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The flow problem of a thin layer of liquid flowing over a rotating
disk is formulated. Two regions have been considered, corre=
sponding to the limiting cases where the viscous forces are
much larger than the centrifugal or convective forces, respecs
tively, The first (center region), extends from the center up to
a radius r_ and the second (external region) from a radius 7, up to
infinity, The center region leads to a boundary layer problem.

The layer thickness varies as 7% and the radial velocity as r™S.
The external region has been solved through an asymptotic series
expansion in a small parameter € which represents approximately
the ratio between convective and viscous forces. Solutions are
obtained up to first order izn € and results show that the llayer

thickness decreases as r/ and the radial velocity as r~h4, A
numerical estimate shows that 1, can be rather small for a rea-
sonable set of parameters, from the point of view of the appli=
cations of this work. In the region lying between 7% and r, a

patching solution is proposed based on the center and external

limiting cases,
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INTRODUCTION

The problem which motivated this work is related to the production of
sprays by means of spinning=disk type sprayers. Finely controlled sprays may
be obtained when liquid is fed into the center of a rotating disk and centrifuged
off the edge.! More recently this method has been used to produce electrostatic
atomization through the action of electric forces at the edge of the disk.? In
all these cases it is of interest to know the flow conditions at the edge of the
rotating disk where, through the combined action of mechanical and electric
forces, the liquid becomes unstable and divides into a fine spray of tiny drops.

The present work considers the steady axisymmetric flow of a thin layer
of fluid over a rotating disk. The liquid is fed from a point source at a con=
stant rate Q at the center of the disk. The radius of the disk is considered
infinitely large. The existence of the free surface at a constant pressure allows
us to neglect the pressure gradients throughout the thin layer of fluid, as they
are very small compared with the other forces presents

The flow analysis considers two regions, corresponding to the limiting
cases in which viscous forces are much larger than the centrifugal and the ra-
dial component of the inertial forces (convective forces), respectively. Cor-
respondingly, two radii r_ and r, may be defined which determine the outer and
inner limits of the center and external regions, respectivelys

A third, intermediate region, where the inertial and convective forces
are equally important, may be considered between r_ and 7. This intermediate
region is the most difficult to analyze, as the complete problem must be solved
there; only the two extreme cases have been solved here where a patching so-
lution is proposed in this regions

The flow in the center is governed by the radial component of the
Navier=Stokes equations and the coupling with the azimuthal component is very
weak. As will he shown later, the equation in this case turn out to be of the
boundary layer types

In the external region the flow is mainly determined by the interplay of
viscous and centrifugal forces. Thus the radial and azimuthal components are
strongly coupled and an asymptotic expansion procedure is developed in a small

functional parameter defined as
E:Q/QM =< u> T 5/(&)!’25’")

where O is the volumetric flow carried by the thin layer of thickness Sand Q_

is the flow carried by one side of an immersed disk of radius r and bo;mdary layer
of thickness 8_ rotating with angular speed @ 3 is equal to (v/@)?, v is the
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kinematic viscosity of the liquid and <&> is an average over Z,> The flow in
this case corresponds to the so called creeping motion and the second part
of this work is devoted to finding the solution to this problem.

In the first part of this paper, the Navier=Stokes equation are simplified
by making use of the fact that the thickness of the fluid layer is much smaller
than the radial coordinate r,

FORMULATION OF THE PROBLEM AND
BOUNDARY CONDITIONS

The flow will be referred to a set of cylindrical coordinates {ryDryz)s
Since the fluid forms a thin layer over the rotating disk, the following approxi=

mation has been made
d/3x>>3/ dr, w<<y, w<< y, (1)

where u, v and w are the radial, azimuthal and axial components of the velocity.
Taking into account the inequalities (1) as well as rotational symmerry,
the Navier=Stokes and continuity equations for the case of an incompressible

fluid may be written as

u(du/dr)= (02 /r)Fw (Ou/3z)==(1/0)3p/ 3r) ¥ v(Fu/32?) -
u(3v/dr)F (wo/r)+ w(dv/dz) =v(0%w/32?) (3)
u(Fw/3r)+ w(3w/3r)==(1/0)(3p/dz)+ v(Fw/Ix?) (4)
(Qu/3r)+ (u/r)+ (Ow/3z) = 0 (5)

where p and o are the fluid pressure and densitys In writing Eqs. (2)=(4) terms
of the order (8/7)? have been neglected.
The boundary conditions on the disk surface are

u=20
v =wr atiz = 0, (6a=c)
w =10

. . s * 4,
On the free surface, the following relations must be satisfied*:
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e.tn, =0
il atz =8, (7a,b)
p=2uemm; = by

n; and £ are the components of the normal and tangential vectors to the free

surface and p is the uniform pressure over ite i is defined as
e = [(u/9x) + 3w/ 3x)] « (8)

