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ABSTRACT:

We analyze the problem of a radiating harmonic oscillator in
interaction with the random zero=point radiation field. We obe
tain a solution of the equation of motion by taking into account
explicitly the fact that the particle modifies the field. This
solution goes asymptotically into a stationary state, the sta-
tistical properties of which are precisely those of the ground
state of a quantum=mechanical oscillator. We show furthermore,
using the formalism of stochastic quantum mechanics, that the
statistical behaviour of the harmonic oscillator in equilibrium
with the radiation field is exactly described by the Schr'c;dinger
cquation., A similar treatment using the black- body radiation
field at temperatures T>0 yields the excited states of the
system, which again coincide with the quantum=-mechanical

results. We conclude that the harmonic oscillator in the random
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electromagnetic field is not a classical system =as is usually
assumed = but a model of the quantum-mechanical oscillator,
and in fact a more detailed model than the usual one, since
the approach to equilibrium is also described. From the so-
lution of the equation of motion we obtain in a straightforward
way a non-divergent expression for the Lamb shift of the
harmonic oscillator; the result coincides with the usual quantums
electrodynamic result when a relativistic cut-off frequency
w, = mc? /& is used. With the same cut=off frequency, we
also obtain the mass renormalization of the electron, again
without any divergences; this correction is pfoportional to

the fine- structure constant.

I. INTRODUCTION

In the course of the last years there have appeared various attempts
to reformulate quantum mechanics (QM), motivated mainly by the need for a
deeper understanding of the physical principles underlying this theory.
Perhaps the most widely accepted view among the slowly growing circle of
dissenters from the traditional views is that the physical content of QM is a
stochastic process, whose nature remains as yet unknown. Two main streams
of thought share this point of view: On one hand, several authors™?*? have
shown that it is possible to derive the fundamental laws of QM by assigning
a stochastic character to the dynamical variables of the particles. Although
this description, which we call stochastic quantum mechanics (SQM), is
strongly reminiscent of Brownian motion, there are obvious differences that
must be taken into account. This requires in particular the introduction of
specific dynamical postulates whose only justification (at this time) is prag=
matic, inasmuch, as they allow us to derive Schrodinger’s equation.

On the other hand, there exist several attempts to derive quantum=
mechanical results by studying the motion of a harmonically bound particle
with radiation reaction, which reaches a state of equilibrium through its inter-
action with the stochastic zero-point radiation field*”7. In this description,
which we call stochastic electrodynamics (SED), the dynamical postulates
are clear; what is not at all clear, however, is that the few results obtained
up to now after considerable effort (e.g., the energy and the Lamb shift for
the ground state of the harmonic oscillator) represent quantum=mechanical
results, and not merely results that could be predicted for a Brownian motion-
type (i.e., classical) system. (The objection that only very simple problems
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are tractable with this method simply stresses a technical, but not conceptual,
difficulty.)

These two approaches are not mutuallyexclusive. On the contrary:
an appropriate combination of them results in a richer theory whose basic
postulates are clear and whose results are justified. In fact, SED gives us
the answer to the basic question of SQM about the nature of the stochastic
force responsible for the quantum-mechanical behaviour of the electron, and
at the same time, SQM provides us with the necessary tools to demonstrate
that the system described by SED is indeed quantum-mechanicalr As a re=
sult we obtain a physically wellfounded and consistent picture of the quantum=
mechanical system.

In this paper we justify this proposition using the example of the
harmonic oscillator. First we solve the problem of the oscillator in its
ground state using the basic postulates of SED (Section II); the treatment
we use can be extended to yield the excited states as well (Section III) .
Once we have obtained this solution, we show that it is consistent with the
description of the quantum=mechanical oscillator as provided by SQM (Section IV).
In other words, we show that by starting from a Langevin=type equation for
the harmonic oscillator coupled to a stochastic electromagnetic field whose
spectral energy density is given by Planck’s law, we may derive the corre-
sponding Schrodinger equation as a statistical law describing the equilibrium
state of the system.

