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ABSTRACT: After pointing out thar important unresolved problems concerning

the basis oE quantum mechanics stlIl cxist aod briefly mentian-

íog sorne relevanr earlier attempts to remove them, chis papee

outlines a recently deve10ped theoey which establishes a foun"
datian foc quantum mechanics in stochasdc theoer. In cantrase

with previous work, [his is done by developing a description

whicb covers quantum aod classical stochastic processes aod

thus shows up both eheie simil"ri';,es and eheie differences. This
theoey contains [WQ parameters, [he diffusion codficiem D and a

quan,tity A whos~ sign determines the type of stochas(ic process.
Te give values (O these paramNers, a physical picture for the
medium underlying the stochastic process is requiu.d. In the
second part of the paper this is provided by the f1uctuating e •.
lecuomagnetic vacuum ef stochastic electrodynamics. The
behaviour of a harmonlc oscillator in this f(eld is studied; a
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fioice solution to che problem is found and shown to behave in che

equilibrium limit like a quantum harmonic oscil1a[Qc; che solUlion

satlsfies {he equations al che stochastic theoty outlined in (he

firse pare oí (he paper onl)' if che parameters D and A. have eheie

quantum-mechanical values. A non-relativisdc Lamb shih and

radiacive mass correction foc che elecucn are also derived without

aoy divergeot integcals nor aoy need for renormalisation; {hese
ha ••'c physically meaningful values.

Cercainly nabady doubts thar modern quantum mechanics is a fiemly
established (heoey. lIowevec, ir is also true chat despite its enonnous succcsscs
ir requires ro be revised from its very foundations ir wc want (O understand the
origin of the difficuhies which afflict it today.

The difficulties of quantum theory are not only itsdivergencies; in fact
it has been dragging along conceptual difficulties since it was born. lt suffices
to analyze critically a series of textbooks on the subject, to convince onesetr
that the confusioo that prcvailed during the foundation and consrruction of wave
mechanics in the 20's and 30's has not disappeared; jt is present in the books
which we used yesterday to learn and those we use today to teach.

Out knowledge about the theoryand its structute; the successful appli.
cation of its methods to complex ptoblems. and the familiatity and the confi.
dence which we have gained through its daily use, usually lead us to a stage
in which the conceptual difficulties which might have troubled us in the be-
ginning disappear forever. But by neglecting a problem we do not salve it.
quite the contrary.

That these problems are real and complex, and not simply digressions
of idle minds, is evident from the long and sometimes bitter and fruitless dis.
cussions held between Einstein, Bohr, Boro! and so many others, during which
serious and profound discrepancies carne to light. Many questions about quantum
mechanics rema in unsettled to the present time, and despite their fundamental
character, sorne of them are given the most diverse and even contradictory
answers by the physici:¡;ts. Let us raise a few questions to illustrate (he poin£.

Is the motioo of an electron causal? If the answer is in the negative,
then what is it that constrains the electron to follow well-defined Iaws which
contain more than merely random components? And through which mechanism?

If, on the other hand, the motioo is causal, what produces the random
J:>ehaviour of the electron?
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Is the quantum mechanical description objective? On the one hand, if
the observer anó his mental state constitute necessary elements of me system,
then why doesn'r rhere exist any specific mathemarical element thar corresponds
to them in the theory?

Ií, however, the description is objective, then why do we make it in
rerms of observables and observers?

U/e can furcher ask: Does quantum mechanics provide.a complete de-
scription of reality? lf rhe descriprion is complete, why can'r we predice, for
instance, the time of disintegration of a nucleus, though we may determine it
experimentally? Or are we dealing wirh a complete theory thar can fumish only
sorne experimental results?

lf the descriprion is the mosr complete evcr feasible, whar is ir rhar
limits our capacity ro inquirc furchcr into rhe physical world?

lf, on the orher hand, rhe description is not complete, then what does it
lack and whar eIse should it contain?