Equations (7a, b) follow from equating the stresses on both sides of the interface
at the free surface. The surface tension has been neglected in writing Eqa (7b).
The solutions to be found will show this approximation to be valide When Eq.
(8) is introduced in (7a), its two components lead to the following conditions:

Il

du/ oz

0
du/Bz =0 } atz =3, (9a,b)

Il

where inequalities (1) have been used, implying also that (3/r)*<<1.
With identical approximations, equation (7b) transforms to

p=2u(Qw/dz) = pe (10)

Taking the derivative of (10) and through the use of the continuity equation,

we obtain
-(1/0)(dp/ 3r) = 2v(3/3r) [(Fu/dr) + (w/r)] . (11)

The right hand side is much smaller than v(Pu/ dz?), and thus at the free sur-
face 0p/dr may be taken equal to zero:

9p/3r=0 atz = 0. (12)

Making a series expansion of ap/ar around the point £ = § and using Eqs (12)
we can write (1/0)(3p/9r) <4 as

(1/P)(ap/af),<5 = (1/)0)(3/3?')(3}7/31),;5 5x s

From Eq. (4) it can be seen that (1/p)(3p/ 3xz) is of the order of v(*w/Iz?)
which, through the use of the continuity equation, can be shown to be of the
order of (8/r) v (3%u/ 9z?). Therefore, the term (1/p) (9p/ 3r) can be neglected
throughout the fluid in the approximation (8/r)2<<1, Thus Eq. (2), without the
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term (1/p) (3p/ 3r), and Eqs. (3) and (5) together with the boundary conditions
(6 a=c) and (9 a,b) become the system of equations to be solved.

In order to integrate this system, it is often convenient to introduce a
stream function //(r,z) defined by

ur = oY/ dx (13a)
wr = =31/ dr (13b)

The equations are now rewritten in dimensionless form by referring the axial
coordinate z to the layer thickness 3 (r) through the expression

N(r,z) = 2/3(r), (14)

and introducing the following relations:

glr) = 5(7)/'3”' (15)
frm) = Ylr,2)/Q (16)
b(r,m) = v/wr. (17)

When changing variables from r, z to r, 7 it follows, using Eq. (14), that the
derivatives (d/3r) and (3/92) transform as

(3/9r)=(3/3r)=(n/8) (d8/dr) (3/37) (18a)

(0/0x)—~(1/8) (3/37n) , (18b)
Thus, using Eqs. (13) and (16), the velocities # and w can be expressed as
u=(Q/rd)f" and  w==(Q/r) (3f/3r)+(Qn/rd) (5/dr) ", (19a,b)

where f' stands for df/37. Introducing expressions (19a,b) and (17) as well
as its derivatives into Eqs. (2) and (3) we obtain

-(Q8/r?) {f* 2[ L¥(r/8)(d3/dr)] = vf"(3f*/ Or) 4 rf*(Df/ 3r)}=[w?283 Q) 87 =f*"
(20)

(Q8/r%v) [2bf" +1f'(3b/ dr)=rb' (3f/ 3r)] = b" (21)
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The boundary conditions (6 a=c) and (9 a,b) can be written as

f'=0
af/or =0 atn=10 (22a=c)
h=1
and
=0
i w1 at 7= 1. (23a,b)

The problem has now been reduced to solving Egs. (20) and (21) with f and b
as unknowns and with boundary conditions (22) and (23). The thickness 5 of
the boundary layer is also unknown but, at least formally, f and b can be ob-
tained as a function of & and, since the solutions must satisfy the constancy

of the volumetric flow,
Q = <u>ro (24)

5(r) follows; <u> is given by the integral fl udm).

