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ABSTRAGCT: As a consequence of former work on canonical transforms, we
collect a set of formulae which give alternate forms to known
integral transforms (Fourier, bilateral Laplace, Hankel and
Bargmann) as infinite=order differential operators. We comment
upon the relevance of Lie algebras of second=order differential
operators in group theory and in the time evolution of quantum

mechanical systems.

Transforms such as the ones associated with the names of Fourier,
Laplace, Hankel, Bargmann and Barut=Girardello are usually presented as
mappings between Hilbert spaces realized through Lebesgue integration with
a transform kernel. It is interesting to notice that parallel mappings can also
be achieved through the action of hyperdifferential operators (operators which
involve arbitrarily high order derivatives), which, moreover, are sometimes
more transparent for the proof of certain properties. This fact has come to
our attention in studying a general class of such transforms, canonical
transforms, which are associated with the formulation of complex canonical
transformations in Quantum Mechanics. (See Refs. 1,2.) These also admit a,
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hyperdifferential operator realization® on spaces of infinitely differentiable
@

. I'g
functions

A, The Fourier .'rans/orm‘lof f(x)ed =C®n L2 (R), (L*(R) is the space of
Lebesgue square=integrable functions on the real line), is

Fix)=@myme | dx'[(x") expleixx), (1)

and its inverse follows the form (1) but has exp (sxx’)for its kemnel. The trans-
form (1) can also be implemented as

fE(x) = expim/4) exp { (5im) [(d®/dx?) = x?]} (=), (2)

and the inverse can be likewise constructed. The proof of this fact rests in
noticing that the operator exponent contains the one=dimensional quantum
harmonic oscillator Hamiltonian® whose eigenfunctions are {,/ (x)} =o Wwith
eigenvalues nt s, When acting on ',f {x), Eq. (2) yields "F(x) = -t)",[f (x).
As the set {|// (x)} m=p is a complete basfs for d, the (quna!cnce of (1) and
(2) follows. lhe restriction on d here and below, seems to be unnecessarily
strlngent.

B. The Bilateral l.aplace transform can be obtained from (1)=(2) through a
change of variable and normalization so that, for functions f(x) in # for which
the integral exists,

fh) = [ dx" [ ) exp (=xx) (3)
is represented as
(L) = i2n )!é exp{ (=4 7) [(&/dx?) + x*]}f(x). (4)

(The full proof of the equivalence of (3) and (4) and their inverses re qu1res
the results of Ref. 1.)

C. The Hankel transform, defined as the radial part of the n-dimensional

version of (1), of a function F(x)= [(x)YL(Qx) where YL(Q;-) transforms as an
$O(n)-irreducible tensor®, is

M) = exp(-imL/2) =2 [ax'f ()" ], L fxx"), (5)
0
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where ], is the Bessel function, can be similarly realized, out of (2), as

Hx) = exp (in1/4) exp {i 57 [(d®/dx?) +((n=1)/x)(d/dx) =

-IJfL*‘n-Z)/xz-xz]}f(x) (6)

D. The Bargmann transform® maps unitarily L?(R) onto the Hilbert space of
entire analytic functions of growth (2, 1/2). In its integral version, it reads

Bior= mt [ de'fx") exp [+ x"2) + 2% 5s'] , = (7)

-0

and maps the harmonic oscillator states |/l (x) onto the functions (n!)” bae.

It can be realized on & in hyperdifferential form as
fBlx) = @m)l* exp{n/8 [(d*/dx?)+ x%]} f(x)
=% exp [ #(d?/dx?)] exp (x?/4) f2= % %), (8)
The proof of this fact lies in the use of the Baker=Campbell=Hausdorff relation
exp {=i6 % [d?/dx?) + x?]} = exp [=i + tanh 6(d*/dx?)] x
X exp{*ln cosh 8 [x(d/dx) + (d/dx)x]} ¥

X exp( =i+ tanh Ox?) (9)

for @ =i7/4, acting on the basis {t,bn(x)}"zoof d. The last factor cancels the
exp(=x2/2) of Y, (x), the middle factor rescales the x argument, while the
first, through the little=known relation’

x" = 2""exp [4 (@*/dxH)]H (x) (10)

yields Y"1 2 " for ¢E(x). The hyperdifferential form (6) tells us, in partice
ular, that the Bargmann transform of the repulsive harmonic oscillator (general-
ized) eigenfunctions are multiples of themselves. This is true in spite of the
fact that they lie outside d.

The radial part of an n=dimensional version of (7)=(10) yields the Barut=
Girardello transform,?*® but we shall not enter into this. Eq. (10) is interesting in
its own right. Its inverse gives an expression for the Hermite polynomials as

H,(x) = exp [-4(@*/dx)] (2x)", an
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The radial=-part treatment of (7)= (Il)yic-ld.-;,z'7 for Laguerre polynomials,

g fomtd ¢ oy = gy exp [x (@¥dx?) + a (d/dx)] =" (1.2%

which can be independently verified to hold by series. A generalized veision
of Eq. (12) appears in Ref. 2. (Can similar forms be written for Jacobi poly=
nomials?)

E. The time evolution operator for quantum systems obeying a Schrdodinger
equation with a Hamiltonian H is exp [itH] . This form of deseribing time

: S 9
evolution of a system also holds for classical systems.

F. The time evolution of solutions of the heat equation H (a“u = atu) can be
described as follows: if u (x) € C® is the initial temperature distribution in

a one=dimensional conducting rod of unit diffusivity, the temperature distri-
bution u(x,t) at any later time ¢ is described by

u(x,t) = [Glx,)xu ] (x) (13)

. [} . & .
where (3(x,t) is the system’s Green's function and « is the convolution opera-
tor. Equivalently, the solution can be written as

u(x,t) = exple(d?/dx?)] u(x) (14)

which can be seen formally to satisfy the heat equation. It also yields infor-
mation on the kind of temperature distribution which can be regressed in time
and the amount of regression.'" (Can a similar description be made for the

wave equation?)

G. Group transformations. Physicists dealing with group theory are familiar
with the hyperdifferential operators obtained when exponentiating the first=order
opeators constituting the Lie algebra. Here we have been exponentiating
second=order operators. These also stem from Lie algebras. The correspond-
ing integrated group action, however, is of the non=local kind"

J) % [BG) = [dx' K (x,) f(x), (15)

and seems to have been relatively little used in investigating the symmetries
of a system until recently."

It thus seems, that hyperdifferential operators can yield a host of special
function relations and new mathematical insight, applicable in the study of
integral transforms and the description of physical systems.
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RESUMEN

Como una consecuencia de nuestro trabajo con transformadas canoni-
cas, presentamos un conjunto de féormulas que dan representaciones alterna-
tivas de transformadas integrales conocidas (Fourier, Laplace bilateral,
Hankel y Bargmann) como operadores diferenciales de orden infinito. Comen-
tamos sobre la relevancia de las algebras de Lie de operadores diferenciales
de segundo orden en teoria de grupos y en la evolucidn en el tiempo de siste=

mas cuanticos.





