EQUALITY BETWEEN NEUTRINO-NUCLEON AND ANTINEUTRINO-NUCLEON CROSS SECTIONS AT HIGH ENERGIES FOR FIXED FINAL HADRONIC MASS

Jean Pestieau and Jesús Urías*

Institut de Physique Théorique, Université de Louvain[†], Louvain-la-Neuve, Belgique

(Recibido: septiembre 2, 1974)

ABSTRACT: Under a weak hypothesis we show that, for fixed final hadronic mass with strangeness S = 0, in the high energy limit, the total cross sections for ν -N and $\overline{\nu}$ -N are equal unless the $\Delta S = 0$ (charged) weak current violates the usual charge-symmetry requirement.

In this note we prove the following theorems: when the (anti) neutrino energy E tends to infinity,

$$d\sigma(\nu_l + p \to l^- + X)/dW = d\sigma(\overline{\nu_l} + n \to l^+ + X)/dW , \qquad (1)$$

Work supported in part by CONACYT (México)

[†]Postal address: Chemin du Cyclotron 2 B-1348 Louvain-la-Neuve, Belgium.

Pestieau and Urias

$$d\sigma(\nu_l + n \to l^- + X)/dW = d\sigma(\overline{\nu_l} + p \to l^+ + X)/dW \quad , \tag{2}$$

$$d\sigma(\nu_l + \begin{bmatrix} P \\ n \end{bmatrix} \rightarrow \nu_l + X)/dW = d\sigma(\overline{\nu}_l + \begin{bmatrix} P \\ n \end{bmatrix} \rightarrow \overline{\nu}_l + X)/dW \quad , \tag{3}$$

-X is the sum of all final hadronic states with mass W and strangeness S = 0-if

- (i) these cross sections are calculated at the lowest order of weak interactions (Fermi coupling or intermediate weak boson theories),
- (ii) $W_3(W, q^2) < O(1/q^2)$ at fixed W when $-q^2 \rightarrow \infty$ (Ref. 1) and
- (iii) the $\Delta S = 0$ (charged) weak current satisfies charge symmetry.

This last assumption is necessary to prove eqs. (1) and (2). Our conventions are taken from ref. (2). q^2 is the (momentum transfer)².

Before going to the details of the demonstration, let us see first its experimental implications. Choose E = 1.7 GeV such that the maximum mass of the produced hadrons is 2 GeV. We now use the experimental result³.

$$\sigma(\nu_{\mu} + N \to \mu^{-} + X) = (0.74 \pm 0.02) \cdot E \cdot 10^{-38} \,\mathrm{cm}^2 /\mathrm{nucleon}, \qquad (4)$$

$$\sigma(\overline{\nu_{\mu}} + N \to \mu^{+} + X) / \sigma(\nu_{\mu} + N \to \mu^{-} + X) = 0.37 \pm 0.02 , \qquad (5)$$

where N is an isoscalar target consisting of $\frac{1}{2}(n+p)$ and 10 GeV $\ge E \ge 1$ GeV. From eq. (4) we have in particular that, at E = 1.7 GeV,

$$\sigma(\nu_{\mu} + N \to \mu^{-} + X) \simeq 1.25 \times 10^{-38} \,\mathrm{cm}^2/\mathrm{nucleon} \ . \tag{6}$$

If we were to assume that, when E has any value higher than 1.7 GeV,

$$\int_{0}^{2 \text{ GeV}} \left[d\sigma(\nu_{\mu} + N \rightarrow \mu^{-} + X) / dW \right] dW \equiv \sigma(\nu_{\mu} \rightarrow \mu^{-}; W \leq 2 \text{ GeV})$$
(7)

remains constant⁴, then we would have to conclude that, in contradistinction, $\sigma(\overline{\nu}_{\mu} \rightarrow \mu^{+}; W < 2 \text{ GeV})$ is far from its asymptotic value, at $E \simeq 2 \text{ GeV}$, because eqs. (1) and (2) imply

386

Equality between neutrino ...