Looking at Eqs. (20) and (21) one s€es that two different types of so=
lutions can be generated according to the magnitude of the facrors (2?83 fvQ)
and (Q5/r% v)s In the first case it becomes obvious that a region around the
center must exist where the relation between centrifugal and viscous forces,
(w?r233/1v0Q), is much smaller than unity« In this case Egs. (20) and (21) are
weakly coupled and when the term containing b in Eq. (20) is neglected we are
left with a boundary layer type equations A different situation arises when the
ratio between the convective and viscous forces (QS/rZV), is much smaller than
ones Egss (20) and (21) are strongly coupled and in order to obrtain a solution,
an asymptotic expansion procedure is developed using the small functional

expansion parameter €.

SOLUTIONS FOR THE CENTER REGION

In this region we consider that the convective forces are much larger
than the centrifugal forces. Thus neglecting the term (w2832 /v Q) in Eq.
(20) we are left with a differential equation in f only. This equation is ot the
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conventional type appearing in boundary layer theory; for the solutions to be
similar, ise., (3f/9r)=0, it can be seen that the following conditions must
be satisfied:

08/r2v = A (25a)

(r/5)(d3/dr) = B (25b)
where A and B are constants. Equation (25a) leads to the relation

3 = (Av/Q)r? (26)

which automatically satisfies Eq. (25b); thus B is equal to 2.
The differential equation to be solved can now be written as

"Cf' 2 = f”'! (27)
where C =3A, with the following boundary conditions:

f'l - U, 1= 0 (283)

7 = m=1. (28b)
Upon a first integration Eq. (27) gives

2 3 3

'l ()= my=@)cC (29)

where the boundary condition on f** has been used. Next, integration leads to

len=Mep)crrml * [fa=-)r%a (30)

x

where x = (f’ (7)-)/{1(1 )« The integral can be recognized as the incomplete elliptic
integral F(tf)\a)/_%'; where @ =75% and cos ¢ =(N3=1 +x)/(\r§+1-x); when the
condition f*(0)=0 is introduced, Eq. (30) becomes

n=1=[F($\75%)/1.86] (31)
where F(74,4°\75°) =186 and 74,4° = cos™ [((3=1)/(3+1)] (x = 0); thus

[ )Cf*(1)] 7 becomes equal to 1.86/3% Expression (31) is represented in
Figs 1 and the results have been obtained numerically from tables.’
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Fig. 1. Radial velocity profile in the center region x = (f'(n Y.
The solution must still satisfy Eq. (24) which leads to-the condition
1
J 'tmydn=1,
0
which, after writing 7] in terms of df" from Eq. (29), leads to
= -5 1 -
el Lyl S raer) T de =1,
0
Also
% 1 =l L
[E)cf )] = [ (=477 dt = 1.86/3%;
0
therefore
1 » 1 |
fr1y = [ (=)™ Ede/[ 1(1=43)"2dt = 1,63, (32)
0 0
1
where J’ t(1=¢3)" % dt has been obtained through the use of the expression:

0

[ ey iar = (374 =35 F (@#\75° 142034 E(@\75°) =[2V1=x")/({3+1=x)],
x

where F is the incomplete elliptic integral of the second kind.® When x = 0,
¢ =7444° and
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1 el
[ #(1=13)""2dt = 0.87
0

Finally we obtain C2 1.87, A2 0.62 and
8 = 0.62(yr2/0) (33)

It can be seen that although this approximation is only valid for smallr, the
relation (5/r)? is still much smaller than one, thus satisfying the assumption
made in deriving these equations.

SOLUTIONS FOR THE EXTERNAL REGION

In this region the factor (Q6/r?v) is considered to be much smaller than
unity; in that case an examination of Egs. (20) and (21) suggests the possibility
of obtaining a series solution by using the small functional parameter (Q5/r*v).
Because this relation contains ® which is unknown, we will make use of a
slightly different coefficient Ez(QEﬁm/r2V)=Q/Qm which depends only upon
known physical parameters and the radial coordinate r. Therefore if we postu-
late that the dependent variables are expressible asymptotically (as £—0) as
power series in €, we can write:

f=htef e+ aun (34a)
_ 2 ;

bAbD+Eb'+Eb2+... (34b)

g=gret Ezg2+... (34c)

