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ABSTRACT: Probability is treated in this paper as a concept in natural
science and having therefore a theoretical structure, associ-
ated measuring techniques, as well as entering into scientific
theories the limitation of whose range of validity is explicitly
taken into account. The notion of ensemble is generalised
from statistical mechanics to account for the variability of the
factors not included in a specific model, and the measure of a
given type of event on the ensemble is raken as the theoretical
definition of probability, while the observed frequencies yield
the main experimental technique for measuring it. Some of the
implications of this view both in the philosophy of science and

in physics are considered.

The nature of probability theory may seem an odd subject to talk about
in a symposium in honour of a man whose most outstanding contributions have

been in the field of cosmic rays. Yet Professor Sandoval Vallarta has never
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kept all his intellectual eggs in one basket; and he has always shown a deep
interest in the philosophical problems that arise from physics. In fact, [ have
myself benefitted from his interest, in that he has allowed me twice to speak
in his weekly seminars on this matter, and on each occasion enlivened the
discussion with penetrating and useful comments. [ am very grateful to him,
and I am glad to have this opportunity to say so.

Probability, having been the poor cousin of physics during the whole
of the nineteenth century, has since then grown, polyp-fashion, and pretty
well swallowed physics whole. In spite of this, there are few concepts
concerning which there are more confused and conflicting notions to be
found in the literature. This is not the place to make an exhaustive catalogue,
for it would also be exhausting. Let me just pick out the three most prominent
points of view:

Firstly, there are those who in one way or another take a subjective
view of probability and consider it as the “degree of rational belief” which
we may accord to a statement. This was most carefully elaborated as a
consistent theory by Keynesl, and has been adopted by a good many physicists,
notably Jeffreys®. (There are important differences in the views put forward by
Keynes and Jeffreys; they have, however, in common, that probability is formulated
in terms of mental constructs, and thus for the purposes of the present paper
we may lump them together.) Secondly, there is the objective view which has
been most explicitly formulated by v. Mises®: here probability is the “limit
to which the relative frequency tends in an infinitely long sequence of events”
- and the material basis of this point of view has recommended it to a great
many physicists, including even v. Neumann®. Lastly, there is what one
might call the agnostic position: the mathematicians have clearly defined
probability as a special case of measure theory, and therefore the physicists
need no longer bother about what probability might be. It is worth pointing
out that Kolmogorov®, who did so much to develop the mathematical theory of
probability, was very far from sharing this idea.

The objective and subjective points of view - and of each there are
many invariants - both have their advantages. But both suffer from serious
difficulties. Thus the objective definition cannot deal with such things as
the probability of single events, and there are still many unresolved questions
concerning the existence and nature of the limit of a sequence of relative
frequencies; the subjective theory, on the other hand, has produced the oddest
puzzle of them all, namely why a purely mental state, such as a degree
of belief, should turn up as a factor in physical situations where no human
being is present; and there are also a number of problems concerning
conditional probabilities which it cannot answer - let alone the well-known
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paradoxes involved in the applications of Bayes’ theorem.

In my view this confusion in philosophical notions has also caused
confusion in physical arguments. In quantum mechanics, above all, it seems
to stand in the way of a sane development of new theories because it obfuscates
our understanding of the present theories. In what follows I do not propose
to develop any radically new views; rather it is my purpose to restate what
has often been said: but I would wish to do it systematically and follow out
the consequences. In a sense one could say that I am out to rescue the good
points of both philosophic views of probability and throw out their bad ones.
But this cannot be done, of course, in the eclectic manner of that famous
gentleman who, when asked to give a lecture on Chinese philosophy, hauled
down the Encyclopaedia Britannica, read the article on China and that on
philosophy, and then combined the information.® Instead of such a procedure,
I propose to treat probability as a concept in physics (and, indeed, in all of
science) rather than a philosophical one, and begin by asking what charac-
terises such a concept.

If one examines how a concept is used in physics, one sees at once
that there is very much more to it than most philosophers would be willing
to admit. Firstly, there is the theoretical notion, based on what physicists
call “handwaving” and leading, where possible, to a mathematical structure
which defines the most general properties of the concept; secondly, we have
one (and usually several) experimental techniques for measuring either quanti-
tatively or qualitatively what the concept expresses; and then, lastly, the
concept is used,together with many others, only in the framework of a specific
theory - or of several theories. The first two elements have often been dis-
cussed, though it has seldom been recognised that both are needed. The third
has rarely been seen as important - yet it is precisely these specific theories
in which a given concept occurs that make it meaningful and that at the same
time delimit its range of validity. Fora theory - any theory - has only a
finite range of applicability, within which it yields results that we can use to
make predictions with all the required accuracy, but outside which it goes
increasingly wrong or even becomes meaningless. This is a very fundamental
point, to which I shall return later on.

