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ABSTRACT: After pointing out that important unresolved problems concerning
the basis of quantum mechanics still exist and briefly mention-
ing some relevant earlier attempts to remove them, this paper
outlines a recently developed theory which establishes a foun-
dation for quantum mechanics in stochastic theory. In contrast
with previous work, this is done by developing a description
which covers quantum and classical stochastic processes and
thus shows up both their similarities and their differences. This
theory contains two parameters, the diffusion coefficient D and a
quantity A whose sign determines the type of stochastic process.
To give values to these parameters, a physical picture for the
medium underlying the stochastic process is required. In the
second part of the paper this is provided by the fluctuating e-
lectromagnetic vacuum of stochastic electrodynamics. The

behaviour of a harmonic oscillator in this field is studied; a
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finite solution to the problem is found and shown to behave in the
equilibrium limit like a quantum harmonic oscillator; the solution
satisfies the equations of the stochastic theory outlined in the
first part of the paper only if the parameters D and A have their

quantum=mechanical values. A nonerelativistic Lamb shift and
radiative mass correction for the electron are also derived without
any divergent integrals nor any need for renormalisation; these

have physically meaningful values.

Certainly nobody doubts that modern quantum mechanics is a firmly
established theory. However, it is also true that despite its enormous successes
it requires to be revised from its very foundations if we want to understand the
origin of the difficulties which afflict it today.

The difficulties of quantum theory are not only itsdivergencies; in fact
it has been dragging along conceptual difficulties since it was born. It suffices
to analyze critically a series of textbooks on the subject, to convince oneself
that the confusion that prevailed during the foundation and construction of wave
mechanics in the 20’s and 30’s has not disappeared; it is present in the books
which we used yesterday to learn and those we use today to teach.

Our knowledge about the theory and its structure; the successful appli-
cation of its methods to complex problems, and the familiarity and the confi-
dence which we have gained through its daily use, usually lead us to a stage
in which the conceptual difficulties which might have troubled us in the be-
ginning disappear forever. But by neglecting a problem we do not solve irt,
quite the contrary.

That these problems are real and complex, and not simply digressions
of idle minds, is evident from the long and sometimes bitter and fruitless dis-
cussions held between Einstein, Bohr, Born! and so many others, during which
serious and profound discrepancies came to light. Many questions about quantum
mechanics remain unsettled to the present time, and despite their fundamental
character, some of them are given the most diverse and even contradictory
answers by the physicists. Let us raise a few questions to illustrate the point.

Is the motion of an electron causal? If the answer is in the negative,
then what is it that constrains the electron to follow well-defined laws which
contain more than merely random components? And through which mechanism?

If, on the other hand, the motion is causal, what produces the random
behaviour of the electron?
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Is the quantum mechanical description objective? On the one hand, if
the observer and his mental state constitute necessary elements of the system,
then why doesn’t there exist any specific mathematical element that corresponds
to them in the theory?

If, however, the description is objective, then why do we make it in
terms of observables and observers?

We can further ask: Does quantum mechanics provide a complete de-
scription of reality? If the description is complete, why can’t we predict, for
instance, the time of disintegration of a nucleus, though we may determine it
experimentally? Or are we dealing with a complete theory that can furnish only
some experimental results?

If the description is the most complete ever feasible, what is it that
limits our capacity to inquire further into the physical world?

If, on the other hand, the description is not complete, then what does it
lack and what else should it contain?

We shall not enlarge this list of interrogations. The interesting point
is that the answer that quantum mechanics gives to each of these questions is
not unique, but is specific for a certain current of thought. Even more: there
are physicists for whom some of these questions are meaningless, while in the
view of others a definite answer is essential. Under these circunstances one
might almost raise a further question, namely: Is this wide conceptual uncertain-
ty of contemporary quantum mechanics perhaps one more manifestation of the
uncertainty relations? Perhaps there are some who would even assert, so as
not to violate the uncertainty relations, that the only thing we know for certain
is “who knows?”.