\l'e shall not enlargc this lisr of interrogations. The inreresting point
is rhat rhe answer rhat quantum mechanics gives ro each of rhese questions is
not unique, bur is specific for a certain currenr of thought. Even more: thete
are physicisrs for whom sorne of rhese questions are meaningless, while in lhe
view of orhers a definire answer is essenrial. lJnder these circunsrances one
might almosr raise a further qucstion, namely: Is rhis wide conceptual uncertain~
ry of contemporary quantum mechanics perhaps one more manifestarion of rhe
uncertainry relations? Perhaps there are sorne who would even asserr, so as
not ro violate the uncertainry relarions, rhat rhe ooly rhing we know for certain
is "\\'ho knows?".

Let us now go over to rhe subject of our papee. A few years after rhe
foundations of modero quantum mechanics were laid by lIeisenbe-.;, Schrooinger,
Dirac, etc., there appeared the first au:emprs to revise chis newborn and higftly
successful theory. One of rhe directions rhar began to develop and [hat is of
dircct in[crest for our work, was inaugurared by Fürth2, who proposed [o in-
terpret the quantum process as a diffusion, motivared mainly by relatively obvi~
ous mathematical analogies and by rhe scatistical character of quanrum pre~
dictioos. Larer on, Fényes.3 proposed a srochastic rheory in which he could
derive the Schrodinger equarion froro a hydrodynamic Lagrangian consrrucred
aJ hoc. This line of thought was continued by Weizel" and others, but its scarce
success caused it to decline.

Thc idea was rcsurrected subsequently, in analogous physical Cerms
but with the help of more devcloped rechniques. Kcrsha~, for instance, is able
to derive the scacionary Schrodinger equacion by postulating that me path of the
electron is a classical pa[h ahercd by a f1uctuating movement. Approaches ol
this kind are no doubt interesting, in that they represcnt attempts ro achieve a
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more fundamental description oí (he behaviour oí che electron; however, che}'
aH suffer from (he habie oí reducing (he quantum phenomenon with all ¡es pe~
culiarities tú a classical stochastic process. This helps create a major conp

rusion as ir obscures (he distinction bctwcen (he movement oí an electron and
that of a colloidal particle, foe example.

In spite of these shortcomings, (he very idea oí a s(ochastic process
underlying quantum mechanics pc()-ves fcrtile; attftmpts along chis line have
Rppt"ared wichout interruption in (he last few years. It i5 noC OUT tn(enrion to
prcs~nt to you a cOlDpreheosive list of (he oum~ous coouibutions on (his Ult'ffit.';

however, ir is relevant to recaH hefe the work by Nelson6
I probably (he bes.

knou'n al presento From the tlteory of Uhlenbeck and Orn.stein, u;úch des,:ribcs
a stochastic process in phase space, Nelson obtains a dynamical relatioo urhich
he rhen transfers to configuration space, to d~~ive from i.t the Schrodinger e-
quation. In our view, [he mosl importan[ aspect of Nelson's cootribution is [hat
he shows tltat the quantulll stochastlc process is not reducih.le ro any of rhf
c lassical stochastic processes, becausc he is obliged to combine in a somi'whar
arbitrary way rwo descriprions which are valid in different classicat siruations,
in order ro obra in quantum re_sults.

Subsequent ro Nelson's works [here have appeared other fonnulatioos tha[
imply or are consistent with this basic principie, [hough [hey dcvelop it along
different lines'. Under ches~ circumstances the question aris~s of whethe-r it
is possible to construCt a [heory for s[Qchas[ic corpuseles of suffícient gener.
alí[)" as to inelude in a natufal way the quantum movement. Thc. faer thar this
question can be answered in the affirmative8, as we shall see belo'o,,', allou's us
to conclude [hat quantum mechanics can be understood as a sui generis stochastic
process, different and distingulshable from those characterizing classical phe-
nomena such as Brownian movement. Consequently the statistical content of
quanturn rnechanics is to sorne degree analogous ro chat of che che(){}'of Brownian
movemeo[, though the two theories differ essential1y in their dynamical detail.

