=TegbB =0, (59)

) ' 00 . .
E'md with o = 'Sa. and AlOr =b" we get (with z, usually R(#)/R(¢) here
P(t)/P(1) to avoid confusion)

Taﬂ(g)=(,B"';),LIG}IB‘F;gaﬁ-(41F.’/P)5?a5;)+25:8; , (60
with

p =(p+1)exp (2x), ;= (p=1) exp (2x), f:a = 51 exp (=x).

To get this into a proper form" including recognizable heat conduction we
define a tracefree stress tensor Tap and heat conduction tensor g, by

g, = (2P/P) 8, exp (- x) , (61)
and

Tap = 9a98 %exp (Zx)(P/l;’)z- 2/3 g,x(ﬁaﬁﬁ +gaﬁ) . (62)
and redefine

p=p=-2/3g,_ . | (63)
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o ~ . 2
One then has trace 7 = 0, waﬁ'ua =0, and qa,u,u_ = 0. With exp f = P (¢) we
get for (56)

3"+ f'2 = R(h) = = 6b™" = =(6/P*(1)) =6 exp (=) . (64)

One may solve (64) for P and then find 0 and p from the field equations for
the Robertson=Walker metric’®. For a proper initial choice of P(¢), from
(63) p will be positive, and from (60) 02 3p if o2 3p (whlch can be assured
by choosing P(t ) such that S(P/P) > (G/P ) - S(P/P) , all in a neighborhood
of L, It is not hard to check that there does not exist a scalar r(x) such
that r(x) 7 is Killing so that scaling 7} will not help.

We have constructed a space-time where locally we have a non-

perfect fluid which obeys L' 157 ET:‘ v E"?T#V = 0 but which does not
obey, even scaling 1) by a factor, £ nBald = 0. A similar technique has been

19

used by Szekeres™ to obtain what |1c calls “local fluids” in a Petrov type N

space-time.
B. Other Examples

If in Robertson=Walker we choose n* = 5; we will have ‘anag 0
but'® E R’u =0 andE T’J' =0. We also obtain then [ A = & B = En,u =
£ nta = 0.

We see that, in the non-linear theory, a vector field symmetry on stress
energy tensors, Ricci tensors, or macroscopic fluid properties , will not neces-
sarily imply that the vector-field is an isometry.

C. Null Electrovac Symmetry

Recently, Wr;yolley20 has found that if 7 is Killing then L. F y 18
zero or a duality rotation in the non-null case. Also recently?!, two differ-
ent neutrino fields have been found possible in the same space-time. Not
so recently Witten?? constructed a family of null electromagnetic field tensors
m the same space-time starting from a solution by Peres ?, In his notatmn,

w" = exp (ia (z ~1)) describes a duality rotation, and since F’w = Re (w ik
it will depend on z=¢; however Bis does not.

*

A more general case is®

ds’= = dx?- dy? = 2dudv + H(x,y,u) du® (65)
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a a a . c11s .
where 77 = 53 = § is Killing, covariant constant, and null, and
v

404
Gaﬁ = Rﬂaa.sﬁ 2 (66)
with
R, ="V'H=@H/3)+ /3 . (67)

For a null electrovac field

and if Fig =2 [kagﬁ —kﬁga];which is F,3 up to a duality rotation®), with
k% = 7% here and g%, = 0, g%, = =1, the Einstein equations reduce to

W2H =gz(x,y,u). (68)

The Maxwell equations reduce to solving, with gg* = b¥,

0=F"  =p pt-pt g =p" 8 b ="Veh (69)

2 L

with h = (bl’bz) =h(x,y,u), h* =0, and ga'ga = =1 gives
2
b + D) =g% . (70)

One may check that I’a‘B is independent of »* and so FeB = Faﬁ(x, y,u). If

we, however, perform a duality rotation through a(v), keeping the same metric,
and changing coordinates to v = z-f, we see thata  -a <= 0, so that a(v)
preserves the Maxwell equations as in Witten??. F*¥ would then depend on v
and the metric would not. Witten’s example is a special case with

g2 =4A% cos’k(z+ ), b =h> =VZ A cos kv .
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It is perhaps noteworthy that Liouville's equation here requires the
g 5 i . .1 5
matter distribution f to be independent of v. For, with

f= 80" 8 (p?) 8 (p*) s(<,p°),
Lf=p°V, [ = (3s/30)p* + Tg2 (3f/0p™)#Pp” = p*(3s/3v) +
+1,.(35/9p%) p™p’ +p3p3T3;"58'(p") s 8(p*),

(i,7,k) 74 3 and unequal. But Tslss: 0 for the metric above so that 95/dv = 0.

IV. CONCLUSION

Several well posed linearized matter symmetries give rise to isometries.
There are, however, several types of fluid matter symmetries and null electrovac
symmetries which are not equivalent to isometries. Further work is under
way where several types of non-linear matter symmetries are examined.
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RESUMEN

-Es interesante el grado al que varias simetrias de términos fuente en

Relatividad General, imponen isometrias. Se muestra que varios casos linea-

rizados de simetrias de la materia dan lugar a isometrias. Sin embargo, se

muestra que varios tipos de simetrias de fluido y de electrovac nulo en la teo-

ria completa, no son equivalentes a isometrias.



