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ABSTRACT: Using canonical transform techniques, we find the unitary
irreducible representation matrix elements, or integral kernels,
for finite SL(2,R) transformations when the generator of the
diagonal subgroup is any of the one=parameter inequivalent
subgroups $0O(2), $O(1,1) or E(2). The method reduces the
problem to the solution of a single integral and the results
are given in terms of hypergeometric functions. The mixed

basis representation matrices are also given.

I. INTRODUCTION

The most direct approach in finding the representation matrix elements
of finite transformations

£= (‘j 3) €SL(2,R), ad=bc=1,
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is as follows. First one chooses a Hilbert space ¥ of functions f of x in some
space X where the action of SL (2,R) is well defined and onto

fx) & [0 f] (x) . (1.1)

Then one builds a complete orthonormal basis {l,"fi’}, (Le ACR, the real field)
for H, generalized eigenfunctions of an element J, of the Lie algebra s/(2,R)
of SL (2,R), whose spectrum is A and which belongs to a given irreducible re=
presentation Dy of s/ (2,R).' Finally, one computes

st (£2) e 8) 0 - f0 0 o (o

(1.2)

where d /. (x) is the appropiate measure over X.
In reviewing the literature we see that a number of papers' have imple=

24 series. A somewhat

mented this method for the principal?*® and discrete
different approach calls for finding the '101\“ functions (1.2) for one=parameter
subgroups as solutions of differential equations with boundary conditions im=
posed by (1) = 1 for the group identity.>** All these results are well known
for the case when the diagonal element of the algebra is the generator of the
SO (2) subgroup of SI. (2,R). When the operator chosen diagonal is the generator
of a non=compact subgroup, the results are not so easy to obtain*~® due mainly
to difficulties in evaluating (1.2). The simplest supporting space X for the
principal series is the circle and the Hilbert space is {2(=m, 7). For the
“Jiscrete” series, however, most of the literature concerns itself with the
unit disk,*®7 the integration (1.2) being performed over a two=dimensional
manifold. The latter is more difficult when the diagonal operator is non~compact.
It has come to our attention that the techniques of canonical transforms
of References 6 and 8 considerably simplify the evaluation of (1.2) since one
realizes the action (1.1) of SL (2,R) as unitary mappings of {2(RY through a

non=local (or integral transform) acnon,” =% as

[r‘( il (r)—f)dr [exp(=i mb) 6" (rr' )
« exp [(1/2) (ar'? + di? N Jypa o' /6) [ (). (1.3a)

When b—0, we see from the asymptotic properties of the Bessel function that
(1.3a) becomes the geometric action.
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[8(? S A0 = lal exp lc2) 21 f(|a |70, (1.3b)

This can also be seen from the direct exponentiation of the operators. It should
be mentioned that for 2k non=integer, (1.3) yields a ray representantion of
SL (2,R) which can be extended to a true representation of the universal cove-
ering group SL (2,R) as will be given below. This corresponds to the expo=
nentiation of the second=order differential operator realization of the s/ (2,R)

algebra given by

J, = (/&) [=@*/dr*) + (u /r?) = £2] (1.4a)
J, ==G/&)lr(d/dr) + (d/dr)r], (1.4b)
J, = (1/4) [=(d*/dr®) + (u /r*) + £2] , (1.4c)

which belong to the “discrete” series D: of representations of s/(2,R), where
w = (2k=1)? = (1/4) (1.4d)
and the value of the Casimir invariant ,’i -jf -]:22 is k(1 =k).

The association of one=parameter subgroups generated by (1.4a=c) and
group elements g = (‘:_ 3) is given by

. cosh?a =sinh?a ) exp(=%3) 0
exp(iaf ): . exphﬁvz): 0 .

-sih 3 a cosh? a exp 3 8
(1.5a,b)
. cos 3y asin t oy
exp(iy],) : s e , , (1.5¢)
in cos 3y
exp(ib[] +J,1): (; ?). explcly,-y - (; ‘1’). (1.5d,e)

T'he representation (1.3) can be extended to SI. (2,R) through the application
of exp(-ZTTi]s) = exp(=277ik), extending thus (1.5c) to the full y=line.