The main results of our treatment are the following:

a) The harmonically bound particle of SED follows the rules of QM once the
system has reached the state of equilibrium; thus we conclude that QM is an
asymptotic theory®. Clearly, whether our solution holds also for smaller
times is a question that requires further investigation.

b) The joint action of the electromagnetic forces upon the particle produces
a Lamb shift, whose nonrelativistic value coincides with that predicted by
nonrelativistic electrodynamics with a cut-off frequency W _ - mct /b, ° Moreover,
a convergent result is obtained even before introducing any cut=off.

c) The treatment can be applied in particular to the free particle, to calculate
the mass renormalization due to its coupling with the zero-point radiation

field. Again the result obtained is convergent (though too large) even before
introducing relativistic considerations

Introducing once more the relativistic cut-off frequency @_, we obtain
the result &m = am /67 (a = ¢ /‘b’c) which confirms the assurnptwn usually

made in quantum electrodynamics that the mass renormalization is of order
a.
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II. THE STOCHASTIC HARMONIC OSCILLATOR IN ITS GROUND STATE
1. Statement of the problem.

We set out to study the motion of a charged harmonic oscillator in
one dimension, following the lines of SED**7, According to this theory,
the oscillator is acted on both by a random, stationary electromagnetic force
and by the radiative reaction. In a non-relativistic treatment it suffices to
write the Lorentz force simply as eE, the electric field E being a stochastic

function of time only. Hence the equation of motion reads

§+w;x-T§'+(e/m)E(!) (1)

where W, is the natural frequency of the oscillator and T = 2¢2/3mc3.
For E(t) to represent the zero=-point radiation field, we must impose
on it the following conditions: i) it is a stationary Gaussian process with

zero mean; ii) its Fourier transform, defined through

E(t) = (1//2_7;)]'00{(@) exp (iws) dw 2)
with
f(=w) = [ (@), (3)

has a correlation*3 !

<) f*@')> = @28/3M) || Sw-a') . (4)

Eq. (4) implies that the spectral energy density of the field is$w’/2m%c?.

Having specified the field through its statistical properties only, we
are forced to make a statistical description of the system. The ensemble
averages are taken over the set of all possible f(w).

Next we go over to the solution of Eq. (1). We impose on it more
stringent requirements than earlier treatments. First of all we demand that
the solution be causal, which in this instance means that x is to be computed
as an integral extending from 0 to ¢ to take into account only the retarded
effects of E(#). Secondly we pay attention to the effects of the radiation-
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reaction force. As is well known, the characteristic equation associated
with Eq. (1) is usually written as an algebraic equation of third degree, one
of its roots being spurious and giving rise to run-away solutions. We therefore
propose a solution which a priori is related only to the physically legitimate
roots of the characteristic equation, namely,

'
x=[E (t') exp [=0(t=1")] [a sen w (t=t")+b cos w (¢t=1") dt’
(o]

(5)
with o > 0. The parameters 4,b,0 and @, are determined by 1ntroducmg
Eq. (5) into Eq. (1). After selecting @ and b in the form

a-e(l*l"r'o)/mcul ; b =eT/m , (6)
we are left with two algebraic equations for o and @, :

wg + (1+T0)0?=?) =2T0w! = 0 (7)

20’(1+1’U)+T(02-w12)-0 (8)

and a differential equation for E_, the field as modified by its interactior
with the radiating particle:

-1'2:‘;:'m+[(1+1'0')2+r2w12]13’_-E(t). 9)

Since E(#) cannot be disconnected, we do not include the general solution of
the homogeneous equation. To solve Eq. (9), we take its Fourier transform
and use Eq. (2), thus obtaining:

By (1) = AV [ (1(@)/B,) expliwn) de (10)
where

A, =(14210) + 777 . (11)
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After introducing Eq. (10) into Eq. (5) and performing the time inte=

gration, we obtain:
= (efmvzmy [ (f(@)/B,B,) {expliwn[1+ 270+ iTw] +
+exp(=of)[(Tw=(1+TO)O+ iw)/w,) sen @, ¢ =(1+ 270 + iTw) cos w,t] }dw

(12)

where
2
A2=-w12+(0'+:'w) ; (13)

For times long compared with o', the instantaneous position of the particle
is given by

x = (e/mVTm) [~ (f@)/B A,)(1 + 270 +iTw) explict) dow .

Hence we see that the oscillator gradually reaches a stationary state, in
which it is in stochastic equilibrium with the vacuum field.