lIence, we must faee a furth~r question, namely: what is th~ origin of
quantum stochasticity? As we shall see in the second part of this papcr there
are reasons to suppase that the cause of stoehasticity may be found in the
inreracrion of rhe elecrron with a fluctuating {'Iccrromagnetic field. whosc
'lvacuum" srare is analogous ro rhe vacuum f¡eld of quanrum elecrrodynamics.
This sort of answer would ha ve rhe addirional advantage of dcrermining a physi-
cally real cquivalenr for a necessary theoretical element such as the zcro-poinr
radiarion field, rhus corroboraring rhe possibili(y of constructing a consisren(
rheary for rhe system composed of the elecrron and the electromagnetic field-.

11 should be s(ressed (hat the introduction of a real fluctuating field with an eneqi:Y
per normal mode of %15w is not free from considerable and still unsoJved difficultit"~;
this is an open question and here w{" merely acknowledge its existence.
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Within a scheme ol this SOft, the radiative corrections, lor instance, which are
proper to quantum electrodynamics, arise naturally by taking into account the
interplay between the (stochastic) Lorcntz force and the radiation reaction9•
Other quantum phcnomena find a natural explanation as well: for instance the
interference phenomena of quantum mechanics may be understood as the form
in which the properties of the background field are reflected upon dIe movement
of the partic1es coupled with ir.

The formulation of stochastic quantum mechanics which we are referring
to goes roughly as follows8,IO: it starts by developing a statistical description
for a general stochastic process in coordinate space. '1'0 this end we construct
first the kinematics for the stochastic process, in terms of quasi-local dynamical
variables, which are already st3tistical quantities obtained by considering an
ensemble of systems chtlracterized by a density p(r ,/). Thus we arrive at two
different concepts of velocity: the systematic or flux velocity v and the
stochastic or diffusion velocity u, which can be written as

where

v=[J, e ' (l)

.l)c = (a/o/) + v. '11, [J = u. '11+ Dí/2
s (2)

are the systematic and the stochastic derivative operators respectively. The
"diffusion coefficient" O is (one half of) the second derivate moment of ri.
It is possible ro prove further that

u = Dí/p/p.

In an analogous way we can define four diHerent accelerations:

[Jcv, () u, [J u, [J v.s e .')

We use these elements to construct two dynamical equations that de-
scribe the statistical behaviour of the system: all equation of motion and a
continuity condition. In constructing the first one, we are guided by me corre-
sponding dynamical equation, which IS assumed to have (he forro of a general
Langevin-type equation:

mr = '01 + ~ + I,;nrl¡ (4)
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where f is [he external force, f<lisis 'he dissipative part oC [he force chate"
arlses as a result of che interaction between (he parcicle and [he stochastic
medium and I~ is [he purely random pare oC this force.

The corresponding average equation is therefore a relation berv.'cen [he
average force and a linear combination oí [he four accclerations introduced
previousl)". BUI by taking ioto account f¡esr chat all leems must have [he same
behaviour upon time reversal, and second rhar in [he non-stochastic limit
(¡.c., when u ....•O) [he equation should reduce [O Newton's second law, we are
1eft Wilh

m(1) v - 11.1) u) = F+e s ('i)

as the equation of motioo. A is a real, bUI otherwise arbitrary parameter, and
F+ is (he force [erro thar does nOI change its sigo upon time reversal.

The second dynamical equation is the stochastic versioo oí the equation
of continuity:

with

m(1)v+1)u)s e

F- ~ - m(u x 'Vxv + D'VX'Vxv).

(6)

(7)

In fact, the continuity equation is derived by introducing Eqs. (3) and (7) into
(6) and integrating over the space coordinates.