Let us now go over to the subject of our paper. A few years after the
foundations of modern quantum mechanics were laid by Heisenbe: ;, Schrodinger,
Dirac, etc., there appeared the first attempts to revise this newborn and highly
successful theory. One of the directions that began to develop and that is of
direct interest for our work, was inaugurated by Firth?, who i)roposed to in-
terpret the quantum process as a diffusion, motivated mainly by relatively obvi-
ous mathematical analogies and by the statistical character of quantum pre-
dictions. Later on, Fényes® proposed a stochastic theory in which he could
derive the Schrodinger equation from a hydrodynamic Lagrangian constructed
ad hoc. This line of thought was continued by Weizel* and others, but its scarce
success caused it to decline.

The idea was resurrected subsequently, in analogous physical terms
but with the help of more developed techniques. Kershaw®, for instance, is able
to derive the stationary Schrddinger equation by postulating that the path of the
electron is a classical path altered by a fluctuating movement. Approaches of
this kind are no doubrt interesting, in that they represent attempts to achieve a
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more fundamental description of the behaviour of the electron; however, they

all suffer from the habit of reducing the quantum phenomenon with all its pe-

culiarities to a classical stochastic process. This helps create a major con-
fusion as it obscures the distinction between the movement of an electron and
that of a colloidal particle, for example.

In spite of these shortcomings, the very idea of a stochastic process
underlying quantum mechanics proves fertile; attempts along this line have
appeared without interruption in the last few years. It is not our intention to
present to you a comprehensive list of the numerous contributions on this theme;
however, it is relevant to recall here the work by Nelson®, probably the best
known at present. From the theory of Uhlenbeck and Ornstein, which deseribes
a stochastic process in phase space, Nelson obtains a dynamical relation which
he then transfers to configuration space, to derive from it the Schrodinger e-
quation. In our view, the most important aspect of Nelson’s contribution is that
he shows that the quantum stochastic process is not reducihle to any of the
classical stochastic processes, because he is obliged to combine in a somewhat
arbitrary way two descriptions which are valid in different classical siwations,
in order to obtain quantum results.

Subsequent to Nelson’s works there have appeared other formulations that
imply or are consistent with this basic principle, though they develop it along
different lines’. Under these circumstances the question arises of whether it
is possible to construct a theory for stochastic corpuscles of sufficient gener-
ality as to include in a natural way the quantum movement. The fact thar this
question can be answered in the affirmative®, as we shall see below, allows us
to conclude that quantum mechanics can be understood as a suf generis stochastic
process, different and distinguishable from those characterizing classical phe-
nomena such as Brownian movement. Consequently the statistical content of
quantum mechanics is to some degree analogous to that of the theory of Brownian
movement, though the two theories differ essentially in their dynamical detail.

Hence, we must face a further question, namely: what is the origin of
quantum stochasticity? As we shall see in the second part of this paper there
are reasons to suppose that the cause of stochasticity may be found in the
interaction of the electron with a fluctuating electromagnetic field, whose
“vacuum” state is analogous to the vacuum field of quantum electrodynamics.
This sort of answer would have the additional advantage of determining a physi-
cally real equivalent for a necessary theoretical element such as the zero=-point
radiation field, thus corroborating the possibility of constructing a consistent
theory for the system composed of the electron and the electromagnetic field”.

.

It should be stressed that the introduction of a real fluctuating field with an energy
per normal mode of l/2‘5::.) is not free from considerable and still unsolved difficulties;
this is an open question and here we merely acknowledge its existence.
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Within a scheme of this sort, the radiative corrections, for instance, which are
proper to quantum electrodynamics, arise naturally by taking into account the
interplay between the (stochastic) Lorentz force and the radiation reaction’.
Other quantum phenomena find a natural explanation as well: for instance the
interference phenomena of quantum mechanics may be understood as the form
in which the properties of the background field are reflected upon the movement
of the particles coupled with it.

