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VARIATIONS OF MAGNETIC MIRRORS DETERMINED

BY A SURFACE OF SECTION
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ABSTRACT:
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(Recibido: mayo 31, 1974)

In many astrophysical and geophysical problems, the invariance
of magnetic mirrors is correct only to first order. Their slow
variations are important for maintaining radiation belts. They
could be determined by a method inspired by the classical
surface of section. The conditions for the existence of a
double surface of section are generally fulfilled in the motion
of charged particles in an axial magnetic field. It is then
only necessary to determine the trajectories for the finite

interval of time between two successive crossings of the

surface of section and to infer the law of transformation of
the surface of section. The slow variation of adiabatic invari-
ants as well as the characteristics of the general motion can

then be deduced. The dipole case and the method for determi=

ning the secular variations of the magnetic mirrors are studied
especially.
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1. MAGNETIC FIELD WITH AXIAL SYMMETRY

For studying the dynamics of charged particles in an axially sym-=
metric field, we write the Hamiltonian of the motion:

2
2H-p;+pi+[%—/{¢] =1 . (1)

The mass of the charged particle has been put equal to 1. R, z, ¢
are the usual cylindrical coordinates and bp+ #_» b, their conjugate momenta.
Aqb » the only component of the vector potentlal different from zero, into
which the electric charge of the particle is absorbed, is a function of R and
z but not .

The Hamiltonian does not depend on time} we choose its constant
value to be % . With this choice of units, time intervals are numerically
equal to arc lengths along the trajectories.

When the motion in the meridian plane R, z is known, the ignorable

variable ¢ can be determined by the quadrature of the equation
zj‘f’— by ~RA, = U(R,2) . (
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Each line of force will lie in a meridian plane and be defined by

U = constant and ¢ = constant. The square of the particle’s speed in the
meridian plane will obey the relation:

2 2 2
4RI 4 (4] o U (3)
ds ds R2 :

The second member of (3), never negative, limits the motions to an allowed
region of the R, z plane defined by

lul<r . (4)

Let us suppose that in that domain, except possibly at some points on the
axis R =0, U is twice continuously differentiable.

The motion in the meridian plane will be determined by the equations:

dR._U3 [U f_z=-g8_[ﬂ] (5)
ds? R OR |R ds? R 9z |R| °

Motions of charged particles in a magnetic field can be decomposed into:
1) a gyration about a guiding centre
2} a slow drift of this centre.

For this purpose, we must determine the curvature centre of the tra-
jectory. By defining cartesian coordinates, x = R cos ¢, y = R sin ¢, it is
possible to evaluate their second derivatives with respect to arc length as
functions of x,y, z from the equations (2) and (5). From the Frenet rela-
tions, the value of the curvature is:

= d_‘i + i‘ + i‘l : (6)
ds* ds” ds*

the coordinates of the centre of curvature are:

|~
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2 2 2
dx, Y=y+p2dy, Z=z+p2d:

ds? ds? ds?

X=x+p?

The centre of curvature at a point will not necessarily lie in the meridian
plane of this point. Introducing instead of X,Y,Z, the cylindrical coordi-

nates Ry, z_, (1')0 one gets from (5) and (6)

I -1
Pl

2 2 2 2
r mzg-pOUs{|oU| 40U =g -poU )lou au | L
; U,a_z/; [Ték_] [az] ; R, =R UB_R/?[B_R] + [a_z:l %

(8)

2 2
oU | 4 |oU ? R si b Y=ol dU 5
El [’5} [ Rl W

In place of R, z it is sometimes convenient to use as coordinates lines V = constant.
Then by definition:

dR IR +[az] [ z =0 . (9)
20,10, 60, B,

Consider now the differential relations

dR OR
dR = dv + d
: [Tv]u i [W]V ‘

Multiplying the first one by [B_R] , the second one by [B_zjl one obrains
TR . oud

by addition:

IR R R N

Here, the orthogonality relation (9) has been taken into account. From this
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equation, we get:

[au] ” '_BR] / [BR" +[§£ ‘
se), " lau), /el Lt bl

and
0 - AR R
dz] , Loul ou), Loul,,
; OR z
and finally R =R-U I:_:l y 2 =z el [_] . (10)
. oulz ayl ,,

If we expand R(U,V) and z(U, V) in power series of U and write R(0), z(0)
for the coordinates of the lines U = 0, we get, up to second order in U:

2 2 ] 2
R, =R0)-U_[OR| 4 . , =yo-U |3z 4 .
’ 2 [5? ’ 2 o
V,o V,o

(11)

Following Stormer, we call this line? the bottom of the valley or
“thalweg”. Along the thalweg there is also a line of force, particles and
meridian projections of their centres of curvature coincide. For gyrations
for which U remains small (U* negligible) the thalweg can be considered as
the guiding centre.