The integral kernel in (1.3) is thus a °D function of the kind (1.2) in the
generalized basis t,bf- (r) = 8(r=1"), r,r'e R, which is complete and ortho-
normal for {2(R*). Our task is to find the corresponding expressions in terms
of eigenbases of other operators of the algebra (1.4). Of particular interest are
the eigenbases of H? = 2]3 (quantum harmonic oscillatex plus centrifugal
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potential) given in Section II which have been obtained in a different way by
Moshinsky and Quesne.’ The eigenbases of H" = 2], (repulsive oscillator plus
centrifugal potential) are given in Section III. We devote proportionately more
space to them since these expressions are, to our knowledge, new. For
u! =], * ], (pure centrifugal potential or, when ;0 = 0, the Schridinger free pare
ticle) we develop Section IV. Mixed=basis elements are given in Section V.
We concentrate on the space {2(R*) rather than L*(R) since the r>0and r< 0
subspaces are left invariant under the group generated by (1.4). The matching
of the two will be made in Section VI where we also examine the two repre-
sentations 0:1 and DI2t° which (1.4) belong, namely, for

ko= 1[4 8] k= 4(1= [t d] . (1.6)

We would like to stress that the novelty of our method hinges on the
fact that the action (1.3a) of the group can be given entirely in terms of geo=
metric transforms (1.3b) and the appropiate one=parameter subgroup (1.5)
generated by the chosen diagonal operator. ' This means th at the integration
(1.3a) can be entirely circumvented (for eigenfunctions of u?, 1" and #') and
that the evaluation of (1.2) reduces to a single integral which can be found
in tables such as Reference 11, and the result expressed in terms of a hyper-
geometric function.

II. THE HARMONIC OSCILLATOR BASIS
The eigenfunctions of
Hb =2y, = t[=@*/ar?) + (w/r?) +1?] (213

for £ > = 4 are well known to be

) = (@) /T +20)) 727 % exp(= 2 12R D (%), (2.20)
with eigenvalues

A=2ntk), n=0,1,2,... (2.2b)

and k> (1/2) is related to o through (1.4d)=(1.6). Now, we can write

ab a 0 cos 8 =sin 68
cd e @ r sin & cos O ) s
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and find, solving for@,c and (0,

tan O ==b/a, @= (a®+52)% >0, €= (ac +bd)(a® + b2)™ % .

(2.3b)
The decomposition (2.3) can always be made since it is just the Iwasawa de-
composition into the compact (exp | 2s t’]aj) and solvable (geometric) subgroups.
The former only multiplies (2.2a) by a factor exp (i A &) while the latter is given
by (1.3b). Hence, we can write

[[}(g Z) '\r’*ﬁ 1) = [expGAD]@~7 expl(ic/2@)r?) gﬂﬁ(a_-l r)
= [@a)/Tm+2k)] " expl2i(n+k) arg(a=ib)] x (2.4)
x (@ + 527 R 2272 exp [(=r2/2)(@=ic)/ (a+ ib)] 20k a2 % 4] .

Taking the scalar product of (2.2a) with (2.4) gives rise to a single integral
(Ref. 11, Eq. 7.414.4) and we obtain

"Dy (24) = W B (25 ) ) = 22 T+ m v 20 D't Dats 20200
x ([d=al=i[6+c]) ([a=d]=i[b+c]) (la+d]+i[b=c])y " " 2k,

X 2I*“l(-ﬂ',-r:;-n'-n “2k+1; [a?+b2+c2+ad% + 1)/[a?+ 6%+ c?+ d2=1]).

(2.5)

The hypergeometric function is a polynominal of degree min (n',n). We can check
that bD:-”(T) = 5'.:”, as it should, and that unitarity is mainfest, i.e.,

*
bk b\ _ 1hnk d =b
Dn‘n(g d) - [ Dn'n(—c a )] * (2.6)
(Compare with the result of Moshinsky and Quesne.g)

The ”D functions (2.5) take a somewhat simpler form if we redefine the
matrix elements as

-5 N ab\ _ = L1 =
(ﬁ‘ a')_ gB(c d)gB » &g = (1/1/2)(_'_ ) : @)

We can then rewrite (2.5), using A as in (2.2b), as
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bk ab
Dn’n(c d)

=exp(s 7 [kt £ (X (5 X]) [T X=RTGX 4007 (k) (424 k)] .

2 2
x O gAk(geyX ok g gk oans1-8[A4XT; Jal 7 8],

(2.8)

III. THE REPULSIVE OSCILLATOR BASIS

We can consider the generalized eigenbases of H™ = 2], or of i~ = 2]
generators of 5O (1,1) subgroups. These are related through'?