2. The energy of the system; the Lamb shift.

We are now in a position to calculate the average energy of the oscil-
lator from the usual formula

'/-‘»m<;'2+w12x2> . (14)

A word of caution is required here, however. By deriving Eq. (12) with re=
spect to time and taking ¢ = 0, we obrain:

2(0) = (er/mV3m) [~ (f(@)/A,) do = (eT/m) E,,(0) -

Hence, the initial velocity (which is a stochastic variable as well) is differ-
ent from zero and contributes to the initial energy an amount



The harmonic oscillator. .. 7

(e272/4mm) <| [ (f(@)/D,)dw]”> . (15)

What we are interested in is the energy e(¢) the particle has acquired since
t = 0; this is obtained by subtracting (15) from (14). We calculate it after
the transient has disappeared, i.e., for t>> o', Using Eq. (4) to perform
the averages, we finally get

&= (Kez/Zﬂm)fom(ms/IAl (w)Az(m)lz) (M, +M,0%]d0  (16)
where

A =25/3¢3 (17)

M = w?(14270) =72 (@2 40D’ (18)

M,=(1+270)" 4+ 72 (302 - 207%) . (19)

The integral in Eq. (106) is clearly convergent. Two facts have combined to
produce this convergent result: i) Eqs.(14) and (15) both contain a logarithmi:
cally divergent integral which cancels out when we take their difference to
get Eq. (16); ii) E_ differs from E in that it contains the denominator Al(cu),
which eliminates a quadratic divergence. Hence it is clear that the intro-
duction of E_ is crucial, and that a perturbative approximation to it would
destroy the convergence of Eq. (16).

For the calculations that follow it is convenient to introduce a set
of dimensionless parameters defined by

; qn =270 (20)

w? (21)

In terms of these, Eq. (16) reads:
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C ] 2
e=(\e?/4mm7?) | W/RA)[m +m,u]du (22)
0
where
2 2
R=T‘|AZ| =g (u+ %qn?) =29 (u=4qn?) u+u? (23)
e 2 2 | 22
m =qu(ltqn) -q°(u+ 591°) (24)
2 ). 3.2
m,=(1+4m)" +3qu-%9"n° . (25)

In terms of these new variables, Al becomes

A =0+qn) +u . (26)

Notice that the energy as given by Eq. (22) has a value different from zero
even forw =0 (i.e., g = 0); this value is

e, = (\e?/4mm7?) [ (du/(1+w)) (27)
1]

and represents the energy acquired by a free particle due to its interaction
with the vacuum. The net energy of the oscillator is therefore the difference

between €and e, which we call Ae:

Ae= (Ne?/4rmT?) fm[((ml'szu)/RAzl)u ={1/(1 +u)2)] (28)
0

The integration may be carried out exactly, but the algebra involved is quite
complicated. We therefore prefer to introduce some approximations that simpli-
fy the expressions: we observe first that for a nonrelativistic oscillator,
q = ’rzcug <<1, and hence conclude from Eqs. (7) and (8) that the values of
i and 1) are close to unity. Performing all the calculations to first order in
q (the zeroth order terms cancel out), we obtain:

Ae= (1\92/471'1717'2)[277\/@-— 2g - 3q In q]
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or in terms of the physical parameters:

De= '/zﬁcuo[1+('rwﬂ/7r)(31n(1/'rmo‘)- 1] . (29)

This result, which represents the (average) total equilibrium energy of the
oscillator, may be divided into two parts: in the first place, there is the term
'/zﬁwo which coincides with the energy of the corresponding mode of the vacuum
with which it is in equilibrium; the second contribution represents the Lamb
shift of the oscillator due to its self-interaction via the vacuum field. The
result obtained for the Lamb shift, which can be approximated- as

§e = (ap’wl/mmc?) In (3mc? /2abw,) , (30)

is quite gratifying, since it is of the right order of magnitude and its compu-
tation did not involve divergent integrals. Its numerical value may still be

improved by taking into account relativistic effects, such as the uncoupling

of the particle from the field and its increased radiation at high frequencies.
The simplest way of doing this is by cutting off the integral in Eq. (28) at a
frequency w_ of order mc® /F . Introducing this cut-off we obtain for the Lamb
shift:

e = (abzws /rrmc?) In (mcz/ﬁwo) . (31)

This result coincides exactly with the value given by nonrelativistic quantum
electrodynamics for the ground state of the harmonic oscillator, when the same
cut-off frequency is introduced to make the result convergent.!?

