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GENERALIZED VAN DER WAALS THEORY
D. Levi* and M. de Llano**
Instituto de Fisica, Universidad Nacional Auténoma de México,
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ABSTRACT: Within the spirit of the standard mean=field, van der Waals
equation of state theory, asymptotically exact for low densi-
ties and high temperatures (when realistic potentials are used),
we give an exdct extension to all temperatures in terms of con-
fluent hypergeometric functions as well as a partial extension,
coming from the repulsive portion of the interaction, to higher

densities, for the Sutherland potential,

In the usual®

mean= field’’ derivation of the van der Waals equation of
state for fluids of N particles in a volume V interacting via an infinitely=re-
puls‘ve core of diameter 0 plus some attractive tail v, (r), one starts with the
independent particle partition function

Z = IN/N1, = K3(V=Nb) exp(=U/2kT), A =Qu&?/mkT)? (1)
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where the “excluded volume per particle” b is taken by van der Waals as the
constant 27 o */3 and the “mean attractive field”, calculated self=consistently
with (1), is

jee]
U=dmpf dre? o, =-20a, (2)

where the constants @ and b are independent both of density © and tempera-
ture T The relations for Helmholtz free energy F and pressure P

F==kTInZ, P ==(3F/3V)yr (3)
then lead at once to the celebrated equation

P/RT = p/(1=bp) = (a/RT)p* ———-p + [b=a/kT ) 0 + B2 0° + b30* +...

ka%sl (4)
where the last member explicitly displays the associated virial expansion, the
quantity in brackets being the predicted second virial coefficients

However, the exact such coefficient is really

e}
33 L9, 2 . ]
B,(T) = 370 =271 dr 1* { [exp (=0, ()/AT)]=1) (5)

and reduces to the predicted quantity only if AT>> |u‘m(r) . Hence, the “con-
ventional” van der Waals theory, with “realistic” potential, is exact for
i) small densities and ii) high temperatures. In spite of this apparent restric-
tiveness, the standard equation (4) not only possesses the “loops” character=
istic of the gas=liquid phase transition below a critical temperature T_ and
pressure P, but also gives values for the critical quantities F, V, T_in rough
agreement with experiment.? The quality of agreement, when compared with
that of typical “cell”? and ““hole”* theories® of liquids is, in general, not worse.

The question arises whether one can relax restrictions (i) and (i1) above,
while maintaining the (mean=field) spirit of the van der Waals theory, to ob-
tain, e. g+, an improved location of the critical point, albeit not, of course,
its detasled bebaviour. Some initial results towards answering this question,
for the Surtherland potential, are given in this paper by lifting (ii) completely
but (i) only partially.

1. Extension to all temperatures. Relaxing the bhigh=temperature re-
striction involves evaluating the full contribution from the exponental in (5),
which leads to a temperaure=dependent coefficients For concreteness, we
take for the attractive tail
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Vo 1) ==€0/r)®  (r>0;€>0), (6)

Then, the integral in (5), as far as we know, previously only expressible as a
slowly=convergent infinite series, can be done analytically by parts, since

-2 f dr v {[exp (/kT) (0 /r)®]=1}
=% o3 {[exp (e/kT)] = (¢/kT) Jldyy-; lexp (ey/kT)]}
0
= % 7o { [exp (e/kT)]= 2€/RT) F (4, % ; €/kT)} (7)

where F is the confluent hypergeometric function.® Using well=known recursion
relations,® the exact second virial coefficient for the (Sutherland) potential
reduces to

B,(T)=%7mo*F (=%, %; €/AT) =b=a(T)/kT

b=a/kT +0 [(e/kT)?]
m a/ l(e/kT)?], (8)

where we note that contributions from infinite order perturbation theory’ are
includeds Substituting the van der Waals constant @ in (4) by a(T), and secking
the highest T =T_ for which dP/3dp =0, one obtains, if ¥ = p/,oowhere %E\E/G’
(close=packing density) and @ = ZEW/S,

3

*l(1-ax)? = 2all= F (=Y, Y ; €/kT)], 9)

the solution of which gives

x = (Ga)™ 39
F (=%, % €/RT) ==19/8 ===) KT /€=0,470538 (11)
Po/e = 0,02083, (12)

the last result following from (10), (11) and Pé//%k]l;——-j/& The latter value

depends only on the density dependence of the equation of state, which being
unaltered with respect to the “conventional” equation, remains the same., A
marked improvement in both critical temperature and pressure is appreciated

in Table 1, over the conventional results.
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TABLE 1

Critical observables (pressure P, density 4. and temperature T_) of gas=liquid
system reduced in terms of Sutherland potential depth € and hard=core radius
o (adjusted to experimental second virial coefficient)e Experimental values
represent average for Ar, Kr and Xe. Last two rows refer to Lennard=Jones
6=12 potential and to experimental quantities related to Ar.