The formulation of stochastic quantum mechanics which we are referring

to goes roughly as follows®*1°:

it starts by developing a statistical description
for a general stochastic process in coordinate space. To this end we construct
first the kinematics for the stochastic process, in terms of quasi-local dynamical
variables, which are already statistical quantities obtained by considering an
ensemble of systems characterized by a density p(r,t). Thus we arrive at two
different concepts of velocity: the systematic or flux velocity v and the

stochastic or diffusion velocity v, which can be written as

v = @Cr, u=]95r (1)

where
D =@/3 +v.V, D =v.V+DV? (2)

are the systematic and the stochastic derivative operators respectively. The
“diffusion coefficient” D is (one half of) the second derivate moment of r,.
It is possible to prove further that

v=DVp/p. (3)

In an analogous way we can define four different accelerations:

v, 80, Do, Ov.

We use these elements to construct two dynamical equations that de-
scribe the statistical behaviour of the system: an equation of motion and a
continuity condition. In constructing the first one, we are guided by the corre-
sponding dynamical equation, which is assumed to have the form of a general

Langevin-type equation:

=+ b o @
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where fen is the external force, fchs is the dissipative part of the force that
arises as a result of the interaction between the particle and the stochastic
medium and ’sn:h is the purely random part of this force.

The corresponding average equation is therefore a relation between the
average force and a linear combination of the four accelerations introduced
previously. But by taking into account first that all terms must have the same
behaviour upon time reversal, and second that in the non-stochastic limit
(i.e., when v — 0) the equation should reduce to Newton’s second law, we are
left with

m(Ov -AQu)=F* (5)

as the equation of motion. A is a real, but otherwise arbitrary parameter, and
F* is the force term that does not change its sign upon time reversal.

The second dynamical equation is the stochastic version of the equation
of continuity:

m(lgsv ¥ J@Cu) =F~ (6)
with

F~ ==m(uxVxv + DVxVxvy). (7)

In fact, the continuity equation is derived by introducing Eqs. (3) and (7) into
(6) and integrating over the space coordinates.
Eqs. (5) and (6) can be combined into the suggestive form

mquq = Fq. (8)

As we shall see later on, this is the generalization of Newton's second
law for classical as well as for quantum systems. Here,

Qq = BC‘"EDS, e = vteu, Fq =Ft+eF (9
and
e=% /-X

We shall assume that the dissipative term is small and hence can be
introduced later on as a perturbation. When the force is derivable from a po-
tential, Eq. (8) is integrated simply by writing v, as a gradient; in the more
general case in which there is also an electromagnetic field present, the
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integration is carried out by introducing the ansatz
%= 2eDVw -(e/mc) A (10)

where w, are dimensionless functions and A is the electromagnetic vector po-
tential; F* must now be the Lorentz force. Upon the change of variable

Y, = exp w, (11)
the result of the integration takcs the form

T 2mDVEN (Y, /38) = (1/2m) [£2mDV-RV = (e/c) AP Yy +V Y, . o

This equation coincides with the Schrodinger equation if we take A=1 and
D=%/2m.

We would like to add that with A= -1, Eq. (12) represents an alterna-
tive way of describing Brownian motion, as has been shown elsewhere® 'l
In this case, however, one must explicitly take into account the frictional force
f,; = -mpB#, which contributes to the potential V in Eq. (12) with the term
-2mD B, In\), (see the second paper in ref. 8). Hence for the classical system
we obtain a non=linear Schrodinger-type equation. So we have here a simple
method to deal with classical as well as quantum mechanical systems. Clearly,
the parallelism between these two systems can be exploited along several
directions. For instance, it is possible to work out the path integral methods of
Feynman and Kac for quantum mechanical and classical systems, or even a
theory of canonical transformations, by using Eqs. (5) and (6) as a starting
point.1?