To avoid the consideration, as centre of gyration, of a point outside
the meridian plane of the particle, it is advantageous to abandon the strict
magnetodynamical point of view. We shall take maximum advantage of the
rigorous integral of angular momentum. Instead of considering the circula-
tory motion of Larmor, let us envisage an oscillatory motion in the meridian
plane following the particle and, as a guiding centre, a mean of the meridian
projections of the true guiding centre, that is the points of coordinates R, z,
which generally differ little from R(0), z(0). Then let us take the thalweg
(U= 0) as a line of reference for the positions of the particles. Moreover,
let us restrict our choice of A, so that along the axis of symmetry, one can
choose an origin such that z = 0 is also a plane of symmetry: U(+z) = U(= z).
We can then define an even periodic function gly) by means of

R(0) = €Y cosy, 2(0) = €Y siny (12)



ig.

I

Forbidden Q= E >1/4

Limits, in the R,z plane of the region of allowed motions for two cases €< 4 and F]:’ % of the dipole
problem. The point P could have been chosen anywhere in the allowed area.
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where y is the latitude of the point (R(0),2(0)) on the thalweg.

From any point P(R, z)(fig. 1) in the allowed region of motion,let us
draw the normal to the section of the thalweg lying in the same hemisphere,
supposed to be unique. The straight line joining the crossing of the thalweg
T to the origin will form an angle v with the normal and angle y with the
equatorial axis.

Let u be the distance TP; since the angle of TP with the R axis is
(v+y), one can express the coordinates R, z:

R =eg(y)cosy+u cos (y + v), z=eg(y)siny+u sin (y +v) .,

(13)
From the orthogonality of PT with the thalweg, one gets

d(e8Y) cos y) cos (y +v) + d(e8Y) sin y) sin (y +v) =0, giving a defi-

nition of v in analytic form:

tan v = = g ; (14)
dy
v is then an odd function of y such that v = 0 fory = 0. Eliminating 4 and
v from (13) and (14), we get

(R siny = z cosy) = %[(Rcosy + zsiny) = )] | (15)
¥

When the thalweg is defined (g(y) given) for values of R and z, y can
be determined from (15) and & from (13).

For evaluating the Jacobian of the transformation let us notice that

oR gly) dg . 4 dv
=¢ cos y %5 = sip ~usin(ytey) |1+ 45 .
[@] “ y % < siny)| < siny s

The relation (14) could be used to eliminate dg/dy

[éﬂ] =—sin(y+v)2 e +u[l+d_y]f .
dy - cos v dy

Performing the other partial derivation and noticing that
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dv

2
v o L 48 oty
dy

dy2

we get finally

i BR -az - aR az o eg + o iig 52 (16)
B [2], [ ] - e ]

The singular points where | = 0 will have to be specially discussed.

In the following developments, it is sometimes interesting to change
the scales of length and time in order to decrease the number of physical
parameters.

For example, in the case where A¢ is proportional to an homogeneous
function of R and z of order =n,

Ay = CE(R,z2) (17)

which is the case of the dipole field (n=2), let us change the scale of
length through R = R'qu €, T = z'p(f) €, and the scale of time through

ds =ditp € where the constant angular momentum Py and the new constant
€ are related to the physical constant C by:

C=pye™t, (18)

The Hamiltonian (1) can then take the form
] 2 2
2H -p;,'l‘p:,*‘Q (R',z")=¢€ . (19)

In these cases, the thalweg defined by Q0 = 1/R'- F_"(R',z') = () will be the
same for any constant of motion appearing explicitly only in the new constant
energy €. When possible, we shall consider the Hamiltonian (19), dropping,
further on, the primes.

Changing the variables R and z into # and y with the canonical transfor=
mation pR dR +p dz = p,du t pydy
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and using ]PR = g_;-py g_j

dR _, OR
Y ?