Results similar to ours, but based on a somewhat different approach,
have been obtained previously by Marshall* for the ground state energy and by
Braffort et.al.® and Santos’ for the Lamb shift of the harmonic oscillator.

3. The mass correction.

As an important by-product of our treatment of the harmonic oscillator
we obtained in the previous section an expression for the energy acquired by
a free particle in the vacuum field (see Eq. 27). From this expression we

may calculate the mass correction by carrying out the indicated integration;
we obtain

]

qn = (3/8ma)m . (32)
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This result, though finite, is evidently too large. To get a better estimate,

we introduce the relativistic cut-off frequency w_, whose value we may con-
sider to be determined by the previous calculation of the Lamb shift of the
harmonic oscillator; this amounts to introducing an additional factor (2a/3)2

in (32):

dm = (a/6m)m . (33)

Thus it is possible to obtain from elementary calculations the renormalized

mass of an electron in interaction with the electromagnetic vacuum'®; this
result justifies the usual assumption of quantum electrodynamics that 8m ~ am,
Notice that the numerical coefficient in (33) is sensitive to the selected cut-

off.

II. EXCITED STATES OF THE HARMONIC OSCILLATOR
1. Calculation of the energy.
As the temperature of the heat bath rises, the oscillators of the ensemble
become excited, i.e., they go over to higher energy states. In this Section
we study an ensemble of oscillators in equilibrium with the random electro-

magnetic field at temperatures T > 0, whose spectral energy density is given
by Planck’s law:

I=1 (1+€)/(1-¢€) (34)

3
where || = %|w| /38, e= exp(=S#w) and B! = kT. We therefore write
instead of Eq. (4):

L)y (> = Ha) S = w®) (35)

where I{w) is given by Eq. (34).
Now we propose to write the Fourier component f(w) of the electric
field as a power series in €:

f@ = 5 [ et (36)



The barmonic oscillator. .. 11

It is casily scen from Eqs. (34) and (35) that the correlation of the fi has

the form

<fylw) fr @)> = (1= €] dw=-w') (37)

Using this and Eq. (36), we may rewrite Eq. (35) as follows:

Y@ f@H> =1-anlw-w)ate 3 erth ]
R =0

. . 5 g i r
Since there are n+ 1 different combinations of integers k and 2" such that
k+k'=pn and n combinations for which k+&'+1=p , the above result can be
written also in the form:

f@)ffw')>=(1-e18w=-w") X (m+1)€”. (38)

n=0

Now we introduce this into the expressions of Section Il and follow the same
procedure to calculate the energy of the ensemble of excited oscillators. In

performing the integrations, we observe that there is a strong resonance at
W &3 @, due to the denominator Az ; hence we can make an approximate evalu-
ation of the integrals by taking the factors €” = exp(=n3fw) out of the inte-
grand and writing them as exp(-—nﬁﬁwo ) = the price we pay for this simplifi-
cation is that we can no longer calculate the Lamb shift for the excited states.
With this approximation, we arrive at the simple result:

Be=(1-€) % 4w (2n+1)€"=(1-€) % ¢ € (39)
n=0 n=o0
where
E" -‘Ewo(rz‘f' %), (40)

Ae represents the average energy of the oscillators of the ensemble. Eq. (39)
tells us that there are an infinite number of possible states, contributing with
an energy € and with statistical weight €”. The factor in front of the sum
in Eq. (39) is just the inverse of the partition function Z:
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Z= 3 €= 1/(1=¢€)

n=0

and therefore Eq. (39) can be rewritten in the form:

De=(1/Z)3 I (41)

n

Thus we have obtained two results of QM, namely: i) the energy for
the 7' level of the harmonic oscillator, Eq. (40), and ii) the average energy
for a mixed state in thermodynamic equilibrium with the black-body radiation
at temperature T, Eq. (41).