To apply theory and obtain concrete results, we have to reconcile two
clements: on the one hand a physical system - tangible, what the experimenter
deals with - and on the other a theoretical model to describe the behaviour of
the system. Now the experimental systemis isolated from the rest of the
universe as far as we can achieve it; but not completely so, or else we could
not even observe it (unless we are part of it, and then we could never tell
the rest of the universe about it). Thus there are a great many factors that
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influence its behaviour which escape our control and mostly our knowledge
as well. Moreover, in the model we build to describe the system’s behaviour
we restrict ourselves to those few factors which are relevant to our purpose;
all others are neglected. Hence the theoretically modelled part of the system
moves and changes under the additional influence of an enormous multitude

of factors which we have neglected - either deliberately or through our igno-
rance of them - and so is only approximately described by our model.

All of this is well enough known; and to deal with the resulting flucru-
ations in the experimental values, the statistical theory of errors was de-
veloped. The idea is that by means of this theory we can get rid of the
fluctuations, and thereafter forget there ever was such a thing. Often enough
(for instance, all through classical mechanics) this works very well. But
are we sure that it will do so always?

The picture we have, then, is that the connections between the factors
we study in the experimental set-up in reality “bathe” in a sea of neglected
outside and inside influences, while in the corresponding theoretical model
we only have the replicas of the limited set of factors under study. In order
to improve on this kind of model we clearly need to create a theoretical repre-
sentation of the sea of neglect. If this sea contains elements which decisively
influence the behaviour of the system, then we must change the model and
include them explicitly. This, however difficult it may prove in practice, is
simply the standard technique of improving one’s model until it fits sufficiently
well; it will not serve our purpose here, since we want to take into account
the effect of a multiplicity of factors which are not to be treated explicitly.
But of course our problem has already been solved in a very specific context,
in statistical mechanics, where the construction of ensembles is used to allow
us to neglect the individual motions of molecules while obtaining global proper-
ties of the macroscopic system.

What I am saying, then, is that we can obtain a theoretical model for
the concept of probability by generalising the procedures of statistical mechanics
and considering ensembles of theoretical replicas of the physical system
under study. That we can define a measure on such ensembles and that it
satisfies the mathematical requirements needed for us to call it a probability
hardly needs demonstrating. Another, and more difficult, question is how to
build such an ensemble so as to obtain the necessary representation of the
endless multiplicity of neglected and unknown factors; in other words, how
to make it imitate sufficiently closely the behaviour of a probabilistic system.
This is what has been called, in another context, the extemal ergodic probiem7.

To put it in another way: how do we define a distribution function
over the ensemble when we do not even know what are the underlying variables?
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It should be pointed out, however, that in the first place we do not need an
explicit form of the distribution function in order to solve a great many problems:
often enough some very general properties of it are sufficient, for instance
that we can apply the central-limit theorem to the ensemble functions that
interest us. And it may be enough merely to postulate that the distribution
function exists, so that we can talk of the probability of something or other
happening, and be sure we know what we are talking about.

A case of the first sort is the statistical treatment of errors: we do
not know what influences the statistical fluctuations of our measurements
(or we ignore it deliberately), but the central-limit theorem yields the normal
law of errors, the variance in which of course is not predicted by the theory,
it is measured. And a case of the second sort is, as I will discuss in a
moment, that of quantum mechanics; here we are at best beginning to stretch
out our fingers towards the underlying variables; yet the relations among the
ensemble averages are surprisingly well given by a mathematical apparatus
which does not explicitly involve any ensemble averaging. (We need not
consider here the problems treated by means of density matrices; it is suf-
ficient to take the case of pure states.) And in the one case where we do
know something about the variables that define the ensemble and how they
are related, namely statistical mechanics, the question is rather the other
way around: why are the results so general, so that quite different classical
ensembles, for instance, yield essentially the same entropy law? This
question was first asked by Einstein in the unjustly neglected papers where
he introduced the ensemble concept®; it has not yet received an answer, although
we can now extend it to the quantum ensembles.