Eqs. (5) and (6) ean be eombined ¡nto lhe suggeslive fOlm

(8)

As we shall see later 00, this is rhe genecalization of Newron's second
law foc c1assical as well as foc quaor-um systems. lIere,

and

E=iV-\.

V ;::: v+Eu,q (9)

We shall as sume that the dissiparive term is small and hence can be
introduced laccr on as a perturbarion. \t'hen rhe force is derivable from a po.
cencial, Eq. (8) is incegraced simply by writing v as a gradient; in rhe more
general case in which chere is also an electro~agne[ic f¡(,ld preSt'fH. che
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incegracion is carried ouC by incroducing {he ansa{z

Vq = 2ED'Vw -(e/me) A

111

(10)

where w
t
are dimensionless function .••;llld A is rhe electromagnetic vector po.

tential; F+ must now be the Lorell{/ fmee, Upon rhe change of variable

(11 )

the result of che integration tal\es the form

This equation coincides widl da- Schr()dinger equation if we take t... = 1 and
D =15/2m.

We would like {O add that with t...= -1, Eq. (12) represents an alterna.
tive way of describing Browllian motion, as has been shown elsewhere8, 11.

In this case, however, on<.'must explicitly take imo account the frictional force
'dis:= -mf3I, which contrihut(,s ro the potentia! V in Eq. (12) with the term
-2mDf3..pt1n..p+ (see rhe second paper in reL 8). lIence for the classical system
we obtain a non-linear Schrtldinger-rype equation. So we have here a simple
merhod to deal wirh c1assical as wcll as quanrum mechanical systems. Clearly,
rhe parallelism betwecn th(.s(' twn systcms can be exploited along several
directions. For instance. ir is possibIc to work out the path integral rnethods of
Feynman and Kac for quantum mechanical and c1assical sysrems, or even a
rheory of canonical cransformatiolls. by using Eqs. (5) and (6) as a starting
point.12

To obrain the fundamenral equarion of quantum rnechanics we have had
ro assign ceuain values ro rhe paramerers t... and [J. It is evident thar these
paramerers are related ro the spccific form in which rhe p:trticle imeracrs with
the mediurn that impresses the srochasticiry upon irs movement; hence, as long
as we do not know anything about rhis mcdium wc cannot derive A and D from
firsr principies.

Ler us rherefore inquire inro rhe possibility of construcring a specific
theory ol rhe general type proposed, by postulating a concrere equation of the
form (4).13 To be consistent with quantum mechanics, this formularion should
satisfy [WO requirements: ir should allow for the existence of srates of
stochastic equilibrium and it should not imply the exisrence of an absolure
reference system_

The mosr immediare possibility of constructing such a formularion is
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opened up by che so-ealled srochastic electrodynamlcs. The basic hypomesis
ol (his rheor.y04,15 is the existence oí a fluctuating, stationary, Gaussian elec.
tromagnetic field whose vacuum sUte has exact1y me spectral cnergy densicy
ol [he zero-poim radiarían f¡cld. If we ¡nelude the radiative reaction force
'nTi",which allows us ro satisfy both requiremems mentioned aboye, the equation
ol motion for each electron reads (in one dimension)

",i = ¡+"'TX + .8(1); T = 2.:'/3",2 (3)

in the nonrelativi.~tic (d¡pole) approximation. E(t) is the srochastic electric
(icId, whose average is zero and whose correlation function 15

<E(I)E(I'» = '1,11r p(w)cxp[iw(l-t')]dw (4)
_<D

OC 10 rerros ol its Fourier transform

<E(W)E*(w'» = '1, 11 p(w) 5(w-«)') o S)

whcre p(úJ) is the spectral energy-density. To study the ground state of the
quantum system we as sume p(w) equal to the energy density of the zero~int
¡¡cId, namely,

p(w) = be,; /(2r?-r:') , (6)

E(t) is a stationary Gaussian proccss, hut since its correlation function is not
an exponential, ir is not a Markov process, as follows from Doob's theorem.