$$\sigma(\overline{\nu_{\mu}} \rightarrow \mu^{+}; W < 2 \text{ GeV}) / \sigma(\nu_{\mu} \rightarrow \mu^{-}; W < 2 \text{ GeV}) \stackrel{=}{\underset{E \rightarrow \infty}{=}} 1 , \qquad (8)$$

to be compared with eq. (5). Therefore the observed ratio, eq. (5) at E = 1.7 GeV, would be, in part, a consequence of the fact that $\sigma(\nu_{\mu} \rightarrow \mu^{-}; W < 2 \text{ GeV})$ gets its asymptotic value at lower E than $\sigma(\overline{\nu_{\mu}} \rightarrow \mu^{+}; W < 2 \text{ GeV})$. If, on the contrary, $\sigma(\nu_{\mu} \rightarrow \mu^{-}; W < 2 \text{ GeV})$ does not get its asymptotic value for $E \sim 2$ GeV, then the flux factor would have to be modified in ref. (4) as well as the evaluation of $\sigma(\nu_{\mu} + N \rightarrow \mu^{-} + X)$ when $E \ge 20$ GeV.

It has also been realized⁵ that most of the models for the weak production of the nucleon resonances predict eqs. (1) and (2), with W the resonance mass. Here we show that conditions (i)-(iii) define the class of such models.

Let us prove the theorems - eqs. (1), (2) and (3). The double differential cross section for $\nu(\overline{\nu})$ scattering on unpolarized target can be written² as:

$$d^{2}\sigma^{\nu,\overline{\nu}}/dQ^{2}dW^{2} = (G^{2}/4\pi M^{2}E^{2}) \left\{ 2(m^{2}+Q^{2}) W_{1}^{\nu,\overline{\nu}} + (4EE^{*}-Q^{2}-m^{2}) W_{2}^{\nu,\overline{\nu}} + (m^{2}/M^{2})(Q^{2}+m^{2}) W_{4}^{\nu,\overline{\nu}} - (2Em^{2}/M) W_{5}^{\nu,\overline{\nu}} \pm (W_{3}^{\nu,\overline{\nu}}/M) \left[E(m^{2}-Q^{2}) - E^{*}(m^{2}+Q^{2}) \right] \right\},$$
(9)

where the W_i 's are the structure functions defined in ref. (2), $W_i \equiv W_i (W, q^2)$, E(E') is the initial (final) lepton energy, m(M) is the lepton (nucleon) mass, $Q^2 \equiv -q^2 > 0$, $(\nu/M) = (p \cdot q/M)$ is the energy transfer in the laboratory frame and $G = 1.026 M_p^{-2}$, the Fermi coupling constant. Integrating eq. (9) with respect to Q^2 , we obtain:

$$d\sigma^{\nu,\overline{\nu}}/dW^{2} = (G^{2}/2\pi M E^{2}) \left\{ 2 \int_{0}^{\xi_{m}} (m^{2} + 2M\xi) W_{1}^{\nu,\overline{\nu}} d\xi + \int_{0}^{\xi_{m}} [4E^{2} - (2E(W^{2} - M^{2})/M) - m^{2} - 2M\xi - 4E\xi] W_{2}^{\nu,\overline{\nu}} d\xi + (m^{2}/M^{2}) \int_{0}^{\xi_{m}} (m^{2} + 2M\xi) W_{4}^{\nu,\overline{\nu}} d\xi - (2Em^{2}/M) \int_{0}^{\xi_{m}} W_{5}^{\nu,\overline{\nu}} d\xi \pm \int_{0}^{\xi_{m}} [(m^{2}/2M^{2})(W^{2} - m^{2}) + ((m^{2} + W^{2} - M^{2} - 4ME)/M) \xi + 2\xi^{2}] W_{3}^{\nu,\overline{\nu}} d\xi \right\},$$
(10)

Pestieau and Urías

where $\xi = Q^2 / 2M$ and $\xi_m = [1/1 + (M/2E)] [E - ((W^2 - M^2) / 2M^2)]$.

In the limit $E \to \infty$, with W fixed, $\xi_m = E$ and we must be careful in evaluating the integrals in eq. (10). This is so because the integrals can diverge if the structure functions W_i do not vanish sufficiently rapidly as $Q^2 \to \infty$.