H'=exp(i+7] ) H? exp(=i 4 71],)

=4 [(=d?/dr®) +(uA?)er?] = [expU 4] )] x

x {=(i/2) [r(d/dr) + (@/dr)r]} exp (=i37),), (3.1a)
and correspondingly, the eigenfunctions as

S o) = [BU/V2 )(; ';) # 0. (3.1b)

The easier basis to consider is that of Hd:

x[f;\ (r) = (2m T2 A2 ) (3.2)

with eigenvalue A € R, whose orthonormality and completeness is given by the
theory of Mellin transforms, from which we can find the eigenbasis of H” through

(1.3) and (3.2) as

t,l‘&\(r) = Gy [exp(itrh)] o Mi%?\_,h—# {lexp(=s47)]r?}
(3.3a)
= Ck}\r“‘-ir [exp(itr?)] lFl(k-ifh;Zh; [exp(=it7)]r?),

where

G =277 exp i [477 (kmidN) + #1021 T (k#i0) /T(2k),  (3.3b)
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M#y being the Whittaker function.! The choice of phase of k/&is a conse=
quence of the simpler choice of phase forl,b/‘{ as (3.3). Since the latter is easier,

we shall use it in order to calculate the dD%\'- functions.
We can write

ab a b .
= (1/v2
cd ' d ; 1 4
(3.4a)
a 0 cosh &  =sinh @ 1 =1
o' TR (1/v2)
c a =sinh # cosh @ i i
with  tanh 6 ==p'/a",
|/?
exp 6 = [(a'-b") /@' +b")] ", (3.4b)
T=(a"-5")%, o= (mbdNa"?)

and, in order to avoid extra phase problems, we consider first the case
|a'] >8], so that 7>0. Eqs. (1.3b), (1.5a), (3.1b) and (3.4) then imply

[S(g 3)‘#{]”) - (a:+b:)—%-{#2\ (ar‘.b:)-iﬂ-iif)\ s
; (3.5)
x exp[/2) ('a'= b'd")/(a" ") r2] Y} [1/(a"=5")7]

The construction of the matrix element (1.2) thus involves a single integration
(Ref. 11, Eq. 7.621.1) which yields

o (25)= (e £) 99 = Dheitd) Pais ) [amTn)]”
0N L kit

»

x a*= N (24 exp(i4m)) oFL k=it X, ktit\; 2k; 1/(ad)),
which is valid for ad>1 (i.e. bc <0),'® but whose analytic continuation to the
whole ad = plane appears to present no problem. The limit ¢ =0 (ad—1) is
well defined,™ indeed
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b . : =
k., (a _1) - Clhmis ) Dh+is ) TEEIN = AD) [4nT hti2 XOT k=i ] x
S

i ()

S N ~

g 2 In*t& ) [ Cxp(if"‘)] . (3.7)
An alternative expression for (3.0) can be constructed using b = (ad=1)/c

and an identity for the hypergeometric function {Ref. 11, Eq. 9.131.1¢c) as

- B
dn’fg,(f, 3) (" hei s O Tt is AT TEO] Jamh=itX

i3 =)
d

« [+c expl=in/2)] RN B etid ), k=it N 2k; 1/(@d). (3.8)

In (3.8) the limit 60 (ad 1) is manifest:'*

a o N e , i3 =A)
dec \( _1) 1/(4m)] (2 [2=N]) g~ AL expl=in/2)] (3.9)
RN

The behaviour of the lel-f\r\ (g) functions as g1 provides a check on
the realization (3.6)= (3.9). This can be done through the one=parameter sub-
groups ¢ *0 in (3.9) or 50 in (3.7). For this we have to evaluate (Ref. 11,
Eq. 8.312.2)

) . ’.,1(""—')1 = . o i . "IIJ"(‘P\')-]. = o
lotomi (- 1b) [t D=A))= Liium, | dt lexplibe)]e" """ =2m8(4[p=]),
bh=+0 h—=g O
(3.10a)

the last step being a consequence of the completeness of the Mellin transform

kernel. Hence we can state that

Li.m. D%, () = 30N« (3.10b)
g
Eqs. (3.6)=(3.9) give unitary representations, as can be directly veri-
fied
d bexpli)
dpk P dpk , fab )\
D = [%D% ] {3:11)
A eexplin) p «}\_}\_(C d)

in all cases.