We would like to find the statistical solution 10 the problem defined
by Eq. (3), but there are no techniques to solve such a general problem. Seeing
that we must conrent ourselves with tackling particular problems, we choose
(he harmonic oscillator, which has beco partIy studied by different authors of
stochastic electrodynamicsH• Thcreforc, (he equation to be solved 15

i+~x = Tx+(e/m)E(I).

A 50lution that is both causal and free froro run-away difficulties is

(7)

al
X = (e/",)J (E(w)/6)[(l +2 TU +iTW) CIp(iwl) + G(w) exp(-ut)] dw

_<D

where

* (8)
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t:, = [(1 +2 rer'j2 + r'W'] H+(er +; w)2),

er = y, rW' >0 W' =W' +O(er2)2 O ' 1 O
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and G(W) is an oscillating function of time. Hence, for large times the last
'e'm in Eq. (18) vanishes and ,he sys,em becomes s'abilized. By calcula'ing
the energy with the usual formulae, we conclude that (he energy acquired by
the oscil1a(or due to the aedon oE the fluctuating forces is, to £irst order in T,

(9)

Futlhe,mo,e, using Eqs. (15) and (18) we can calcula'e ,he momen's of
x and convince ourselves mar the corresponding'distriburion is Gaussian~

The variance is a complicated function of time which goes to

(20)

(erl »1). (21)

These results show that the system behaves just like a quantum harmonic
oscillator in its ground state aiter equilibrium has set in, Le., for a time
,»0--1 which we can estimate to be oi the order of 10-15 s if the energy is
nO( too low. To show that this coincidence of results is Dot simply an accident
we can tey to prove that the statistical description of the stochastic oscillator,
once in equilibrium, is given precisely by the Schrodinger equation. The
easiest way oE doing this is by ca1cularing the velocities v and u from iqs.
(18) and (20). The ,esul,s are

(22)
and

(23)

To calculate u we used the formula u =D'Vp/p and to calculare v we inregrated
the equation of continuity.

Now, we note that since Eq. (17) is a particular case oí Eq. (4), ir
should be possible ro describe the harmonic oscillaror of stochastic eleccrody.
namics by means oí rhe equations of out stochasric formulation. In fact, by
'5ubstituting v and u we find that
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F =-mW". (24)ext O

lIence, once (he system reaches equilibrium, ir satisfies (he equations oí (he
slochas<ic lheory íf and only if (cE. Eq. (5) with p+ = Pe",)

A = 1, D =1J/2m ,

Le.,only if (he free parameters assume rhe values rhar characterize a quantum
stochastic system. No negative value of A is cOIlsistent with [he theolJ. Hence
we conclude that Eq. (I7) together with rhe statistical properties assigned (Q

BU) refee Dal to a classical, but to a quantum-mechanical system rhar is governed
by rhe Schrodinger equation once it reaches equilibrium.

Without gaiog ioto details for lack ol time, we must indicare rhar rhe
aboye conclusions can be extended to inelude (he excited states oí (he hannonic
oscillator.

Now ir seems appropriate to returo to sorne oí rhe preceding resules.
In che £irsr place, we observe rhar rhe correcrion eo rhe energy in Eq. (19) is
due ro rhe radiation reacrion and hence should be idenrified wieh rhe Lamb
shife of rhe harmonic osci11aeor. To a firse approximatioo, rhe value obrained is

ÓEoo = (a1;2w/7Tmc2) In (3me/2a5w )o o (2~)

and compares favourably wieh rhe quanrum-elecerodynamical result, even
rhough we have nor introduced relarivisric considerarions. Mosr importanr of
a11 is che face rhar there is no need to renormalize, because rhe inregrals
involved are convergent. The numerical result is improved by inrroduc ing a
relarivisric cur-off frequency of order m¿ /6; in fact, we obtaill precisely rhe
value for rhe Lamb shift predicred by semirelarivistic qualltum electro.lynamic.s.
namel}' ,