If the notion of submerging all our theoretical models in an ensemble
provides us with the general idea of probability and with the mathematical
apparatus to handle it, the specific constructions of ensembles for specific
models allow us to incorporate probability in a given theory and connect it
with the other concepts occutring in it. But at the same time we now see
that a series of experimental determinations of a fluctuating quantity will be
- if we have constructed our ensemble correctly = a sample from it, and the
experimental frequency of occurrence of an event in such a series will be an
approximation to the ensemble measure for the event. This frequency will
approach the theoretical value in a way which is predicted by probability
thecory as the length of the experimental series goes up; but it will always
differ from it by an error whose average our ensemble model allows us to
calculate (at least in principle). Thus v. Mises’ approach here becomes a
measuring technique for probabilities, and the question of going to the limit
of an infinite series, physically not realisable, is relegated to the theoretical
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construction, where we can let the number of replicas of the model in the
ensemble tend to infinity without any conceptual qualms.

Let us look at some philosophical consequences of this view. Firstly,
probability is “real” in the sense that it does not arise from a human limi-
tation on our comprehension of Nature, but rather expresses the partial
character of the separation we can achieve between the factors to be studied
in a system and the remainder of the uciverse, together with the fact that we
can still apply our results in situations when all the neglected factors will
have changed: in any given situation what is “probabilistic” is thus fixed by
the purpose we had in mind when we built the teoretical model. Probability
is therefore also relative (however much its existence is a “fact of life”), in
that a factor which figures among the explicitly treated ones in one model
— and thus behaves in a well-determined way = will be outside the pale in
another model of the same physical system and must thus be trecated as gener-
ating the ensemble. And as a result we may have more than one probability
for a given system, differing among each other because they belong to differ-
ent models; this idea, which will appear quite natural to a physicist, is yet
so strange to many philosophers that the frequency theory has sometimes been
criticised because it does not offer a unique rule for defining the selection
of events to be included in the sequence that v. Mises called a collective’.

Another point to be made is that we have here an objective notion of
probability that allows us to assign a probability to a singular event - on
condition that we can conceive of a suitable ensemble of which it is to be
an admittedly poor statistical sample. Such is evidently the case for the
traditional discussions of whether a certain horse will win in a given race:
for we need no actual, experimentally realised, series, we need only be able
to imagine replicas of “theoretical races”. In practice it may be very doubtful
whether this is feasible; but the difficulties are not conceptual. Similarly
the definition of conditional probabilities presents no problem, since they
are simply calculated over a suitable subensemble of the originally defined
one and so have, quite naturally, all the properties of probabilities; at the
same time, we need no longer entertain two different “rational degress of belief”
concerning the same statement, according as it is surrounded by one or another
set of further statements.

However, for one type of object traditionally accorded the honour of
having a probability we must now deny it: namely scientific theories. It
seems indeed awkward to consider a set of different situations in which a certain
theory is deemed to be valid, while everything else varies; presumably “everything”
here must refer to other theories with which this one is in one way or another linked,

and perhaps even such things as the general logical structure on which scientific
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rescarch is based should be supposed to vary from replica to replica in the

ensemble.  We might almost be in Wheeler and Everett’s muldi plicity of differ-
ent universes - but will the main features of the theoretical picture of proba-
bility I have proposed hold in all of these different universes? If not, then

we cannot any longer calculate (or even think of calculating) an ensemble

average and thus obtain a probability for the theory we are studying. [ cannot

see a way in which such a conception can be made definite enough to bear
the weight of such a construction as the probability of a theory, and I prefer

to abandon it.

But this turns out to be an advantage. For, as [ mentioned before,
what we can assign to theories are regions of validity. It is understandable
that probability notions should have been applied to theories, since the region
of validity of theories (as, in fact, the term itself implies) has many of the
properties of a measure = all, that is to say, except the vital one of possessing
a fixed upper bound; moreover, we do not usually feel certain as to the validity
of a theory. To consider the region of validity (or perhaps better, of ap-
plicability) for a theory has many advantages which this is not the place to
discuss. Let me only mention that while the probability of a statement and
its logical contrary (if such a concept holds) must be the same, their region.
of applicability will, on the other hand, be mutually exclusive; and since th -y
have no known upper bounds, one may expand without affecting the other:
this removes Hempel’s famous paradox of the black ravens in the theory of
confirmation.

Before discussing some consequences of my ideas in physics, let me
mention a mathematical problem which is interesting in its own right and may
help to make clear the fundamental notions [ have proposed. It is that of the
completely deterministic algorithms used in computers to generate random
numbers; or, as has been insisted, pseudo-random numbers: “Anyone who
considers arithmetical methods of producing random digits is, of course, in a

» 10

state of sin In the typical algorithm of this kind, if x; 1s a sequence of

such numbers, then Xipy = f(x'. ); it seems indeed incredible that there should
be functions such that among the sequence no ordering or correlation can be
detected, and all statistical tests show it to be a random sequence. Within
the framework of the ensemble theory of probability that I am proposing, this
becomes much more reasonable once it is observed that all the functions that
generate random sequences have in common that they are n:1 and hence have
no unique inverse. In other words, with each step of applying the function,
some of the information about the previous members of the sequence is excluded
from further consideration; there are many different trajectories through the

possible numbers which lead to the given value of x; for any i, and the set of
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trajectories constitutes an analogy to the ensemble we have discussed. The
analogy may be made even closer, but I cannot enter here on this point.