Upon substitution of the series (34 a=c) into Eqs. (20) and (21) one obtains
the following set of equations of zero and first order:

e* (=gi/ey = 2" (35a)
B =0 (35b)
€l & LTI (f}/3r) = 1f)*(3f / Br) = £ (14 /8 a8, dr)] =

-[(3g2 g, p2)/€] = [(2g3 b, b,)/€) = [ (36a)
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g (25 f)f + 1/, (38, /3r) = ry(3f /3r)] = Y. (36b)

The corresponding boundary conditions are obtained from Egs. (22) and (23).

e  f'=0, /=0, b =1 n=0 (372)
= O H =0 n=1 _ (37b)
el ff=0, /=0, b =0 n=10 (38a)
1r=10, B =0 n=1 (38b)

The value of 8, and therefore of g, is obtained only when the solution
for the radial velocity is made to satisfy the relation (24) When this is done
one obtains (see ‘\ppendlx)

29 <un>r 50 =0 (39a)

1 <ul> 50 + <u > 51 =0 (39b)

€

where the <u;> are defined in the Appendix and 5 is equal to g 9 & ; the sub-
script corresponds to the different terms of Eqs. (34) In the followmg, solu=
tions up to the first order are evaluated; higher order terms may easily be ob-

tained by the method outlined.

ZERO ORDER SOLUTION

From Eq. (35b) and the corresponding boundary conditions, the function

bo is obtained as

b =1 (40)

0 4
and introducing this result in the Eq. (35a) gives
=g/ €) M=sm)s (41)

Equation (41) also satisfies boundary conditions (37)s Thus u; can be written

as
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u, = wrgg(n_.;_-_vf) ’ (42)
and
= )
<u0> = {] uﬁa"r; = (:’:;rg; )73, a3

<

Using Eq. (39a), % hecomes

5?) = 3Qu /w?r?, (44)

Expression (44) is the liquid surface equation and satisfies the law 50’“ r-zlz
this law is the result of the fact that the centrifugal forces =« ?r are balanced
out by the viscous forces in the radial direction, as could be shown through a
simple analysis which takes only these forces into account.

After a slight rearrangement, Eq. (44) can be written as
g?l = 3E., (45)

The fact that it is the third power of g which must be smaller than unity per-
mits one to satisfy this relation with values of g, slightly smaller than one.
On the other hand, Eq. (41) shows that fG' is a function of 1) only, because
(g/€) is a constant equal to 3.

The expression (44) can now be introduced in the equation giving 1,
and we obtain

1’1
u, = (902w /vy (=4 7?). (46)

Equation (46) gives the radial velocity as a function of r and the relevant
parameters, and shows that 4, decreases very slowly in this region (as the in-
verse cubic root of r). The value of v, is wr, as b, is equal to one.

The axial component of velocity w can also be expanded in terms of €
and the zero order term results (see Appendix)

w, = w7 (Bﬁo/ar) (47)

and when the expressions of 80 and u, (Eqgs. (44) and (46)) are used it leads
to

w, = =207 =47%). (48)

For n=1, w, becomes equal to un(df)o/dr) as can be seen from expression (47)
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and it can be recognized as the condition of mass conservation at the free

surface.

FIRST ORDER SOLUTION

First we calculate # from Eqs (36b) and considering that (BbD/Br) =0
and (9f / 0r)=0 (see Appendix), the differential equation which gives b reads

"o r-
= Abyle B (49)
which after replacing bs fo' and & leads to the equation
b, =g, (=2n ¥ =4 mt)s (50)

Taking into account that b =1, afO/ dr =0 and afn'/ar =0 the equation for L
Eq. (36a), becomes

—g /) [1+(/3)(d5, /an)] = [(3g2g /€] = [(2g3p, /€] = £, (51)

The bracket in the first term can be calculated from Eq. (44) and turns out to
be equal to (% )« Using the relation (g3/€)= 3, Egs. (41) and (50), and the con=
dition (VIIb) for obtaining g, as a function of g, Eq. (51) integrates to

1! = g, [0917=2.65m% + 27* = ()=o) ® + (o) 7P ] o (52)