ÓE", = (aiPc.¡;hrme) In (me2/6wo)'~
(26)

Moreover, by raking ú.Jo = O we also obtain a fioire result for rhe ma~',
eorrecrion of rhe free particle; if we introduce rhe same cur-off hequency as
before, we ger

Sm = (a/6rr)m . (27)

We would like to stress rhar rhe physicallyappropriare solution of
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Eq. (J 7) implies a certain modification of lhe field due lo ilS coupling wilh !he
oscillator. This mean s that the field is modified by the presence of me material
system, and acquires a structure which in turn becomes manifest through the
statistical behaviour of the system. Bere we ha ve a plausible explanadon for
the wavelike phenomena that are displayed by an ensemble of quaotum systems.
A further fundamental property of quantum mechaoics, namely the superposition
of amplitudes, finds a simple explanation in our scheme; in fact, frorn Eq. (12)

we learn that superposition of amplitudes is the rule provided the dissip1tive
forces can be neglected in the process of integration. This happens to be
the case in quantum mechanics, due to the smallness of the coefficient T,

but does not occur for a colloidal particle, for instance.
Since there are no reasoos to suppose tlmt the harmonic oscillator is

rhe ooly system of srochastic eleccrodynamics that has a quantum mechanical
behaviour, we are led ro believe that our observations are of a more general
validity. Ahhough ir is true thar we have not yer established a direct con.
nection between the fundamental dynamical equarions and the statistical
equations, [he resuhs ob[ained up to now lead us to believe that this Con-
nection exisrs; that we are nor simply beiog misled by a formal analogy, or
even less by a mathematical artifacL

Of course, many ques£ions remain unanswered and many new ones have
ariseo. Ure would like to mention only sorne of rhem. First, we have described
quantum mechanics as a srochastic process io configurar ion space. Will ir
be possible to exrend rhe descriptioo ro phase space aod thus COOSUuct a
theory thar would apply for arbitrarily small time intervals? Second, we have
assumed that rhe particlc interacrs with rhe radiarion field rhrough Íts elecrric
charge¡ will it be possible ro extend rhe rreatment to neutral particles? In
both cases, rhe answers seem to be in dle affirmative, but clearly much work
must be done in order ro find the final answer.
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Después de señalar varios problemas referentes a la fundamentación
de la mecánica cuántica, y de mencionar algunos de los intentos más signifi-
cativos que han aparecido hasta la fecha para resolver dichos problemas, se
reseña en este trabajo una teoría recienremente desarrollada, que establece una
fundamentación esrocástica para la mecánica cuánrica. En contraste con las
teorías usuales, la descripción aquí desarrollada es aplicable a procesos es-
rocásricos ranto clásicos como cuánticos, y por lo tanto nos permire delinear
tanto las similitudes como las diferencias eorre ambos tipos de procesos. La
teoría conriene dos parámetros: un coeficiente de difusión D y un parámetro
A..cuyo signo determina el ripo de proceso estocástico. Para asignar valores
a estos parámetros se requiere una definición física del medio subyaccn~e al
proceso estocástico. En la segunda parte del trabajo se propone que estr me-
dio es el vacío electrom~gnético fluctuante de la elecHodinámica estocá~tica.
Se estudia el comportamiento de un oscilador armónico en este campo; se de-
muestra que este sistema se comporta en el límite de equilibrio como un os-
cilador armónico cuántico; la solución obtenida satisface las ecuaciones de
la teoría estocástica presentada en la primera parte del trabajo si y sólo si a
los parámetros D y A se [es asignan los valores cuánticos. Por último, se
presentan cálculos no relativistas del efecto Lamb y de la corrección radiativa
de la masa del electrón, cuyos resultados son finitos y físicamente signi-
ficativos.