It is also of interest to determine the asymptotic properties of the repre=
sentation (3.6) = (3.9); in particular from (1.5a), giving the b=element a phase
exp (i)
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: s v
i cosh 22 =sinhza

y = =1
D% — (k=i 3X)k+i 30 [47T°(2%)]

A "
=-sinhza cosh #a a - o

, '
12 (M=)

% [2 expl=§71/2)) exp(=ka), (3.12)

which is the expected behaviour.' In comparing with the literature, we can
point out that Reference 4 is in error,'®

The case studied so far in (3.4) applies to 'a l > 1!7“’ that is Ta—b : >4 Fa-}-b!
which for g near to T implies b <0, When 6>0, we resort to the following argu=

ment. Consider the decomposition

ab bexpim) a 0 exp(=i7m)
. . (3-13)
cd dexp(fm) ¢ 1 0

Now,(? EXP;'E”}) represents exp (#77],) which is, up to a phase, the Hankel
transform. As exp(i77],) J, exp(=i77],) = =], and the same for J,+» we expect

0 exp(=8m)\ ) '
[ e = 5 w46, o, ] =1. (3.14a)

If‘.—.
1 0
Indeed, direct calculation from (1.3a) yields (Ref. 11, Eq. 6.561.14)

By A= expi[mhtAln 242 arg Dk +i 40)] . (3.14b)

Hence, in all cases where r::-b} < !a +b| we decompose (3.0) through (3.13)
and (3.14) as

ab bexp(im) a

=@ %D} ) ; (3.15)

dpk
Dy
AA dexp(m) c

fol
where the D* on the right does satisfy the conditions for which (3.6) is valid.
Now using an identity for the hypergeometric function (Ref. 11, Eq. 9.131.1a)
we can sce that the general form (3.6) satisfies (3.15) with the correct phase.
We claim thus that (3.6) = (3.9) give the right analytic continuation for any g.

Finally, use of (3.1) gives the related representation

rk 1, e r b /
Dy (: d) (5 ‘(: d)'f'.-r\) 2

- dpk i famb=ctd] i lath=-c=d]

: ) (3.106
Y\t la=b+c=d] ilath +ctd] o
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in terms of the repulsive oscillator eigenfunctions.

IV. THE PURE CENTRIFUGAL BASIS
The eigenfunctions of
ml= g 4y =+ [=@/d*) + W/ (4.1)
are, with an appropiate choice of phase
W) = LexpGmh)] (An)? Ly  (Ar) (4.2)
with eigenvalues 302 , A€ R*. A simpler operator on the same orbit'? is
He=J-1 = LexpGmj)I B/ [exp(=imj)] = 7%, (4.3)

since its eigenfunctions are

V3 (1) = 5=0) (4.4)

with the same eigenvalue t X, and related to (4.2) through a Hankel transform

0o exp(im)

W) =[5 il . (4.5)

The action of a general transform g on the l/,';\ basis is only the transform kemel

of (1.3a) atr'=A:

[S(‘; 3)¢§] (r) = [exp(=imk)] 51 0n)? expl G/26XaN +dr)] |, (Ar/b) .
| (4.6)

Hence, without further computation, we find

i (24) wko(25) v0 -
= [exp (=i k)] 571 (XN % exp [ G/26XaN2 + dX )] [y, (XN /) .

(4.7)



Representation Matrices of D: Series... 41

For |b | — 0, where (4.7) appears indeterminate, we have®’

N S |a|-/2 50X /lal) exp [ic/2a) X?], (4.8)

so that the behaviour at the origin is the appropiate one. Unitarity in the sense
(3.11) also holds for the D* functions which are, after all, only the integral
kernels of (1.2).

For the eigenbasis (4.2) of the pure centrifugal Hamiltonian (4.1), we
have from (4.5)

d c exp(sm)

= (ple 0 a: Wl = 2oy . (4.9)

b exp(=im) a

Hab

cd

We wish to stress that the D= funCthn'; associated with the eigenbases of
any operator in the same orbit as H will be expressible in terms of the
®p-functions as in (4.9), i.e., as ’p-functions of related transformations.
Similar remarks apply, of course, to the other two orbits analyzed in Sections
II and III.

V. MIXED=BASIS MATRIX ELEMENTS

" . . . 1 5

The mixed=-basis matrix elements'” can now be calculated in terms
of the simglcst eigenbasis corresponding to pairs of operators in two orbits.
For the \/

are trivial to compute. Thus the centrifugal=harmonic matrix elements are

basis (4.4), the mixed matrix elements with either of the others

precisely (2.4) or, written in terms of confluent hypergeometric functions (Ref.