2. The density of particles.
The results obtained allow us to calculate the probability density o
as a function of x. Let us begin, for simplicity, by determining By s the

density at T= 0. To this end we calculate the mean square of x (#) to first
order in T, from Eq. (12); the result is

;02 = <x? >T=0- (‘E/meo )(l-exp(—o't)) x

x[1- exp(-crt)i-(ZU/wO)exp (=0t) sen @ t cos cuot] i (42)

With the same approximation, it follows from Eqs. (7) and (8) that

g = 5Tw, . (43)

Since Eq. (1) is linear and E(¢) is Gaussian, it follows that p(x) is also
Gaussian; we therefore get

|
- A
2

po(x, t) = (2‘,'1;'—:) exp (= x2/2—;g ) (44)

It can be easily seen from the calculations of III.1 that the density of the
mixture at temperature T is Gaussian as well, its variance being
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xi=x2(1+e/(1-€) . (45)

Moreover, since the ensemble is in equilibrium, we have
p=ZVE p e, (46)
n
Eqs. (45) and (40) together imply the formula

[Vi-e/omx2(1+ )] exp[- (/25 X1- €)/(1+ €)] = (1-€)3p, €”

from which we may determine the £ by iterative derivation. Marshall has
shown* that the p,, obtained with this generating function coincide with the ex-
pressions of QM for all n, if x02 is taken as a constant parameter of value

X2 = (b /2maw,) (47)

which is precisely the value given by Eq. (42) for o¢>> 1,

Other formulae of QM can be derived from this formulation in the asymp-
totic limit of large times. For instance, the mean square of p () = mx () at
temperature T = U is

2 - Fmo, (48)

for ot >> 1; from this and Eq. (47) we obtain the Heisenberg relation

X205 =4 (49)

for the ground state. To derive an analogous relation for the excited states

wWe write

x4 '—'/—11.' En
”

')

and transform this equation using Eq. (45), to get
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Sxle"=x2S(2nt1)€"
n n

from which

?j-?g(znﬂ). (50)

In a similar way we obtain

P2 =p(2m+1) . (51)

From Eq. (50) and (51) it follows that'*

—_— — Zz
x2p2 = 45 (20t 1) . (52)

Within this context, the meaning of the Heisenberg relations is precise:
they relate the dispersions of a pair of dynamical variables and hence can

only be interpreted in the statistical sense.

IV. THE SCHRODINGER EQUATION
1. Stochastic quantum mechanics.

We have shown that the solutions to the dynamical problem defined by
Eqs. (1=4) or their generalization (1, 2,34-36) coincide formally in the asymp-
totic limit with the corresponding results of QM. To confirm our basic propo-
sition, namely, thag what we are dealing with s a quantum=mechanical system,
we should be able to derive the Schrodinger equation as an asymptotic equation
of our theory.

A simple way to achieve this is by using the dynamical description
provided by stochastic quantum mechanics. For the sake of completeness
we present here a brief revicw of the main results of SQM*>15

The theory gives a statistical description of the behaviour of a stochastic
particle in configuration space; hence it is valid only after local equilibrium

has been artained. Two different local mean velocities are associated with
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the stochastic motion of the particle, namely, the forward and the backward
velocities or alternatively, the systematic (v) and the stochastic (u) velocities.

The first of these enters into the continuity equation

(Qo/3) +V = (vp) =0 (53)
and the second one is given by

v=DpNo/0) (54)

where D stands for the diffusion coefficient, These velocities can be ob-

tained by applying to x the derivative operators
0 =(d/at)+v'v (59)
and

N =y-V +D\f2 (56)

s

respectively, i-e.,
v =20 x: v=1L x . (57)
c < e

In developing the dynamics, we refer for simplicity only to the case
in which the external force is derivable from a potential.  There are two dy-
namical equations: one of them expresses the conservation of particles and
hence is equivalent to the continuity equation, (53).  In fact, we may derive
it by taking the gradient of Eq. (53) and rewriting the resule in terms of the

above definitions:
Bu+tlv=0 (58)

The second dynamical equation relates the accelerations to the external force

F: it can be shown that the most genceral linear relationship is

0 v =i = F/
D v-rB v=F/m (59)
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where A is a real parameter. The sign of A is crucial in defining the dynamics
of the system. In fact, it has been shown that Eq. (59) applies to Brownian
motion when A = -1 and to QM when A = + 1. The latter is most easily
demonstrated as follows: instead of v and v, take two new functions w, and

w_ such that

viveaiy =+ ZD\/-—)\Vw* (60)

and rewrite the fundamental equations (58) and (59) in terms of them. The
new equations uncouple and linearize upon the further change of variable