To obtain the fundamental equation of quantum mechanics we have had
to assign certain values to the parameters A and D. It is evident that these
parameters are related to the specific form in which the particle interacts with
the medium that impresses the stochasticity upon its movement; hence, as long
as we do not know anything about this medium we cannot derive A and D from
first principles.

Let us therefore inquire into the possibility of constructing a specific
theory of the general type proposed, by postulating a concrete equation of the
form (4).)* To be consistent with quantum mechanics, this formulation should
satisfy two requirements: it should allow for the existence of states of
stochastic equilibrium and it should not imply the existence of an absolute

reference system.

The most immediate possibility of constructing such a formulation is
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opened up by the so=called stochastic electrodynamics. The basic hypothesis
of this theory’™'! is the existence of a fluctuating, stationary, Gaussian elec-
tromagnetic field whose vacuum state has exactly the spectral energy density
of the zero=point radiation field. If we include the radiative reaction force
mT ¥ ,which allows us to satisfy both requirements mentioned above, the equation
of motion for each electron reads (in one dimension)

m% = [+mT¥ + eE(1); T =2&/3mS (13)

in the nonrelativistic (dipole) approximation. E(#) ts the stochastic electric
field, whose average is zero and whose correlation function is

<E(t)E(")> = 2/,'J'TJm plw)exp[iw (t=t") Jdw (14)
or in terms of its Fourier transform
<E@)E*(w')>= % 7 p(w) §(w=w") (15)

where p(w) is the spectral energy=density. To study the ground state of the
quantum system we assume O(w) equal to the energy density of the zero=point
field, namely,

p(w) = ¥ /(277S) . (16)

E(¢) is a stationary Gaussian process, but since its correlation function is not
an exponential, it is not a Markov process, as follows from Doob’s theorem.
We would like to find the statistical solution to the problem defined
by Eq. (13), but there are no techniques to solve such a general problem. Seeing
that we must content ourselves with tackling particular problems, we choose
the harmonic oscillator, which has been partly studied by different authors of
stochastic electrodynamics™. Therefore, the equation to be solved is

¥tafx = T¥+(e/m)E(2). (17)
A solution that is both causal and free from run-away difficulties is
@™
x = (e/m) [ (E(@)/D)[(1+2 To +iTw) exp (iwt) + G(w) exp(=0t)]dw
- @

. (18)

where
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A= [1+270F + T2?] [wf+(o+im)2],
o=Y7af>0, o =af+0(c?)

and G(w) is an oscillating function of time. Hence, for large times the last
term in Eq. (18) vanishes and the system becomes stabilized. By calculating
the energy with the usual formulae, we conclude that the energy acquired by
the oscillator due to the action of the fluctuating forces is, to first order in 7,

E =Y #0 [1+(Ta /m)(3 In(1/7w,)) -1)] (19)

Furthermore, using Eqs. (15) and (18) we can calculate the moments of
x and convince ourselves that the corresponding distribution is Gaussian:

p(x,8) = (1/N27 ) exp(=2/ 2:). (20)
The variance is a complicated function of time which goes to

?:ﬁ/zmwo (ot >>1). (21)

These results show that the system behaves just like a quantum harmonic
oscillator in its ground state after equilibrium has set in, i.e., for a time
1>>0~! which we can estimate to be of the order of 107"%s if the energy is
not too low. To show that this coincidence of results is not simply an accident
we can try to prove that the statistical description of the stochastic oscillator,
once in equilibrium, is given precisely by the Schrddinger equation. The
easiest way of doing this is by calculating the velocities v and ¥ from Eqs.
(18) and (20). The results are

u==(D/2)x (22)
and

=-gu; g=(1/20)d?/df‘ (23)

To calculate 4 we used the formula u =DVp/p and to calculate v we integrated
the equation of continuity.

