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EQUALITY BETWEEN NEUTRINO-NUCQLEON AND
ANTINEU TRINO-NUCLEON CROSS SECTIONS AT HIGH
ENERGIES FOR FIXED FINAL HADRONIC MASS

. - - *
Jean Pestieau and Jesus Urias

Institut de Physique Théorique, Université de LouvainT,

Louvain-la-N euve, Belgique

(Recibido: septiembre 2, 1974)

ABSTRACT: Under a weak hypothesis we show that, for fixed final hadronic
mass with strangeness § = 0, in the high energy limit, the total
cross sections for v-N and N are equal unless the AS = 0
(charged) weak current violates the usual charge-symmetry re-

quirement.

In this note we prove the following theorems: when the (anti) neutrino
energy E tends to infinity,

do(vy+p = 1" +X)/aW = do(y +n — 1"+ X)/aw (1)
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do(v,+n— 1"+ X)/dW = do(@, +p—~ 1"+ X)/aW |, (2)
P P

do(y, + { ]~ v, + X)/dW = do (7, +[ ]—»'17, +X)/dw | (3)
” ”

=X is the sum of all final hadronic states with mass W and strangeness
5= 0-if
(i) these cross sections are calculated at the lowest order of weak
interactions (Fermi coupling or intermediate weak boson theories),

(i) WS(W,q2)< 0(1/¢”) at fixed W when -g%— (Ref. 1) and
(iii) the AS = 0 (charged) weak current satisfies charge symmetry.

This last assumption is necessary to prove eqs. (1) and (2). Our
conventions are taken from ref. (2). q2 is the (momentum transfer)z.

Before going to the details of the demonstration, let us see first its
experimental implications. Choose E = 1.7 GeV such that the maximum mass
of the produced hadrons is 2 GeV. We now use the experimental result’.

oy, +N=p~ 4 X) = (0.74 £0.02) .£.10"*cm’/nucleon,  (4)
U(gu'+N_.#++x)/g(VF‘+Nﬂ#'+x)=0.37 10.02 , (%)

where N is an isoscalar target consisting of 5(n+p) and 10 GeV 2 E>1 GeV.
From eq. (4) we have in particular that, at E = 1.7 GeV,

oy, +N=p~+X) 2 1.25x 10" cm2 /nucleon . (6)

If we were to assume that, when E has any value higher than 1.7 GeV,

2GeV . . .
[ Loy, + N= ™ + X)/dw) v = oy, = ™5 W< 2 GeV) (7)

0

remains constam‘, then we would have to conclude that, in contradistinction,
= + . : .
oy —p 5 W<2 GeV) is far from its asymptotic value, at E 2 2 GeV, because

eqs. (1) and (2) imply
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‘—0 +- - = < =
oy, =u"; W<2 GeV)/o(y, = u™; W<2 GeV) 1, (8)

E—-BD

to be compared with eq. (5). Therefore the observed ratio,eq. (5)at E = 1.7 GeV,

would be, in part, a consequence of the fact that o(v —=pu™; W<2 GeV) gets

its asymptotic value at lower E than O’(ﬁp“;_},"?ﬁ"( 2 GeV). |If, on the

contrary, U{vﬂ-',u,' ; W <2 GeV) does not get its asymptotic value for E ~ 2 GeV,
then the flux factor would have to be modified in ref. (4) as well as the evalu-

ation of U(V# +N—=pu~ +X) when E 2 20 GeV.

It has also been realized® that most of the models for the weak pro-
duction of the nucleon resonances predict eqs. (1) and (2), with W the reso-
nance mass. Here we show that conditions (i) =(iii) define the class of such
models.

Let us prove the theorems - eqs. (1),(2) and (3). The double differ-
ential cross section for (V) scattering on unpolarized target can be written?
as:

do”V/dQ aW’ = (6 /4mM” EV) {2(m? + Q) W + (4EE ' - Q* - m?) WPV +

+m2/MXQ? +m?) WY ~(2Em? /M) WP £ (WY /M) [E (m?-Q*)-E* (m? + Q7] } |
(9)

where the W;’s are the structure functions defined in ref. (2), W= W (W,q ol
E'.()E ) 15 the initial (final) lepton energy, m(M) is the lepton (nucleon) mass,
Q0 =-¢2>0, (V/M) = (p * q/M) is the energy transfer in the laboratory frame
and G = 1. 026 Mp » the Fermi coupling constant. Integrating eq. (9) with
respect to Q we obtain:

- &, _
doV "V /aw' = (GZ/Z‘JTMEZ){ZI (m® +2M&) Wl'”"dg +
0

£, B
'l [4E" - (2E W -M")/M) = m? = ME - 4EET WYV dE +
(10)

& - £ -
"‘(mz/Mz)_{; m(m2+2M§)W:””d§-(ZEm2/M)f mw;””dgt
0

I " Lm2/ 2M2 W2 = m?) +((m2 + W2 = 2 - MME)/M) £ +2£° 1w va£)
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where £ = Q*/2M and £, = [1/1+ M /2E)] [E - ((W? -u")/2m7)] .

In the limit E —oo, with W fixed, fm = F and we must be careful in
evaluating the integrals in eq. (10). This is so because the integrals can
diverge if the structure functions W, do not vanish sufficiently rapidly as
Q'

To study the asymptotic behavior of the W,’s, we use the following
inequalities derived from positivity requirements?

o<|w|Vvie it /oM <w < w, [1+@?/m?e") .

In the limit Qz —oo W fixed, these inequalities become:
|w,| <an®/@*) w <w, . (11)

With these inequalities in mind we can take the limit of eq. (10) when
E— o=, W fixed. If W (W, q%) < 0(1/4*) for a given W, (assumption (ii)), we

E_, E E _
find the integrals f & W, d&, f §W3d§ and f Wsd:_f are less divergent than
0 0 0

0(E?) , O(E) and O(E®) respectively such that the corresponding contributions
to eq. (10) are smaller than 0(E°) and o) respectively. Therefore, using
eqs. (11), we conclude that eq. (10) will be independent of W, in the limit
E— o, W fixed

Due to the trivial equality,

o PR e _ Py
AR R ES SES ACEIMESED 8

the proof of eq. (3) follows immediately. Assuming that the AS = 0 (charged)

weak current satisfies charge symmetry, i.e. W;’ (2,%) - W:'(”’P) for AS =0
transitions®, the proof of eqs. (1) and (2) is immediate.

Up to here we have assumed Fermi coupling. Our result is independent
of assumption (ii) if intermediate weak bosons of mass My exist. In this case,
the structure functions must be replaced by:

W, W) = W, (W, g2/ [1+(Q* /2]
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giving a better convergence of the integrals in eq. (10).

Finally it is interesting to note that our result is independent of

scaling’. Furthermore, any possible experimental deviation from eqs. (1),
(2) and (3), provided assumption (ii)' is satisfied, would mean that the

strangeness=conserving weak hadron current is not charge symmetric®,

6
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RESUMEN

Bajo una hipotesis débil, mostramos que para una masa hadronica fi-
nal fija con extrafieza § = 0, en el limite de altas energias, las secciones to-
tales para V=N y V=N son iguales, a menos que la corriente débil (cargada)
AS = 0 viole el requisito comun de simetria de carga.