We can now calculate » « From equation (IIb) it follows, after some

rearrangements, that (53)
$_ 3 1 I w 1
u, = =ug, (0,59 = [0.917=2.657% + 2m°=(2)m* = (o) m° +Cho)7F1 Bn=577)] "}
The component v, can be obtained from Eq. (50) and reads

b, = L‘drgn.(-z?j + 7]3 - T}‘)- (54)

Finally, w, can be obtained in a straightforward manner from Eq. (VIIIb) but as
no additional feature concerning the method outlined is involved, it will not

be calculated.
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RESULTS AND DISCUSSION

The shearing stress and turning moment can be derived from the equa-
tions obtaineds In the center region the radial component of the shearing stress,

T i

T, = (au/:'az)IFU: (L Q/r82) f(0)
where f'(0) is given by Eq. (29),
3 5
F0) = [ep e (1] =28,
Using Eq. (33) 7, becomes

Toy = (60 Q% /ur). (55)

The circunferential component Tt is zero within the approximation of the so-
lutions obtained. In the external region Tud becomes

T = 1Qu/3)| _ ==wp2/r), (56)
where v is given by
v = &y +(.:Jr€bl (57)

and b, is given by Eq. (50). The radial component of the shearing stress, 7.
is given by

1 1
T, = p3Quw*)irh, (58)
and the angle between the radial and tangential components is
- 1 4
tga == [(3u/32)/(3v/3n)] | ,_, = (Buw/80?)5 (59)

which increases rapidly with r.

Concerning the radii r_and r, which define the upper and lower limit of
the center and external region, respectively, they can be estimated starting from
the inequalities

w2283 /v <<1 center region
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08/rPv <«<1, external region

As 0 is of the order of 5'", we are left with the following expressions, (¥ is a
number much smaller than one)

2 @y levy®)
and

> @/wv)?y)E,
The relation (rc/re)$ ¥ and ¥ can be taken equal to 0.1 for all practical pur-
poses.

An estimation of r, is of interest; thus, assuming the following physical
parameters for a typical liquid

0= 1lg/em?, v =10 cm?/seg
and

Q = 10 cm?/seg, w = 100/seg
r, becomes

r, =18 cm for ¥ = 0.

€

It can be seen that for relatively small mass flows, high viscosity liquids and
high spinning speed, the results obtained for the external region apply well,
except for a small region near the disk center. These conditions are usually
satisfied by the type of applications sought here.

The flow in the region lying between r_ and 7, poses a rather difficult
problem, as the convective and centrifugal terms in equation (20) are equally
importants In this region the layer thickness must achieve a maximum, as can
be easily understood from the fact that before and after it increases and de-
creases, respectively. In the vicinity of the maximum, g must vary as (1/r).
A solution which corresponds to this behaviour may be obtained by adding the
center and external solutions for the radial velocity

=i ot (60)

where the subscripts ¢ and e correspond to the center and external regions
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Fig. 2. Sketch of the variation of the layer thickness vs r. The dashed curve
corresponds to the intermediate region.
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Fig. 3. Sketch of the variation of the radial velocity vs r. The dashed curve
corresponds to the intermediate region.
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respectively (Eqs. (31) and (42)).
<u> also satisfies

<u> = Q/f8 = (Q/8)+(Q/r8); (61)
thus & =358 /(8 +38). (62)
The maximum for & can then be found,

(=1/82)(d8/dr) = =(1/82)(d8_ /dr) = (1/82)(d8,/dr) = 0. (63)

SC and 39 are given by Eqs. (33) and (44) respectively and introducing their

derivatives in Eq. (63) we obtain

8maximum = 066 Sm'

In justifying this solution we can say that the radial velocity 4 becomes u_ and
u, for small and large values of r, respectively. At the same time and as a re-
sult of the equation of continuity the layer thickness & (Eqs (62)), apart from
reproducing the corresponding laws for the center and extemal regions, achieves
a maximum in the intermediate region. As was mentioned above, the layer
thickness must satisfy this condition.

On the other hand we can not expect that Eq. (60) will satisfy the dif-
ferential equations for this problem. It is only a a patching solution, joining the
solutions of the two limiting cases considered in this work.

