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ENERGY OF AN INTERSTITIAL Li ION IN A
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ABSTRACT: A calculation was made for the energy of an interstitial Li jon
in a crystal lattice of solid Ar. The method used is due to
Hove and Krumhamsl, in which the interaction energy is sepa=
rated into serveral contributions: one of them corresponding to
a semi=infinite crystal; another to a semi=infinite plane; and
finally, a line of atoms. In order to describe the interaction
potential between the Li ion and the Ar atoms we have used
the method of Norgett and Lidiard. The contributions of each
interaction potential (i.e., the semi=infinite solid, the plane
and the line) to the total energy, are shown in separate tables.
The use of Fourier transforms in the calculation of lattice

sums is illustrated in the appendix.

A. INTRODUCTION

The energy of formation of crystal defects was first calculated by Mott
and Littleton! many years ago. Since then the energy of formation of point
defects in noble gas solids?*? and the energy of migration of inert gases in
lonic crystals have been evaluated.* Also, the optical properties of substi-
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tutional impurities, such as Hl and Li in noble gas solids,® have been and are
being studied. The interaction of the Li* ion with the inert gas atoms of the
crystal is, however, a major uncertainity in all of these models, although a
hypothesis on the nature of this interaction* has been experimentally verified.®
For the computation of the parameters involved in our problem we have, there=
fore, made use of this hypothesis.

B. THE POTENTIALS
The conventional Born=Mayer form of the potential
. . o
b1 +(Z/N) +(Z/N)) exp{(ri+rj-r)//7} (1)

may be used to describe the closed shell interactions between the ions ¢ and
i, a distance r apart, of an ionic lattice; Zz. and N; are, respe ctively, the net
charge and the number of electrons in the outermost filled shell of ion . Be-
cause the data that would allow the deduction of the potential function for the
ion=inert gas interaction is absent, we will assume true the function suggested
in Refs 4:

B exp {(ri+rj-’)/iﬁ'} )

where & and /" are independent of ¢ and j.

For the van der Waals contribution to the energy expression, it is neces-
sary to estimate the ion=inert gas interaction, which can be done by interpo-
lation among the interionic interactions. The van der Waals potential is given
by the usual sum of dipole=dipole and dipole= quadrupole terms:

-G A e s (3)

The values of (I‘-!. and di,-" for the Li=Ar interaction, were obtained by the
method of Ref. 4.

In contrast with the case of one noble gas atom in an alkali halide
lattice, the polarization energy is important in our problem. We evaluate it by
a method similar to that of Mott and Littleton.'

The polarization of the medium (at a large distance r from the charge Q)

P =@/ U/4m) 1 =0/K)]; (4)
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and from the definition of polarization
P = -/i,'i.Ar/dj (5)
where

g = lArE (6)

(1t 4, is the dipole at a lattice point due to a Lit ion, d is the side of the cubic
unitary cell, @, is the polarizability of the Ar atom, and E is the electrical
field), we obtain, using Eqs. 4, 5 and 6, the polarization energy

Ep == Q’ (e pp /) = = (@%d°/327) [1= (1/K))] f 1/ (7)
where K is the dielectric constant and r, denotes the distance of any lattice
point from Q. The summations are over all the lattice points.

C. LATTICE SUMS

The lattice sums for potentials of the type given by Eqs. 2 and 3 are
already known? for fuc.c. crystals, Ilere, we use a method (due to Hove and

2 to obtain the contribution=re=

Krumhansl”) different from the customary ones
sulting from the potentials in formulas 2 and 3 =for all the lattice points. This
method gives the contributions of the diverse crystal planes interacting with
an impurity atom. This information can be used to obtain some surface parameters
in terms of the bulk properties of the crystal, and it is also valuable even if
the point at which the interaction energy is to be evaluated, is not in the lat-
tice. The computation of such sums, however, has been tharoughly done only
for the Coulomb potential, important when estimating the relaxation energy of
crystal defects.® "

To find the interaction energy of the Li ion with the atoms of the crys=-
tal, we first break the total energy into two parts:

A=2B +C (8)
where B and C are, respectively, the contributions of a semi=infinite crystal,

whose (100) face is a unit distance away from the lattice point in question,
and that from the (100) plane containing the lattice points C is further broken up



102 Cintora and Ruiz

into

C=2D+F (9)

where D and F are, respectively, the contributions from the semi=infinite plane
a unit distance away, and from the (1,0) line conraining the lattice point.

For a face=centered cubic crystal with basis
-0 ],
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the type A interaction is given by the potential 7, (r):

A
2 B .
‘.»‘J-‘A(r) =2 ;2 { = Lexp(?”m'(r.r;._vc1 +m2x2))j %
T =0 mm =
3 1™2
even
< B g OV FE, g 1+ 2 loxplomitn,s tmym )] (10)
12
odd
X [E#._{S(O)- f:#’,gs(#)]}
where the interaction energy:
B o) = [ [agas elale®+ 20t d +x52] *) x
u A G =S L d5as elale + £+t A +5D )
xexp[—Z’ﬂi(mlf-{—mzf )] (11)

(4+ stands for the pair of integers m , m,) is the double Fourier transform; while
E 4 isa single Fourier transform of an individual interaction energy. They

* s
were obtained from the Foster and Campell tables.’ m,, m, are components of

a general reciprocal vector, '{J's is one of the components of the position vector

of the unit cell, x: is one of the components of the position vector of an atom

within the unit cell, while = = =x, denotes the normal -distance of a particle
from a surface under it.