11, Eq. 8.972.1),

SbDP\”( ) (t,b)\: (a b) =/Jb) - exp 2 (ntk) arg (a=ib)] x

2 " =y k
x 20 m+2k)/n!] " (AT (2RDX [N f@a?+b?)] cxp{(-/\'z/Z)[(d-ic)/(aﬁb)]} x
x F (-n;2k; X2/[a® +b%]). (5.1)

Similarly, the centrifugal=repulsive matrix elements are precisely

(3.5) or
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5"D?c,\(? AR I( 3) D)= explimlhmit At %)4i4 M In(2b/a)] x
x [[(k+is A/ T (2k)] (dmrab Y 2 [X2 exp (¢ 3”7)/212&»] [exp(l’c!\f/’?.a)] x
x |F (k=i3);2k; X* exp (i £77)/2ab) . {5.2)

Finally, from (2.4) and (3.3) we find the repulsive=harmonic matrix
elements (Ref. 11, Eq. 7.414.7),

dbD;t\?\( ) (/ /\,"g( ) ’,\) expl2i(n +k)arg (@a=ib)] =

| ; i
2 k=it A

x [CQ@k+n)/47n!] " [[lh=is ¥ /TQR)] (a2 452 )2k + i N [2(a+-ib)/(d-ic'ﬂ »

X F(=n, k=it X;2k; 2[atib]/[d=ic]). (5.3)

ﬁ’[), " and "D can easily be found using the above

formulae and the relation between the bases as given previously in the text.

Expressions for

From (5.1)=(5.3), the completeness relations for the bases and group multi-
’ 8

plication, a host of special function relations depending on the parameters of

g can be found. These techniques have been used in References 7, 12 and 18.

VI. REPRESENTATIONS ON .2 (R)

Up to this point we have considered the space (*(R") only. A few re-
marks are necessary in order to clarify the extension to [*(R). learly, the
operators [J; in (1.4) are invariant under the replacement r +(exps 77)r and they
are even in r. The eigenfunctions of the “Hamiltonian=like’ gene rdturs
L,ﬁ’ /)\.md /{\gwen by (2.2), (3.4) and (4.2) respectively, belonging to D
exhibit a phase as t,’f)\(rexpzﬂ) yk\(r) exp i 7(2k=? )] and behave as r2le= 5
when r 0. They are thus regular for & > 4 and irregular but square=integrable
for &> 0.

i) For ;t 2 4 there is a unique self-ad]omt extension of the operators
J;» as there is one L2(R*) solution for k= (1 + [},. +4]2)21, the eigenfunc-
tions and spectra are given by (2.2), (3.4) and (4.2). In order to consider the
sw, stem over the whole real line, we have the two degenerate eigenstates
l“ (r) = { #h(f) forr 2 20 and O for r N 0} or any linear combination of them, since
ve are not forced to demand continuity of the functions and its derivative
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at the origin.

ii) For 4> 2=4, 1 # 0, both solutions Hj;k] 3 éékl <1 kl # # and
:‘f"‘k , 0<h <3, kz#i are {2(RY) in a neighborhood of r =0, thus there is a one=
patameter family of self=adjoint extensions and one must add a boundary con-
dition to pick one of these. In the foregoing we chose the boundary condition
which gives rise to the eigenbasis (2.2a). Now since the boundary condition
is related to the behaviour at the origin, one can pick two different boundary
conditions by choosing either of the two k values given in (1.6). These are
not the only boundary conditions, however. The procedure for implementing a
general boundary condition is detailed in Ref. 19, Such general conditions are
apparently related to the supplementary series of representations of SL. (2,R)
and we will say nothing more about them. It is not difficult to see that for
cither of the two choices in (1.6) the spectrum is given by (2.2b), i.e. it is
bounded from below and thus belongs to the discrete series, namely DI and
D: . The study of the system for the whole real line follows as in (i). !
# iii) For ;« =0, corresponding to the two boundary conditions Y(0)=0
and /' (0)= 0 we have the two representations D! and DT,. How do we extend
these to the entire line? Since for r = 0 there is no longed‘r a singularity, we
must demand that both the wave function and its derivative be continuous
there. Furthermore, since the wavefunctions for Dt are odd and those for DT,
are even, we need both to obtain a complete set forq‘Cz(R). Thus the harmOni4c
oscillator belongs to the reducible representation DZ. o D:

iv) If the centrifugal part is more attractive than jt == 4, the represen-
tations appear to belong to the principal series and the energies are not bounded
from below,
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RESUMEN

Usando técnicas de transformadas canonicas, encontramos los ele-
mentos de matriz de las representaciones irreducibles unitarias, o kemels integra-
les, para transformaciones finitas de SL. (2, R) cuando el generador del subgrupo
diagonal es cualquiera de los subgrupos uniparamétricos no equivalentes
§0(2), 50(1,1) 6 E(2). El método reduce el problema a resolver una sola in-
tegral y los resultados se dan en términos de funciones hipergeométricas. Se

dan también las matrices de representaciéon en bases mixtas.