Jp, =¢ “3y

we get the new Hamiltonian

2H=;f+p;/jz+Q2=ez : (20)

Q will then become a function of 4 and an even periodic function of y. A

consequence of the parity of Q is the existence of a solution in the equatorial
plane = = 0 or its equivalenty = 0. In fact Jﬂz/dt" [computed by succesive
differentiations of the equations of motion deduced from (19)] can be ex-

pressed as polynomials of dz/dt such that the independent term is an odd

function of z. They will be all zero when

z=dz/dt =0 , (21)

We get the equatorial orbit by integrating

2
[d_’i] =€ -’ (R,z=10) . (22)
ai

However, the thalweg is not in general a solution of the dynamical problem
(20). In fact,

Pu o 00 4+ By a1 (23)
ar

If the first term is nil on the thalweg, to annul the second for u = du/dt = 0 we
must have 0] /0u = 1 + dv/dy = 0 because, in that case, we get from the
Hamiltonian p; = 62]2 # 0. This will happen only in the very special case

where g(y) = = log(cosy/Ru) which defines the straight line R = Ro as
thalweg.
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2. THE APPROXIMATE PROBLEM AND ITS SURFACE OF SECTION

Let us consider the dynamical system defined by (19) where Q (R, z)
is any function twice differentiable of R and z even in z, such that the
transformation (13) is permissible, expressing the dynamical system in the
form (20). Recalling that the allowed region for the movement will be defined
by =€ €0 <+ €, the extent of the “valley” around the thalweg will increase
with €. For the case of high angular moment, where € is very small, the
limiting solutions are points of equilibrium on the thalweg, and p_, B, and R
are small quantities of the order €. As Q is nil on the thalweg, its power

expansion is

0 =uwly)+0(u?). (24)

Then u will be also of the order of € and

Q| = + 30| - dw 4
[Bu]y w(y)t+o(e) , [ﬁ;]“ ua}T 0(€)

From the relations

cos (v +y)=] sin (v+y)a;g
dy

Q)
SIS
S

(25)
aQu“a_QS[n(u‘*'y)'{'JCOS(U-i-y)a—Q
3 dy

z u

and noting that 9Q/dy = 0 on the thalweg, we get

a0 ’ 20 ’
. [BR:I z [ z] a

computed at Q =u = 0,

. In the case of axially symmetric problems, @ will possess a term in
R™, and co(y) tends to infinity for y tending towards Y. As
dy/dt = P /] = () + 0(€), equations (23) become 4 u/dt = -ywl(y) +0(e?)
and we obtam an harmonic oscillation of frequency w(y). This suggests a
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transformation:

5 5
u = [2pl/al(y)] . sin q, ; »,= [Zplw(y)] cos q, (26)

where g, = w(y)t + Q(€) and p, = constant + 0 (€?). Nowy appears in this
transformation; to make it canonical, it is convenient to change y and py by
introducing an odd function of y

8 4
s= | £) "1{»[_@] * oty 27)
b 3

The conjugate canonical momentum is then
p.=1p. eBY) cos v=p sin 2q‘i&i w™
S y 1 ds :
We get for the transformed Hamiltonian
2H = 2p w(s)+ plw’(s) + Q(e’) = € . (28)

- . 3 o - - - -
To an approximation of €, p is a constant and the motion in S, or its equiva-

lent y, can be determined by the elimination of p_ and dt from the Hamiltonian
and the equation of motion in s:

ds 2 ds 2
Eﬁﬂpsw ’ Eﬂ' \’G -Zplw(s) & (29)

If we call @, the minimum of @(y), there existzpussible valves of the square
of the gyration amplitude such that 0< 2p <€ /wo - To avoid complicated
structures, we shall suppose that there is only one such minimumy it must
then be necessarily the equator, y = 0, as w(y) is an even function of y
reaching infinity fory = * ¥77. We are then able to find a "mirror-latitude™
Y Solution of the equation €= p,w(y).

The charged particles will oscillate between latitudes Y and =y
following the differcatial equation
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o

2
1-"‘_”5%] e'ds =dq . (30)

w(s
m

Integrating in s from 0 to s we get 2/m of the number k(y_ ) gyrations
during a complete oscillation in latitude. This number depends on 'y~ and
also on €, and it becomes infinite when € tends to 0.

Except for the equatorial orbit, all trajectories will cross the equator
between two consecutive mirror points and will do it indefinitely.

From each regular point of the surface in three dimensions defined
by 2H = Ez(eq. (20)) there begins one and only one orbit. Choosing the three-
dimensional space u/€, pu/e, y in the approximate problem, orbits with a
given mirror latitude y  will cover finite two-dimensional surfaces with the
three planes of coordinates as planes of symmetry.