There are of course a great many applications of the probability concept
in physics which raise no particular questions; it is perhaps fortunate for
cosmic-ray studies, so beset by problems about the origin of what they examine,
that one need not also worry about the basic concepts of the stochastic theories
used in cascade theory, for instance. But where there are problems, they
are usually fundamental.

The simplest sort of problem crops up where the effect of the ensemble
on the model predictions can be taken into account simply as fluctuations about
the predictions obtained without the ensemble; where, in other words, first-
order effects are absent. Such is clearly the case with almost all interpret-
ations of experimental data. Nevertheless, our treatment of probability does
underline that this is only a limiting case, and that we cannot have any confi-
dence that it will always apply. To put this differently, we must not, as
19th-century physicists tended to think, try and find a purely deterministic
model to explain everything, once we have removed the experimental fluctu-
ations by calculating error limits. On the other hand, we must not fall into
an extreme which has become popular in this century, in the sense that everything
reduces to a probabilistic situation. As Einstein ought perhaps to have said:
“God plays dice, certainly; but quite often He also plays chess.”

The situation is more complicated in the case of statistical mechanics,
even though the probability model we are using has been derived from this
field. The reason is that in formulating the ensembles of statistical mechanics,
only the classical and hence deterministically describable behaviour of the
molecules is taken into account (or, similarly, that part described by quantum
mechanics). It is, however, clear that we should also include the effects of
the neglected factors, such as the irregularities and small movements of the
container walls, and much more important, such as those due to the fact that
classical or quantum mechanics is only an approximation. It is the exclusion
of such factors that allows us to formulate the ergodic problem in its present

form!!

- The conception of probability I have tried to expound suggests that
a reformulation of the ergodic problem may be required. Moreover, its rdle
will change: on the one hand, it will to a certain extent merge with the uni-
versal problem of adapting theory to experimental knowledge, since that is
the meaning of what will certainly survive - the question whether the ensemble
average of a phase function Flq,, p;) adequately represents the average of
the experimental values, Fexp. say; the questions involving the time average,
where the time averaged over tends to infinity, may lose their meaning in the
reformulation. On the other hand, the ergodic problem will acquire much greater



Probability: a new look. ..

fixs
f

importance than it has at present, for its impact will be felt in every physical
theory, and not merely in statistical mechanics. All this is, of course,
guesswork: most of the work concerning these questions remains to be done.
One very fundamental problem will have to be tackled, namely how far the
results of ensemble theory can be made independent of the measure used on
the ensemble; for in the vast majority of cases to be studied there will be
no Liouville theorem to guide our steps.

The last field I shall discuss is, of course, quantum mechanics. Here
probability is supposed to play a special role, unlike that in other parts of
physics. Such ideas have even beendevecloped to the point of proposing
negative or complex probabilities. Since nobody has yet been able to give a
clear account of what such objects could mean, I propose to see how far we
can get by applying the ¢nsemble notion I have outlined. And this is, of
course, a critical test: should it fail to yield a consistent account, it would
have to be thrown on the scrap heap. Fortunately nothing of the sort happens;
we obtain a conceptually much cleaner view of quantum mechanics by means
of it, where moreover the doors for reaching beyond the present quantum
theories begin to be visible.

Let us then suppose that we really interpret quantum-mechanical ex-
pectation values as averages over an ensemble which is a theoretical image
of the experimentally accessible values. One immediate result is that the
irritating puzzle of the reduction of wave packets disappears. As we saw
before, probability is relative in that for a given system we can adopt any one
of a number of different points of view, according to the purpose we have in
mind when formulating the model; and what is “probabilistic” in one model is
“deterministic” in another. Applied to the collapsing wave function, it becomes
clear that the collapse is a complete fraud as a physical process: we have a
wave function that is spread out over a large volume, and another one that is
highly concentrated - and we choose whichever fits our aim best. In other
words, it must be explicitly recognised that an electron, say, has more than
just the wave function, in the same way that a macroscopic object has more
than just the distance from other objects, that a relativistic particle has more
than just its mass'? The change from one wave function to another is es-
sentially like the change from one frame of reference to another. And if we
expand our system to include some of the objects surrounding the electron,
we can even formulate a wave function which at one time is spread over a
large volume and then contracts to go through a minimal concentration, after
which it expands again.