Now, we note that since Eq. (17) is a particular case of Eq. (4), it
should be possible to describe the harmonic oscillator of stochastic electrody-

namics by means of the equations of our stochastic formulation. In fact, by
substituting v and u we find that
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m(vABu)==[mD/(®)?] [D(Z+\)=g2] x —> N(2mD /$)* F__;
E_ =-mafx. (24)

Hence, once the system reaches equilibrium, it satisfies the equations of the
stochastic theory if and only if (cf. Eq. (5) with F* =F )

A=1, D=%/2m,

i.e.,only if the free parameters assume the values that characterize a quantum
stochastic system. No negative value of A is consistent with the theory. Hence
we conclude that Eq. (17) together with the statistical properties assigned to
E(#) refer not to a classical, but to a quantum=mechanical system that is governed
by the Schrédinger equation once it reaches equilibrium.

Without going into details for lack of time, we must indicate that the
above conclusions can be extended to include the excited states of the harmonic
oscillator.

Now it seems appropriate to return to some of the preceding results.
In the first place, we observe that the correction to the energy in Eq. (19) is
due to the radiation reaction and hence should be identified with the Lamb
shift of the harmonic oscillator. To a first approximation, the value obtained is

SE, = (a#’a /mmc?) In (3mc?/2a. b ) (25)

and compares favourably with the quantum-electrodynamical result, even
though we have not introduced relarivistic considerations. Most important of
all is the fact that there is no need to renormalize, because the integrals
involved are convergent. The numerical result is improved by introducing a
relativistic cut=off frequency of order mc? /#; in fact, we obtain precisely the
value for the Lamb shift predicted by semirelativistic quantum electrodynamics,
namely,

<« \ o

3E, = (at’l/mmP)In(mc*/Fw,). (26)

Moreover, by taking <2 =0 we also obtain a finite result for the mass
correction of the free particle; if we introduce the same cut=off frequency as
before, we ger

om =(a/61)m . (27)

We would like to stress that the physically appropriate solution of
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Eq. (17) implies a certain modification of the field due to its coupling with the
oscillator. This means that the field is modified by the presence of the material
system, and acquires a structure which in turn becomes manifest through the
statistical behaviour of the system. Here we have a plausible explanation for
the wavelike phenomena that are displayed by an ensemble of quantum systems.
A further fundamental property of quantum mechanics, namely the superposition
of amplitudes, finds a simple explanation in our scheme: in fact, from Eq. (12)
we learn that superposition of amplitudes is the rule provided the dissipative
forces can be neglected in the process of integration. This happens to be
the case in quantum mechanics, due to the smallness of the coefficient T
but does not occur for a colloidal particle, for instance.

Since there are no reasons to suppose that the harmonic oscillator is
the only system of stochastic electrodynamics that has a quantum mechanical
behaviour, we are led to believe that our observations are of a more general
validity. Although it is true that we have not yet established a direct con-
nection between the fundamental dynamical equations and the statistical
equations, the results obtained up to now lead us to believe that this con-
nection exists; that we are not simply Being misled by a formal analogy, or
even less by a mathematical artifact.

Of course, many questions remain unanswered and many new ones have
arisen. We would like to mention only some of them. First, we have described
quantum mechanics as a stochastic process in configuration space. Will it
be possible to extend the description to phase space and thus construct a
theory that would apply for arbitrarily small time intervals? Second, we have
assumed that the particle interacts with the radiation field through its electric
charge; will it be possible to extend the treatment to neutral particles? In
both cases, the answers seem to be in the affirmative, but clearly much work
must be done in order to find the final answer.



116 Cetto and de la Pena

REFERENCES

1. See, e.g., Albert Einstein, Philosopher-Scientist, P. A. Schilpp, ed.,
(Harper Torchbook, Evanston, Ill., 1959);
The Born-Einstein Letters, (Macmillan Press, London 1971);
Letters on Wave Mechanics, K. Przibram, ed.,
(Vision Press, London, 1967).

. R. Fiirth, Zeit. f. Phys. 81 (1933) 143.