The sections with y = constant, existing only for =y <y <y_, are
ellipses of axis

N

( -
w(y) and (w(y)w(y))
wl(y, ) ”

The area of these sections remains constant : 7/@ (ym ). As ydw/dy <0 they
will fit inside one another, the surfaces having higher mirror latitudes being
inside of those having smaller ones. The equatorial=orbit (y, = 0) collapsed
limiting surface surrounds all the others (fig. 2) . The limiting surface when
Y, tends to 71/2 is a line: the y axis where p, = 0. Thus the infinite number
of trajectories on this surface differing from one another by their phase g will
collapse to a line of non-gyration: the thalweg solution of the dynamical
problem to this approximation Q(€%) only. It might be useful here to recall what
is meant by a surface of section.® If a dynamical problem is represented by
n independent autonomous equations,of the first order, its solution can be
represented by the steady motion of an n-dimensional fluid, of which the
moving point has the dependent variables as coordinates. Now, sup-
pose that a closed (n=1)-dimensional analytic surface § can be constructed
in this manifold of states of motion in such a way that, within any sufficient=
ly large interval of time, every stream cuts S at least once and always in the
same sense. Then § is called a “surface of section”.

In this approximation to the dynamical problem, the equatorial plane is
a surface of section. It cuts all the surfaces with a given mirror latitude y
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Fig. 2. Perspective of the mirror surfaces for ¥,
of those surfaces has been drawn in brd

= 0%, 30° and 45% The eny

en lines,

elope
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along what we shall call mirror curves. The equatorial orbit encloses all of
them, limiting the allowed region; as the mirror latitude increases continu-
ously from 0 to 77/2, the corresponding mirror curve will shrink continuously

up to the central limit point for y_ = 7/2, filling in that way the whole surface

of section. To a point of those curves which do not cross each other, could

be assigned a unique value of a parameter, such as a phase of gyration, in
such a way as to define some kind of polar coordinate system. However

the canonical variables u, p_ have the advantage of giving a mapping of the

surface of section® which preserves the area for the solution of the dynamical

system. Their expressions of the nth crossing of the equator by a trajectory

(q,,,) are given by :

%, U, = (fy )/ (O) sin [g,+ (n=%) &Gy, 7]

N (31)
=B = O (y,, ) cos [q, + (n= %) ky, ) 7]

If k(y,_, ) is not a rational number, the phase angles will be all distinct when
n increases indefinitely. But in the other case, the number of distinct phases
will be finite and the trajectory periodic. For each of the corresponding
values of the mirror latitude y, we shall get, in the approximate problem, an
infinite number of ordinary periodic orbits covering the corresponding mirror
surface in space y, u, p, . On the surface of section, when y  varies from 0
to 11/2, the dense set of mirror curves will contain an infinite denumerable
subset of continuous curves formed of periodic points only.

To fix the choice of the parameter to be used as coordinate, let us
consider the segment of an orbit in the R, z plane between two successive
crossings of the equator, lying thus completely in one hemisphere. Because
it could be followed in both senses, it will define two trajectories with initial
points in the equatorial plane Uy , Py and Ug, Py . In the three-dimensional
space u,y,_, p, that segment with its two boundary points A, B will be called
a semi-orbic. It will have a mirror latitude y_ . But if one trajectory, let
us say the one starting from A, has a mirror phase g_, the other, starting
from B, will have a mirroring phase 7~g_. The operation of passing from
one trajectory of the semi-orbit to the other will be called the mapping M. In
particular, we have M(A) = B, M(B) = A. The operator M is symmetrical:
M? = 1. It produces simply a change of g to 7 =g_ in the equations (31)
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forn = 0. The elimination of g between these equations gives the law of

mapping:

P

UB = U, cos Trk(ym) + 200

sin k(y, )

(32)
Py = P, cos mk(y, ) = U, w(0) sin 7k(y_ ) .
On each of the mirror curves there will be two invariant points for M:

Ul =y’ p'=p

B A 5B A
such that
U,
A w1 4y smh(y ) .
p! w (0) =
A

These points will correspond to the mirroring phases q, = 71/2 and 371/2,
where both speeds du/dt = p, and dy/dt are nil; they will then be on the lines
Q = t €, the boundary of the allowed region, and will appear in the R, z or
u, y plane as self-reversing orbits.