To study the asymptotic behavior of the W_i 's, we use the following inequalities derived from positivity requirements²

$$0 \leq |W_{3}| \sqrt{\nu^{2} + M^{2}Q^{2}} / 2M^{2} \leq W_{1} \leq W_{2} [1 + (\nu^{2}/M^{2}Q^{2})].$$

In the limit $Q^2 \rightarrow \infty$, W fixed, these inequalities become:

$$|W_3| \le (4M^2/Q^2) W_1 \le W_2$$
 (11)

With these inequalities in mind we can take the limit of eq. (10) when $E \to \infty$, W fixed. If $W_3(W, q^2) < O(1/q^2)$ for a given W, (assumption (ii)), we find the integrals $\int_0^E \xi^2 W_3 d\xi$, $\int_0^E \xi W_3 d\xi$ and $\int_0^E W_3 d\xi$ are less divergent than $O(E^2)$, O(E) and $O(E^0)$ respectively such that the corresponding contributions to eq. (10) are sm aller than $O(E^0)$ and $O(E^{-2})$ respectively. Therefore, using eqs. (11), we conclude that eq. (10) will be independent of W_3 in the limit $E \to \infty$, W fixed

Due to the trivial equality,

$$W_{i}(\overline{\nu}_{l} + {\binom{p}{n}} \rightarrow \overline{\nu}_{l} + X_{0}) = W_{i}(\nu_{l} + {\binom{p}{n}} \rightarrow \nu_{l} + X_{0})$$

the proof of eq. (3) follows immediately. Assuming that the $\Delta S = 0$ (charged) weak current satisfies charge symmetry, i.e. $W_i^{\nu(p,n)} = W_i^{\overline{\nu}(n,p)}$ for $\Delta S = 0$ transitions⁶, the proof of eqs. (1) and (2) is immediate.

Up to here we have assumed Fermi coupling. Our result is independent of assumption (ii) if intermediate weak bosons of mass M_W exist. In this case, the structure functions must be replaced by:

$$\mathbf{W}_{i}(\mathbf{W}, q^{2}) \rightarrow \mathbf{W}_{i}(\mathbf{W}, q^{2}) / \left[1 + (Q^{2} / M_{\mathbf{W}}^{2})\right]^{2}$$

giving a better convergence of the integrals in eq. (10).

Finally it is interesting to note that our result is independent of scaling⁷. Furthermore, any possible experimental deviation from eqs. (1), (2) and (3), provided assumption (ii)¹ is satisfied, would mean that the strangeness-conserving weak hadron current is not charge symmetric⁶.

ACKNOWLEDGMENT

It is a pleasure to thank L. Heiko for several helpful comments.

REFERENCES

- In electroproduction, experimental data seem to indicate W₂^{eN}(W, q²) ≤ O[1/(q²)⁴] at fixed W ≤ 2 GeV, when -q² → ∞. See for example, E.D. Bloom and F.J. Gilman, Phys. Rev. D4 (1971) 2901. Furthermore, using C.V.C., we have the well known relation W₂^{eP} + W₂^{en} ≥ ½ (W₂^{VP}(V) + W₂^{VN}(V)) where V(A) indicates the contribution arising from the vector (axial) part of the weak hadronic currents. About the axial part we are unable to make a similar statement. Nevertheless, from positivity requirements it can be shown, using the Schwarz inequality that 4W₂(A) W₂(V) ≥ |W₃|², in the limit Q² → ∞, W fixed. This implies that |W₃| ≤ O[(1/q²)²] if W₂(V) ≤ O[(1/q²)⁴] and W₂(A) ≤ O[(1/q²)⁰].
- 2. C.H. Llewellyn Smith, Phys. Reports 3C (1972) 261.
- 3. T. Heichten et al., Phys. Letters 46B (1973) 274.
- A similar assumption is made in A. Benvenuti et al., Phys. Rev. Letters 32 (1974) 125.
- 5. See F. Ravndal, Nuovo Cimento 18A (1973) 385 in p. 404 and ref. (2) in p. 330.
- 6. Possible violations of the charge symmetry in v and v scattering (with S = 0 hadronic final states) are considered by A. de Rújula and S. L. Glashow (Phys. Rev. D9 (1974) 180), but for rather large W²(>M_c², with M_c ≃ 2-4 GeV).
- 7. J.D. Bjorken, Phys. Rev. 179 (1969) 1547.

RESUMEN

Bajo una hipótesis débil, mostramos que para una masa hadrónica final fija con extrañeza S = 0, en el límite de altas energías, las secciones totales para $\nu - N$ y $\overline{\nu} - N$ son iguales, a menos que la corriente débil (cargada) $\Delta S = 0$ viole el requisito común de simetría de carga.