I. Fényes, Zeit. f. Phys. 132 (1952) 81.

W. Weizel, Zeit. f. Phys. 134 (1953) 264, 135 (1953) 270; 136 (1954) 582.

D. Kershaw, Phys. Rev. B136 (1964) 1850; see also L. de la Pena and

R.M. Velasco, Rev. Mex. Fis. 18 (1969) 397 and L. Bess,

Prog. Theor. Phys. 49 (1973) 1889.

6. E. Nelson, Phys. Rev. 150 (1966) 1079; Dynamical Theories of
Brownian Motion, (Princeton University Press, N.J., 1967).
7. See, e.g., E. Santos, Nuovo Cim. 59B (1969) 65;
An. Fis. 68 (1972) 137; Yu. A. Rylov, Ann. der Phys. 27 (1971) 1.
8. L. de la Peiia, ]J. Math. Phys. 10 (1969) 1620;
L. de la Pedia and A.M. Cetto, Found. Phys. 5 (1975) 355.
9. L. de la Peiia and A.M. Cetto, Phys. Rev. D3 (1971) 795;
A.M. Cetto and L. de la Peifia, Rev. Mex. Fis. 20 (1971) 191.

10. For extensions of the stochastic formulation of quantum mechanics to

particles with spin, see T. Dankel, Ph. D. thesis, Princeton, N.J. 1969
(published in Archive for Rational Mechanics and Analysis 37 (1970) 192);
L. de la Pefia, Rev. Mex. Fis. 19 (1970) 133;
J. Math. Phys. 12 (1971) 453. For a canonical formulation of the theory
and its application to path integrals, see ref. (12); for an ergodic
theorem, see ref. (16).

11. E. Santos, in Irreversibility in the M any-Body Problem,

]. Biel and J. Rae, eds., (Plenum Press, N.Y., 1972}

12. M. Berrondo, Nuovo Cim. 18B (1973) 95.

13. L. de la Pefia and A.M. Cetto, Phys. Lett. 47A (1974) 183; -
an extended version of this paper is to be published elsewhere.

14. T.W. Marshall, Proc. Roy. Soc. A276 (1965) 475;

P. Braffort, C.R. Acad. Sci. Paris 270 (1970) 12
and references cited therein.
15. T.H. Boyer, Phys. Rev. 182 (1969) 1374.
16. A. Claverie and S. Diner, C.R. Acad. Sci. Paris 277 (1973) 579.

.

MR N



The stochastic foundations... 117

RESUMEN

Después de sedalar varios problemas referentes a la fundamentacion
de la mecanica cudntica, y de mencionar algunos de los intentos mas signifi-
cativos que han aparecido hasta la fecha para resolver dichos problemas, se
resefia en este trabajo una teoria recientemente desarrollada, que establece una
fundamentacién estocdstica para la mecanica cuantica. En contraste con las
teorias usuales, la descripcion aqui desarrollada es aplicable a procesos es-
tocasticos tanto clasicos como cudntices, y por lo tanto nos permite delinear
tanto las similitudes como las diferencias entre ambos tipos de procesos. La
teoria contiene dos parametros: un coeficiente de difusion D y un parametro
A cuyo signo determina el tipo de proceso estocastico. Para asignar valores
a estos parametros se requiere una definicion fisica del medio subyacente al
proceso estocastico. En la segunda parte del trabajo se propone que este me-
dio es el vacio electromagnético fluctuante de la electrodinamica estocastica.
Se estudia el comportamiento de un oscilador armonico en este campo; se de-
muestra que este sistema se comporta en el limite de equilibrio como un os-
cilador arménico cuantico; la solucion obtenida satisface las ecuaciones de
la teoria estocastica presentada en la primera parte del trabajo si y solosi a
los parametros D y A se les asignan los valores cuanticos. Por altimo, se
presentan cdlculos no relativistas del efecto Lamb y de la correccion radiativa
de la masa del electron, cuyos resultados son finitos y fisicamente signi-
ficativos.