As k(ym) varies from one mirror to another, these invariant points
will be aligned on some kind of twisted radii of the surface of section,
dividing it in two parts. As the mapping is continuous, the representative
points with intermediate phases will move from one segment to the other.
The prolongation into the other hemisphere of the trajectory starting at A
will be on another semi-orbit of that hemisphere, with a starting point at the
same location, but with an opposite direction from B:

UB, - UB;PB: = -PB

B' will play the same role as A for this new semi=orbit, which will have
another boundary point A’ . Because of the symmetry of the problem, the
mapping operation will be the same M(B’) = A’. The equator is then a
surface of section in the sense of Poincaré=Birkhoff® and A’ is the ca-
nonical mapping of A. In fact, the surface of section is double because the.
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trajectories cross the equatorial plane in both senses. To pass from one
surface of section to the other, it is sufficient to apply the reflection oper=-
ator R, which effects a change of the signof the coordinate P. Because of
symmetry, the two will coincide and could be considered as one surface of
section always crossed in the same sense, and the canonical mapping will
consist of two identical transformations T of the surface of section onto

itself, each one decomposed into two operations:
T(A) = RM(A) = B'.

The mirror curves y_ = const. are invariant under the operator M. In
the approximate problem the mirror curves are symmetric with respect to the
axis U, and so they will also be invariant under R and thus under T, which
will maintain invariant the mirror latitude.

Along the elliptical mirror curve, the angular parametric coordinate

of the boundary point will increase by the constant angle 7k(y_ ).

3. THE GENERAL PROBLEM

Coming back to the general dynamical problem where € is not negli-
gibly small, a condition sufficient for the maxima in y to lie in the upper
hemisphere and the minima in the lower, is that

2
y92 >0 (33)
g

%

for the allowed region outside the thalweg. It is quite easy to see thart for
dy/dt = 0,d% /dt" = = 530%/3y. If the condition (33) is fulfilled, y and its
second derivative will have opposite sign, and the equator will still be crossed
by all the orbits; the condition (34) includes the relation (21) which is the
condition for the existence of a surface of section for sufficiently small €.
For the extrema on the thalweg, O = 0, dzy /di* = 0.
The calculation of higher derivatives of ¥, taking into account the

value of du/dt = p, = €, and d'u/di’ = 0, gives:

dy _ _9 307 €
= ‘a:[ga—y]}?=° (34)
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2
dy . 3 [go0] € - €ugde
2

@y

=% (35)
it 3,21 9oy ] J? dy

From the condition (21), d4y/dt4 also will have a sign opposite to y, and the
extrema on the thalweg will not be an exception. Two situations may arise:
the allowed region of motion (#,y) may be finite or infinite ; the equatorial
section is filled by the boundary points of the semi-orbits in the first case
but not when the allowed area is infinite. In fact, the trajectories coming
from infinity, after reaching their first extremum in y, will cross the equator
at a point that is not the boundary of a semi-orbit. We shall not deal with
this case in the present paper.

As in the approximate problem, the boundary points of the semi=orbits
having the same mirror latitude will define the mirror curves which, in the
same way, fit on each other. However, their limiting point for Vi ™ /2, the
crossing of the equator by the singular orbit, now distinct from the thalweg
(see (23)), will not necessarily be at the origin. This implies that the mirror
curves are not necessarily symmetric with respect to the axis U. As a conse-
quence, although the mapping M of A will still change the phase 9, t0=q,_,
the reflection R will not necessarily carry the boundary point on to the same
mirror curve y_ (see fig. 3), and the mirror latitude will generally change
from one crossing to the other. Moreover, the variant mirror surfaces, in the
space u, p_, y, will no longer exist. Even so, certain trajectories will have
a limited number n of distinct mirror points; they are those for which
T" (A) = A and T (A) # A form <n. These points will be called periodic
points of class n. Their determination is important for following the general
dispersion of the mirror latitudes.

In the application of the last geometrical theorem of Poincaré* near
the periodic mirror curves of the approximate problems where k is a rational
number, there will still exist periodic singular points. A theorem of Kolmogorov®
also proves the analytic continuation of almost all the quasi-periodic solutions
of the approximate problem to the general problem. As the ratio of the frequen-
cies of the quasi-periodicities changes continuously, isolated cases of com-
mensurability will give rise to periodic motion.

In the general problem, the self-reversing semi=-orbits I /2, 31/2)
continue to exist: their boundary points still form an invariant curve for the
mapping M, which we shall call ml . Applying the transformation T to this
curve n times, we obtain a resulting curve which we call m’zn' It is easy to
see that it is formed of points invariant under the transformation RT2?*!
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Fig. 3. Surface of section for € = 4 ; the M, curves spiralling around D have been drawn up to the mirror curve y
The points A, B, G, H are periodic points of class 1. The point D is the dipole point transformed in the

surface of section to E and F.

()S

uBpOn



Variations of magnetic mirrors... 57

Let us notice that the axis P =0 is invariant under the operation R.
We shall call it mo. If we apply T to those points n times, we get a curve

mzn which is invariant under the transformation RT*".