The interaction of type D for the same lattice is:

o
\ID = 2 ? Z
by =

3 exp(Z‘Tme])(EmA{ (0) +E._P (%); (12)
0 m -3 3
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and the contribution of type I’ is

@©
bp = 2 %{:-as)"" (13)
s=1

where n takes the values 4, 6 and 8. Using Eq. 2 we get

Ec [ ]
Po=2 2.5 gup {(r’ +rj- ?.Eﬂ)/ﬂ'}- (14)
=i

D. COMMENTS

Because the radius and polarizability of the Li* ion are very small when
compared with those of other ions, the interaction energy found here for the
Born=Mayer and van der Waals potentials, is about an order of magnitude less
than that for other ions; whereas, the polarization energy we computed is
close to the value, using an approximate calculation done by Jost.'?

The double Fourier transforms for four different interaction potentials
—~when the Li* ion interacts with a semi=infinite solid= are given-in Table 2.
The single Fourier transforms for the same potentials, when the Li* ion in-
teracts with a plane and with a line of atoms, are given, respectively, in Ta-
bles 3 and 4. In Table S the contribution to the total energy of each interac-
tion potential is shown for the semi=infinite solid, the plane and line cases.

Finally, although the interaction potentials between ions of the families

of Li and Ar have been previously considered,* no calculation similar to the

one here presented has yet appeared.

APPENDIX

The double Fourier transform for the Born=Mayer potential is obtained

here.
Let

b= explin +r=n)/p) i

. " 4+ .
respectively, the radius of the Li™ ion and that of the Ar

where r; and 1, are,
corresponding to this potential interaction, will be

atom. The enecrgy Egy,

exp {(r; +r.=r)/0" ), (2)

B...=2b
BM &
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TABLE 1

Numerical values of the constants employed in these calculations.

a (1) 5.76
v (Ar)(A) 1.57
1}. (L™ (X) 6
b (ev) 0.159
0
P! (A) 0.339
K, 1.67
G (erg em™®) 7.5 x 10780
a'l-]. (erg cm™?) 7 x 1077
z 8
2
d (A) 5.3

a (ev) i 0775



TABLE 2

Double Fourier transform ”’U_ , of the individual interaction energy &= A /" (n =4, 6, 8) for the
?

Born=Mayer potential.

*rruop 1 ppiyssatut o Adiaug

FODO(O) E#'O(O)
amz—2 azn? (m?m?)iz™ k|27Zm?+md)?|
Cff a~8 i_ 77 C:.]. a~®3z™? (m? +m§)k2 !2772 (mf+m§)'}
P, b I d ~BT"-_47-3(2+ 2)3/2&‘2772(2"}' 2)‘:[
ija '3-'?’7 ”d 3 s ml m2 4 ml m2
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Interaction energy ¢ of a plane of atoms (located at x, = 0 and extending from x,
with an atom at the point: x|

a Born=Mayer potential.

TABLE 3

:x~0 Z ==X

3

. = 0 to infinity)

, assuming the individual mteractmn energy with

E_ _(0)
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TABLE 4

Interaction potential between one atom and a line of atoms. (Assuming,
f=A/r" and a Born-Mayer potential).

i ‘B-M
2.4 : 4o r.+f--_%
2R X ™1 26" > exp(? K’) =1
TABLE 5

Different contributions to the total energy: the subscript denotes the type of
interaction potential and the superscript indicates the semi=infinite solid
(3), the plane {2), and the line (1) cases. All the energies are negative
except for the Born=Mayer type.

--r-: 5@ )
374 2.06 3.07 5.509
! .
'bﬁ ’f': "_'JT; (ﬁa
0.324 159 .189 3804

8
00374 .038 042 .0831
1 -
ThaM B=M -f’rss-m PBam

056 104 544 .704
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and we can write for the exp in Eq. 2, using the notation of Ref. 6,
[=a(3"” = p2)%]
exp l=a(8" =p°)°]

with

a=al2np, &= 2w(52+z2)j:'.
To replace the sum by two integrals, the first one being

1= 2m €2+ 2207 K [8(22+ 21)%) [mm? +02)5] (3)
where

§=27m(m?+ az)"’

we do as follows:
Let

£ = =g?/bm?

then

2 1.
I =2malz?=(g*/4n™)] " K [(5/2m)(=" -q%)?%] x
x [nm?+a?)?]” (4)

where z' =27z and K| is a Bessel function of the second kind with an imagi=

nary arguments
Integrating I, we obtain:

| = I
1, = ﬂmf*’.’xz)‘ L"-?(mi‘*ftz)‘] X

x [1+2mz+ 4+ %) (m2+m3 + a?)?] x
 explegaiet 4% x) w? Fatia?yt) (5)
x expl=27(z Lt x)m T m,

- T |
x LZ(mf+m§+fl‘!)"}

where we have replaced z by (z+ ﬂs tx)e
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RESUMEN
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Se calcula la energia de un i6n intersticial de Li en una red cristalina

de Ar solido. El método consistié en dividir el cristal en varias regiones y se

calculé entonces la interaccion de un ion con un solido semi=infinito, con un

plano semi=infinito y con una linea de atomos. Para describir el potencial

debido a la interaccion de un ion de Li* con uno de Ar, hemos usado el méto-

do de Norgett and Lidiards Las diferentes contribuciones a la energia se pre-

sentan en tablas y en un apendice se ilustra para uno de los potenciales de

interaccion el uso de las transformadas de Fourier para el calculo de sumas

de la red.