PCJ3/5 (pco*3)‘1 k’l;/e P/,(ékT;

Experimental, Ref. 2 0.027 5022 0.471 0.291
“Conventional”

van der Waals 0.018 64283 0.296 0.375 = ¥
Extension to all T, Sec. 1 0.028 6.283 0.471 0:375 =%
Plus partial extension to

higher p's, Sec. 3 0.049 4,023 0.551 0.359
Experimental, Ref. 12 0,117 3.165 1.26 0.293

Virial with first five
coefficients of L=]
6=12 potential, Ref. 14 0.119 3.829 1.291 0.352

2. Heat capacity, The resulting heat capacity CV(T) for T>T‘; no longer
equals the ideal gas value (% )Nk, as predicted by the conventional theory,
but is now seen from (8) to give, for p =1,

Cy/Nk =% =(0.T/k) (32a(T)/3T?), =Y ax (e/kT)* F (%, %; €/kT)
(13)

where serveral other recursion relations® have been employed to simplify the
last steps The result (13) is positive and monotonic=decreasing with T.® The
appearance of a “tail” in C,(T) for T> T, can be interpreted as coming from a
non=constant pair=distribution function for r>c, i.e., as the presence of some

“short=range order”.
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3. Partial extension to higher densities. This is accomplished by using
a density=dependent b (0)=coefficient which will reproduce correctly some
higher=order virial coefficients for the repulsive part of the potential only.
The equation of state is then

m(x) = P/QkT, x=p/g.

m(x) = m, (x)=a[1=F (=%, % ; €/kT)] 5* (14)
where the hard=sphere equation is

My (x) = (x+ x38 () /(1=xb (x)), xb (x) = pb (0) (15)
and, if B:s is the nth hard=sphere virial coefficient,

xb (x) = T~exp{-32 [ BES fin-1)] x7~1}
2

= l=exp{=ax[(1=a x + a,x?)/(1=bx +b,x*)] }. (16)

The first equality is an exact relationship and the last member contains a
[3,3] Padé representation based on the first six hard=sphere virial coef-
ficients,” the numerical coefficients coinciding with those in Ref. 10, The
Wbs(x) resulting from (15) is then

M%) =x +ax? [(1=0.656078 x + 0.172328 x3=0.103207 x> + 0.014918 x*) x
x (1=2.507279 x + 2,296 418x% = 0.908646 x* + 0.131336 x*)™'] , (17)

The hard=sphere representations (16) and (17) reproduce quite well the com=
puter equation of state for the hard=sphere fluid, as well as accurately pre=
dict'! the fluid=solid transition parameters. The left hand side of (9) is now
replaced by w}:s(x)/x, which is also found to have one and only one minimum
at x_=0.17575, which in turn gives the critical temperature and pressure listed
in Table I. As expected, density and compressibility tatio have improved, but
at the cost of pressure and temperature agreement previously had, the recuper-
ation of which may require including attractions, via higher virial coefficients
(to our knowledge not yet available for the interaction used here, with the ex-
ception of the third one'?), in the extension to higher densities discussed here,
and will be reported later.

A suggestion of the kind of agreement which may be expected then is
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seen in the last two rows of Table I, where results® based on the first five

virial coefficicats of the Lennard=]Jones 6=12 potential are given.

We thank T« A. Brody for providing the sub=routine to evaluate the
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RESUMEN

Dentro del marco general de la teoria de campo=medio de van der Waals
para la ecuacion de estado de un fluido, teoria que es asintoticamente exacta
para bajas densidades y altas temperaturas (cuando se emplean potenciales
realistas), damos una extension exacfa para toda temperatura, en términos de
funciones hipergeométricas confluentes, asi como una extension parcial, pro-
veniente de la parte repulsiva de la interaccion, para densidades mayores, todo
para el potencial de Sutherland.