Moreover, let us notice that all the periodic orbits symmetric with
respect to the equation will have at least one point on m.o; we shall discover
all the different symmetric periodic orbits of class r by considering the
crossings of mrwith mo with the condition that mk(k‘: r) does not include

the same point. To determines mz” ,and I , we have to calculate a

double infinity of trajectories up to n +1 crof;':;:r:gs of the equator. This is
usually done by numerical integration, in which the precision decreases with
increasing n.

To give an illustration of the surface of section, it is useful to proceed
graphically (see fig. 3). The point D is the singular point (y, = 7/2). When
¥,, decreases, the mirror curves for y >y; will not cut the axis P = 0 and
will have their next mirror latitude less than y; (the singular orbit Y
with a phase g, ); the mapping M(D") gives E(=g_) on the same mirror
curve. Applying R, we see that the next mirror will be at a latitude
Y+ and so on.

The difficulty of representing parametrically the surface of section in
the general case is due to the fact that the orbit starting from the singular
pointy = 7/2 is no longer the thalweg but a complicated curve that, in
general, will only be determinable by numerical integration. It seems better
for its representation to go back to polar coordinates in the original R, z

plane by putting R = r cos A, z = r sinA. The Hamiltonian will take
the form

2
2H=pr2+P_7‘+Q2(r,)\)=Ez. (36)

2

T.

One could deduce from (20) the following relations:

b, = p, cos [A=(y+v)] -;i sin [(y +v) =A]

) " (37)
T - ]_ycos [A=(y+v)] *p, sin [(y+v)=A\]
r

If we consider a section A of the manifold of motions, we could represent
it on a sphere of radius €:
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ﬁ‘ﬂ&'sin@;
r

p =€ cosl cosg ; (38)

Q =€cosl singd

where 6 and ¢ are the spherical coordinates. There will be a one-to-one
relation between 7, p , py and 6 (=7/2LG <€ 7/2) and P (0< HL27). If the
representative point of the trajectory coming from the singular point has for
coordinates B and X, let us make a double rotation of coordinates in such a
way that this point is on the axis of symmetry of a new system of spherical
coordinates p,q .

b, = €cospcosg cosX =€cospsing sinX cos B+ € sinp sinf3sinX

Q= €cospcosgsinX +€cospsing cosX cosf= € sinp cosX sin 3

B=Ecospsinqsinﬁ"'ésinpcos/@ . (39)
r

For the different latitudes A, such a transformation could be envisaged and
the limiting line will be defined by p = 77/2:

P, =2 sinX(A) sinB(N); Q = =€ cosX(\) sin B\) :

P_l= € cos B(A) . (40)

r

On the surface of section, A=y =y =z = 0 and =P pl/r = py/] ;
R = e8(® + 4 and Q(R,0) could be solved for i+ The surface will then be
represented by the two parameters p and ¢ ; ¢ is a phase angle approximately
equal to ¢, and p = constant is nearly a mirror curve. Instead of considering
families of trajectories reflecting at a constant ¥, let us consider those re-
flecting at a constant A and define the phase at the mirror by putting

Q = € sin Dim> By ™= €cos g where the 9, are chosen to allow easy harmonic
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analysis; for example, taking values of i 1k /n where n and k are integers,
the first fixed, the other taking all values from 0 to 2n =1.

It is then possible to obtain r from the expression for Q (r,A) and y is
determined by noting that (15) can be written in the form

ely)
sin [}\- (u""y)] ﬂii
r

Finally, using (37) and (39) we can determine ¢, and gq_.

It will then be sufficient to calculate how p and g vary with A to ob-
tain the two crossing points of the semi-orbit envisaged. This can be done
by numerical integration of the differential equations of the first order of p
and g obtained by taking the time variations of (39) and using the Hamiltonian
equation of motion to eliminate dpr/a't and dp)\/dr, and equations (40)
themselves to eliminate p_and p, . We shall then get the curves of crossing
points of the semi-orbits reflecting at the same latitude A, different from y
except on the thalweg.