\/Jt = exp Wy . (61)

In fact, we obtain after a first integration:

F 2mDV=R (3, /31) = = 20D AV oy + Vi), (62)

where F = = VV. We see that for A = 1, Eq. (62) indeed reduces to the Schrodinger
equation, if the diffusion coefficient is given the value

D =%/2m . (63)

The probability density is given in general by

P =, (64)

and for A = 1 in particular, |/, = l/J: , as follows from Eq.(62). For further
details we refer the reader to the literature,!315:16.17
In the following we apply this description to the harmonic oscillator
of Sections II and III, with the aim of demonstrating thar it obeys the Schrodinger
equation for t >> o !,
2. The identification of the harmonic oscillator of SED as a quantum-mechanical
system.

Let us return to the one-dimensional stochastic harmonic oscillator
discussed previously. To simplify the calculations, we shall determine the
velocities v and u for the ground state'only. The stochastic velocity is ob=
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tained from Eqs. (44) and (54):

w==(/x2)x (65)

and the systematic velocity is determined by integrating the continuity

equation (53)¢

v =—(1/p)(3/a-')lxpdx=-—gu (66)
0

where

= {I/ZD)(d:; /dt) = (ﬁU/Zml)uJo)[((U/wn Ycos wyt + 2 sen t} -

-2 ((o/wn) cos w t t sen aJnt) cxp{-(ﬂ)] exp(=01) sen w t .

(67)

We now ask ourselves if these velocities satisfy the fundamental equations
of SOM. [Eq. (58) is automatically satisfied for all times, since it is equiva=-
lent to the continuity equation (53). Further, we use the above results to

calculate

, == 1 . .
Hov=A l@gu = -(D/(xg ) )[D(g? + N\) —gxrf] x (68)

According to Eqs. (42) and (67), this ieduces to

ch_v- /\Igsu = . ‘*.(Eml)m(]/"f)l x = K(2mD/ﬁ)2(l"/m) (69)

for t>> o', This expression is meaningless if we take A # 1; it would
describe a dynamical behaviour which is neither classical nor quantum-
mechanical. On the other hand, we see that with A = 1 Eq. (69) coincides
with Eq. (59) if at the same time we take D =#/2m. Recalling from III.1 that
Eqs. (58) and (59) with A = 1 and D =4#/2m are equivalent to the Schrodinger
equation, we arrive at the conclusion that the harmonic oscillator of SED is
not classical, but guantum-mechanical. It is easy to extend the treatment
to the excited srotes and thus show that they also satisfy the Schrodinger

t'quﬂll()(‘ .
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3. The formula for the diffusion coefficient.

The theory of SQM does not provide the means for evaluating the dif-
fusion coefficient D and hence has admitted Eq. (63) as an empirical formula.
In view of this unsatisfactory situation, several attempts have been made to
estimate the value of D from general physical arguments™ 1, As shown above,
a consistent treatment of the harmonic oscillator confirms Eq. (63), but since
its value evidently does not depend on the specific problem (i.e., on the ex-
ternal force), we may consider this as a general result.  We should like to
insist here on the meaning of this result, namely, that Planck’s constant
enters into QM precisely through Planck’s distribution law for the radiation,
field (with zero-point energy) .