All this is in no way new. The statistical interpretation of quantum
mechanics has been advanced time and time again, notably by Einstein'®, and

7
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has been expounded in a particularly clear form in a recent paper by Ballentine '*
It must be pointed out, however, that several authors have been misled into

stating that the statistical interpretation means that quantum mechanics can

only apply to a large set of quantum particles. It should be clear from what

I have said concerning single events that according to the ensemble view of

probability quantum mechanics applies to individual particles: but they are a
statistically poor sample and hence the errors which the theory predicts will

be large. As we increase the number of observations in the sample, the sample
average will approach the theoretical prediction more and more closely.

In a similar way Heisenberg’'s uncertainty relations will be seen to
apply to the ensemble expectations of fluctuations of the non-commuting
quantities, and not to the individual experimental errors. In fact the ensemble
underlying quantum mechanics has been formulated without any reference to
the factors that go to make up experimental errors, and hence predicts nothing

®; it thus comes as no surprise that we can determine

whatever concerning them?
a pair of non-commuting variables with a precision greatly exceeding that
given by the uncertainty relation. In a backhanded sort of way this was
recognised by Heisenberg when he stated that his relations are valid for the
future, but not for the pastm.

There is, however, one important point to be mentioned. The ensemble
interpretation of probability implies that even if for the moment we do not
know the variables involved in the ensemble, we can at least in principle
deal with them (though if we do, there will be further variables constituting
another ensemble around them in their turn). Put more plainly, there should
be hidden variables behind quantum mechanics. Yet there are two theorems
that argue against this, v. Neumann’s well-known one!” and a more recent
one due to Bell®™ . Or at least that has been the traditional view.

Feyerabend' has shown, however, that what v. Neumann’s theorem
does is simply to exclude the possibility of purely non-dispersive hidden
variables.  Put differently, the hidden variables behind quantum mechanics
must in their turn have non-vanishing variances and must thus be treated by
ensemble techniques. But if the ensemble view of probability is accepted,
this is only natural. In fact Feyerabend points out that v. Neumann's demon-
stration is valid also for classical systems; and it may therefore prove possible
to turn the theorem around after generalising it suitably, and use it to deduce
that in statistical mechanics the hidden variables must have dispersions:
this could obviate the need for the rather unexplained hypothesis of molecular
chaos (work is being carried out on this question) .

The situation concerning Bell's theorem is different. e himself

interprets it to mean that only grossly non-local hidden variables are possible,
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so that systems that were once connected but are now macroscopically inde-
pendent would still be linked in a quite essential and highly mysterious way;
since very few physicists would accept such a view, which runs counter
to the (partial) separability of physical systems I have mentioned, this would
spell the end of hidden-variable theories. But it has been shown?? that this
interpretation rests on a misconception and cannot be maintained once the
effect of a measurement process on the variables characterising the particle
(including the hidden ones) is taken into account explicitly. Yet Bell's re-
sult, properly interpreted, still shows up a curious correlation between previ-
ously connected systems which we certainly do not understand at present. 1
suspect that some very fundamental principles lurk behind it, making well
worthwhile the effort at further study: but only time will show.

Thus the two apparent obstacles to hidden-variable theories disappear;
one of them, indeed, turns out to be helpful in that it characrerises the type
of hidden variables to be expected, and the other may yet prove to be even
more 1lluminating. We thus arrive at the conclusion from our point of view
concerning probability that hidden-variable theories are viable and should
remove the many perplexities that still surround quantum mechanics. Such a
conclusion is indeed fitting, since in this same symposium a very promising
hidden-variable theory will be presented?.

To sum up: I hope to have shown that the ensemble view of probability
- in which probability, like other physical concepts, has a much richer structure
than is usually assumed - proves helpful in clearing up a number of problems
in the philosophy of science as well as in physics,and yields a new perspective
on a number of physical questions.
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RESUMEN

En ¢l presente trabajo se trata a la probabilidad como un concepto de
las ciencias naturales, el cual por lo tanto posee una estructura teorica y
técnicas asociadas de medicion, ademads de que entra en teorias cientificas
cuya region de validez finita se toma en cuenta explicitamente. La nocion
de ensemble se generaliza desde la mecanica estadistica para rendir cuenta
de la variabilidad de los factores que no se incluyen dentro del modelo espe-
cifico; la medida sobre el ensemble de un determinado tipo de acontecimien-
to se toma como la definicion teorica de la probabilidad, mientras las frecuen-
cias observadas constituyen la principal técnica experimental para medirla.

Se comentan algunas de las implicaciones de este punto de vista tanto en la
filosofia de la ciencia como en la fisica.