4, THE DIPOLE CASE

To apply the theory of the previous sections to the magnetic dipole

case, a suitable choice of coordinates gives®

og=1._ 1 (41)

R (R2 + 22 )!/1
with

€= M (42)
2

<ty

(e charge of the particle, M magnetic moment). Equations (12) and (14) become

L]
The same angle y has been used by Lemaitre and Bossy’ for the study of orbits in
the valley. They also used the variable ¥ with a meaning different from the one of
this paper.
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e0) = coszy stanv = 2 tan y. The expression for the Jacobian (17) is

2 :
J =05y 43, 1+ sm2y . (43)

. 1+ 3 sin’y

To have one-to-one correspondance between R,z and u, y as defined by (13),

taking into account that sin (y +v) = 3 siny cos v, we must have

z 2
=cos’y + 3u cosv >0

siny

To guarantee that all the points on the equator can be represented by only
one value, the intersection with the equator of the normal to the thalweg
must be in the forbidden zone IQ[> €. As itis givenby R =7% cosy,
from the expression for Q it can be found that the maximum value of € is A
This is large enough to cover most of the cases of physical interest. As for
this limit on 4, the Jacobian @ fortiori will not be nil except at the singular
point y = 77/2, and the transformation (13) can be applied.

From (21), we get w(y) = (cos’y cosv)™, satisfying the condition
for the existence of the surface of sectionin the approximate problem.

To verify the general condition dQ?/3u? €0, let us compute it in the
form

?2)( 1 >0
dy QO siny

Now

BQZBQBR+BQBz= 90 cos _90 _.
3 3R 3y 3 % ],aTco. (vty) ,TRsm(v‘f'y) .

Noting that the relation (15) can be written

M = cos v (3R=2 cos y)

sin y

and performing the partial derivatives, one gets
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_l a_Q==3]cosvl_+ 1 _,.ZRC()sg.w"m=
sy A R® (R*+22)2 (R*+22)%

—

= 3] cosv Q4 2 (R2+12)/2_ Rcosy1
B ey (R* + 22 )%

In fig. 1, lines have been drawn for two typical constant values of Q,
with the dipole problem as an example. It is quite clear from the definitions
that /Q is always positive. Instead of u, a parametric angle X can be used,
being defined as the difference of the position angle of the point P and its
guiding centre R. From the properties of the triangles OTP, one deduces:

- cos’y sinX (R* + %2 )l/fz - cos’y sinv

u
sin (v =X) sin (v =X)
2., 3k
R= (R"tz*)  cos(ytX) . (46)
Then
2 %
(R™+ %)= _ R = SinX cos (ytX =v)
cosy (R2+z:2)l/z sin (U-X)

and finally

(47)

L_ 901 .35 cosy % +[y] e xe
R “LO) (R? + 22) cosy

Since the latitude of the particle ]y'I'XIS 7/2 and has the same sign as
the parameter v and lu | < 7/2, we have that the angle [y +X - u[< 7/2 and
the second member of (47) is always positive. The equator separates maxima
and minima of the y latitude of the guiding center along all the orbits. A
real surface of section must however have a finite extent in the allowed region
of motion, and this will happen for € <% . This is the geophysical case for
the particles of the Van Allen Belt. In the problem of cosmic radiation
4 < €<% ; the equator will still have most of the characteristics of a surface



62 Godart

of section. This was studied by the author in an unpublished paper. Part
of this work, improved and extended by de Vogelaere, has been publisl1c<12.
The theorems of that paper could easily be extended to prove the conditions
of continuity tacitly assumed in the present more general case, Although
introduced in another way, the same curves m of the last paragraph were
studied in great detail, and the most 1ntere‘;t1ng periodic orbits were located.
The study of the geophysical case and in particular of the variations of the
mirror of latitude is in progress. The approximate problem has been solved®.
It was found that the ratio of the number of gyration of latitude oscil-

lations can be expressed as

k cos 2n Y
k(y, )= E 5 "
€ cos‘y
Fm

n

where y_ is the thalweg mirror latitude and k, the coefficient of a Fourier

series given in Table I.

Table 1

n 0 1 2 3 4 5

k

0802639 -0312062 =-0017952 =0,000970 =0,000154 =0.000013

The structure of the surface of sections can be determined when the
canonical coordinates are expressed for a given € as a function of the parame-
tersy and ¢ . This function being periodic in both parameters, it is suf-
f1c1&nt to calculate a discrete number of semi-orbits for values of Vg + Dy
chosen in such a way that one can perform an harmonic analysis of the results.
The main difficulties met with in the numerical integration of the semi-orbit
are due to its strongly oscillating character.