V. CONCLUSIONS

A new picture of QM has emerged from the present treatment of the
harmonic oscillator, which can be essentially summarized as follows: QM is
a statistical theory of particles = insofar as they obey a Langevin-type
equation = that interact with the random electromagnetic field produced by the
rest of the universe. The consequence of this interaction is twofold: i) the
electromagnetic field becomes modified by the presence of the material system
(recall that a field E_, builds up in the example of the oscillator coupled to
the vacuum field E); ii) the particle acquires a stochastic motion with a
statistical behaviour which reflects any regularities, such as the wave- like
properties, that the field may possess. As a result of this mutual action, the
structure acquired by the field as it adapts itself to the environment (including
slits, borders, other particles, and so on) becomes manifest through the sta-
tistical regularities of the motion of the particle, which all along its trajectory
receives via the field an integral information about the whole system. This
explains the appearance of typically quantal phenomena: for instance, the
electron interference pattern obtained from a double slit experiment can be
thought of as a transcription of the corresponding pattern impressed upon the
field by the presence of the slits. From this point of view, it is clear that
interference and other wavelike phenomena in QM can be detected only by a
large series of experiments, since they are predicted for the ensemble. In
fact, according to our theory all the quantum-mechanical description is in terms
of the ensemble and hence can only yield statistical predictions; this theory
actually serves to vindicate the so-called statistical interpretation of QM%,
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As we have seen, a further consequence of the interaction between the
particles and the random electromagnetic field is the appearance of additional
effects such as the Lamb shift and the mass correction. The possibility of
carrying out divergence-free calculations of these effects could be regarded
as a motivation in itself for further research into this more general formulation
of QM. Morcover, we have seen that the quantum-mechanical system admits,
at least in principle, of a more complete description than the one provided
by the usual theory, since: i) the present description is in terms of “hidden
variables”, such as the Fourier amplitudes f(@) or the position and the
velocity of the elements of the ensemble; ii) QM is obtained in the asymptotic
limit,- after the initial transient has died away. For the harmontcally bound
particle, the corresponding interval is ¢ >> o1 = 2/7(4)3) s from Eq. (43), or
writting £ = 'éﬁmn = 7imc? and N = mct/E, 1>> )\r/a"r)zc2 . For an ener-
getic particle this nonrelativistic calculation predicts t 2 10715 = 1071 sec,

We would like to make a final remark about the origin of the stochastic
field. In this paper we have made free use of the black-body radiation law,
which was certainly the first quantum law ever established. From this point
of view one could say that we are obtaining the quantization of particle systems
from the quantization of the field. However, it seems more appropriate to
take as the fundamental postulate the very existence of the random electro-
magnetic vacuum, since from this it is possible to derive both the black-body
radiation law (as Boyer has done?!') and quantum mechanics (as is done here),
without explicitly introducing quantum concepts. The question of whether
the zero-point radiation field itself is classical or quantal is perhaps no
more than terminological; both views can be found in the literature*?.

Of course, at this primitive stage our formulation seems to pose at
least as many problems as it solves; among the questions it raises, we are
immediately confronted with the problem of demonstrating the general validity
of the conclusions which we have drawn here based on our treatment of the
harmonic oscillator. It will be also necessary to analize the solution of the
general problem for short times. Another open question is the treatment of
neutral particles, a problem which is being studied at present. The modifi-
cation suffered by the electromagnetic field through its interaction with the
particle requires further study, in particular for the problem of the mutual
influence of two particles, Lastly, it should be noted that while the present
attack offers certain generalisations beyond the power of the stochastic theory

of quantum mechanics, this theory in several ways goes beyond the present
results.
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RESUMEN

Se analiza el problema de un oscilador arménico radiante en interace
cién con el campo estocastico del vacio electromagnético. En la solucién
de la ecuacién de movimiento se toma en cuenta explicitamente el hecho de
que la particula modifica el campo. La solucién tiende asintéticamente a
un estado estacionario, cuyas propiedades estadisticas son precisamente las
del estado base del oscilador cudntico. Se demuestra ademas, utilizando el
formalismo de la mecanica cuantica estocastica, que el comportamiento esta-
distico del oscilador en equilibrio con el campo de radiacién, esta descrito
exactamente por la ecuacion de Schrodinger. Un tratamiento similar usando
el campo de radiacion de cuerpo negro a temperaturas T > 0 da los estados
excitados del sistema, que también coinciden con los resultados cuanticos.
Se concluye que el oscilador arménico en el campo electromagnético estocis-
tico no es un sistema clasico =como generalmente se supone= sino un mode-
lo del oscilador cuantico, y de hecho un modelo mas detallado que el usual,
dado que también se describe la evolucién hacia el equilibrio. De la solu-
cién de la ecuacién de movimiento se obtiene en forma directa una expresion
no divergente para el corrimiento Lamb del oscilador armonico; el resultado
coincide con el resultado usual de la electrodinamica cuantica cuando se in-
troduce una frecuencia de corte relativista w, = mc?/f. Con la misma fre-
cuencia de corte se obtiene la renormalizacion de la masa del electron, tam-

bién sin divergencias; esta correccién es proporcional a la constante de es-
tructura fina.