Finally the results obtained for the change of the liquid layer thickness
vs r are consistent with the assumption of making the surface tension forces
negligible. This may be verified by calculating the radii of curvature and com-
paring the radial derivative of the surface tension with the term 2v(0/ dr)x

x [(3u/3r) + (u/r)] in Eq. (11).

CONCLUDING REMARKS

The flow problem of a thin layer of liquid flowing over a rotating disk has been
solved in two limiting cases: a) when (w?r?83/v0) <<1 (center region) and b)
when (08/r20) <<1 (extemal region). In the center region the thickness & varies
as r? and in the external region as r7h. The average radial velocity asr™ and
+=" respectively. In the center region the problem admits similar solutions
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and u (7)) is given as an incomplete elliptic integral, In the external region
the solutions are obtained through an asymtotic expansion in the parameter €,
The profile of the radial velocity is parabolic and the tangential velocity is
equal to @r in the zeroth order. A patching solution is found which joins the
solutions of the two limiting cases considered,

APPENDIX

Values of the velocity components. When the series (34) are introduced
into Eq. (19a) the following equation is obtained

v =u tew t... (I)
where
€° u, = (Q/rSO)fo' (Ila)
el 4, =-(Q/r50) [(Sl/so)fo"‘f;] . (IIb)

Also <g> can be written as

<u> =<u> te<u> +... (111)
where

<u> = (Q/r8) J{’]lfo'dn (Iva)

<u> ==Q/r8) jﬂ“[csl/so)f;—fﬁdn- (IVb)

At the same time Eq. (24) can be split up into diferent terms of increasing
order

Q =<u0>r50+€(<u1>r30+<u0>r51)+... (v)
which, after using Eqs. (IV) becomes
k ’
Q =<u>rd +€0 [u fldn+... (V1)

Thus the following set of relations is valid
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€ Q=<u>rd (VIla)
1

el = j' fll dn. (VIIb)
)

In the case of the axial component of velocity w a similar procedure leads
to the following set of equations:
o

€ w, = u 7 (dd /dr) (V)

el w, = (Q/r) ('t'ﬂ'f]/'dr) tum (déO/a‘r) +um (dél /dr) = 2u,m (5] /r),

where Eqs. (34a) and (34c) together with (II) have been introduced into Eq.
(19b). In deriving equations(VIII) the condition that ('afo/'dr) =0 at every
point has been used. This conditions is obtained integrating (41) and using
the fact that (3/0/31-) = ( ar ;p="0(37a)s

REFERENCES

1. W.Il. Walton and W.C. Prewett, Proc. Phys. Soc. (London)
B 62 (1949) 341=350.

2. R.L. Hines, J« Appl. Phys. 37 (1966) 2730=-2736.

3, H. Schliching, Boundary Layer Theory. (Mc Graw Hill Book Co. Inc.,
New York, 1960),ps 85.

4. G.K. Batchelor, Introduction to Fluid Dynamics. (Cambridge University
Press, Cambridge, 1967 ).

S. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
(Dover Publications, Inc., New York, 1968).

6. 1.S. Gradshteyn and 1.M. Ryzhik, Table of Integrals, Series and Products,
(Academic Press, New York, 1965).

RESUMEN

Presentamos el problema del flujo de una pelicula liquida delgada so-
bre un disco en rotacién. Se consideran dos regiones correspondientes a los
casos limites en que las fuerzas viscosas son mucho mayores que la fuerza
centrifuga o la convectiva respectivamente. La primera (region central) se



Flow of liquid film... 87

extiende del centro hasta un radio r. v la segunda (regién externa) del radio
r, @ infinito. La region central conduce a un problema de peliculas con condi-
ciones a la frontera. El espesor de la pelicula varia como r? y la velocidad ra-

dial como r™3

« El problema en la regién externa se resuelve mediante un de-
sarrollo en serie en el parametro pequefio €, que representa aproximadamente
la razén entre la fuerza convectiva y la viscosa. Se obtienen soluciones a
primer orden en € y se presentan resultados en los que el espesor de la peli-
cula decrece como r™ y la velocidad radial como r~3. Una estimacién numé=
rica muestra que r, puede ser pequefio para un conjunto razonable de pardme-
tros. Se propone una solucién en la region entre r_y r, basada en los resulta-

dos de los casos limites central y externo.