A modification of the classical one-to-one step method has been intro-
duced to correct for the quasi- periodicity in @ (y) of the solution of the primi-
tive equations

d’R aQ d’z 90
= T e O , — = wm - . 4
di’ ~OR di’ Qa e

But when y is near77/2, this method requires a prohibitive number of steps.
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However, it ought to be noticed that in this very narrow valley of the
allowed region in R, z the approximate solution is a very good approximation
3 :
because the neglected terms are of the order of € cos’y. In that solution,
the center of gyration is also the trajectory starting from the singular point
y =7/2 which is not any more the thalweg but rather the limit of the locally
non-gyrating trajectories when the point of non-gyration y, tends to 72
An asymptotic expansion of this solution has been calculated by defining,
from the coordinates R, and z, of this solution, the related parameters

2 2 4
C= _R x= _C a= €C (49)

R4z 4=3¢ 4(4-3¢) 7

We can then obtain for r an expansion as a power series in @ with polynomials
in x as coefficients:

r=(R*+2) = cl1+23a"R, ()], (50)

where 3m =2 is the degree of the polynomial. In Table II are listed the integer
coefficients of these polynomials as well as those of the first derivatives
expressed in the form:

d . =
_E(r—(.)HZ}_,a’”PJm-i(x)=P . (51)

- - . . . o
These series diverge near the equator but are certainly valid down to 45" ;
here a = €°/160, x =% . From there, the gyrations being less rapid, it is
possible to proceed with numerical integrations down to the equator.

The two angular functions S(A) and X (A) can be evaluated from the
relations

rdr = dr.25in?\cos?\=M=sin;\ranﬁ (52)

dA rdC 1+ R

Q = 1 (l-E)=3}L=ECOSXSinﬁ_ (53)
rv/'C r C’2(1+2R)
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TABLE II
a) Polynomials R,
Order of . 3 3 4 5
pohmumudsl
m
0 3 =225 81270 -59687685 72810408330
1 3 -522 281610 -275252580 418713709050
2 -324 333774 ~ 483969195 976837762260
3 702 -505638 458013204 ~ 420278955156
4 945 - 1933470 3745676682 -8924656265226
5 -1330722 5652939564 =-21316241372130
6 1475658 -1933429338 -6280145858520
7 1818126 -13767970788 61785741068856
8 -9127789317 103025486714022
9 7604933832 -8432824263930
10 8438353605 -162263802551868
11 =-100791968025060
12 71261633813274
13 71434447876386
b) Polynomials P
Order of _ 1 2 3 4 5
polynomials
Power of x —_
0 15 -2025 1056510 - 1014690645 1529018574930
1 27 -6570 4673970 -5670798660 10303857724050
2 18 -8262 8385930 -13324203405 30004115294880
3 4536 -3083598 448818570 -10426392501350
4 22815 -41970474 88277487606 -233203101554394
5 17010 -64555866 214260910776 -795187994836482
6 - 3899826 108160493454 -809051179343940
7 76205286 -3B8434179052 1522755936596808
8 54543780 ~-682537768929 5212025793185454
9 -130872135780 3765009253928958
10 524427966783  -5384356498192968
11 354410851410 -10527214091635980
12 - 2486380549364838
13 6063114552274098
14

3857460185324844
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As P and R are of the order of €, X and /3 are small quantities of the order

of €, showing that ¢ ® g , and
5/
cos p (w (ym )/a){y)) : B

In fig. 4 we show the crossings of the singular orbit with the equator
center of the surface of section.

We are proceeding at present to compute the families of orbits which
parametrize the surface of section for € =% . The results will be published
elsewhere.

CONCLUSION

As we have seen, a great number of axi-symmetric dynamical problems
possess a surface of section. The knowledge of the transformation of the
surface of section in itself enables one to determine complete trajectories
by passing from one semi-orbit to another. Usually it will be sufficient to
compute a limited number of semi-orbits properly chosen to describe the

complete problem.
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RESUMEN

En muchos problemas astrofisicos y geofisicos, la invariacién de los
espejos magnéticos es correcta sélo a primer orden. Sus variaciones lentas
son importantes para mantener los anillos de radiacién. Se pudieron determi-
nar por un método inspirado en la superficie de seccién clasica. En general,
las condiciones para la existencia de una doble superficie de seccién se cum-
plen para el movimiento de particulas cargadas en un campo magnético axil.
Entonces solo se necesita deteminar las trayectorias para el intervalo finito
de tiempo entre dos cortes sucesivos con la superficie de seccién e inferir
la ley de transformacién de la superficie de seccién. Se pueden entonces de-
ducir la variacién lenta de los invariantes adiabdticos, asi como las carac-
teristicas del movimiento en general.,

Se estudian de modo especial el caso del dipolo y el método para de-
terminar las variaciones seculares de los espejos magnéticos.





