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Diffusion microrheology of ferrofluids
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We provide a statistical mechanics approach to study the linear microrheology of thermally equilibrated and homogeneous ferrofluids. The
expressions for the elastic and loss moduli depend on the bulk microstructure of the magnetic fluid determined by the structure factor of the
suspension of magnetic particles. The comparison of the predicted microrheology with computer simulations confirms that as a function of
relaxation frequency of thermal fluctuations of the particle concentration both theory and simulations have the same trends. At very short
frequencies the viscous modulus relates to the translational and rotational self-diffusion coefficients of a ferro-particle.
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1. Introduction

Ferrofluids are colloidal suspensions of permanently magne-
tized particles of nanometer size dispersed in a solvent. Their
rheological properties such as viscosities, storage of energy
and dissipative moduli can be controlled with external mag-
netic fields [1], which makes them valuable in diverse techno-
logical applications. Much of the research on these magnetic
fluids relates to the class of magnetorheological suspensions
which develop bulk magnetization under external magnetic
field conditions [2]. External fields produce chain-like aggre-
gates of the colloidal particles, an effect that can also be de-
veloped in ferrofluids in the absence of fields for sufficiently
high particle’s dipolar moment or concentration. It has been
observed that when the fluid is subjected to an applied in-
creasing shear rate they change from their Non-Newtonian
(nonlinear relationship of stress with the applied shear flow,
which it can be produced by thermal fluctuations too) to New-
tonian (the stress response of the liquid is linear through a
kernel with the shear rate. With the kernel been the stress
relaxation modulus) under magnetic fields. Such rheologi-
cal behavior has been demonstrated to be anisotropic through
the use of macroscopic rheology experiments [3], and also
more recently through a no invasive technique, the passive
microrheology on a probe particle diffusing in the colloidal
suspension [4] in thermal equilibrium. In their development
of this latter experimental technique by Masonet al [5], they
express “bulk relaxations have the same spectrum as the mi-
croscopic stress relaxations affecting the suspended particle
motion”. They assumed that the complex shear moduli can
be determined from the particle’s mean squared displacement
in the linear regime of low shear flow. This technique has
a significant sensitivity and detects high frequencies of re-
laxations as compared to macroscopic rheology. Ferrofluids
look dark with visible light because of its strong absorption
by the ferro-colloids. Merteljet al. [4] were able to measure
the translational diffusion of the probe particle with their use
of low-intensity laser beams in dynamic light scattering ex-
periments. In their research, they used small samples which

together a careful selection of wavelengths allowed them to
reduce the absorption of light by the ferrocolloids. Whereas
Yendetiet al [6] made their microrheology experiments ob-
serving a fluorescence silica colloidal particles suspended in
the ferrofluid. This way they were able to use video mi-
croscopy to track the silica particle positions driven by its
Brownian motion inside the ferrofluid. Thus, fine tuning of
the wavelength to the order of the probe particle size allows
the determination of its mean squared displacement. There-
fore, the scattered light originates only from the probe sil-
ica colloidal particle since the molecules of the solvent are
much smaller than the wavelength of the used light. Sol-
vent provides the reservoir that dissipates energy from the
translational and rotational movement imparted by the Brow-
nian motion of all the colloidal particles. It was shown in
Refs. [7] and [8] that dynamic light scattering and video mi-
croscopy in microrheology experiments allows the determi-
nation of the orientation variable, thus, providing the rota-
tional diffusion of the probe. From its angular displacements,
the time-dependent mean squared angular displacement was
measured. Consequently, the microrheological shear modu-
lus of the host suspension was obtained. Comprehensive the-
oretical knowledge of the main measured rheological prop-
erties have been reached with thermodynamic [9–15], and
kinetic theories of liquid crystal dynamics [16] that involve
macroscopic constitutive magnetization’s relaxation mecha-
nisms, and both mean field and microscopic free energies
of the thermodynamic state, respectively. Thus, the exper-
imentally observed dependence of viscosity with magnetic
field was accurately confirmed with a kinetic approach from
low up to moderate concentrations before the formation of
chain structures by the particles [17]. After the formation
of chains, a so-called kinetic chain theory of rod-like aggre-
gates [18, 19] confirms the observations on the increase of
viscosity with field quantitatively. In a similar set of macro-
scopic experiments at low strain in a system where the finite
size of the vessel containing the liquid was important [20],
it was determined the energy dissipated due to aggregate’s
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structural deformation when they are partially bound to the
confining walls. It was found that the aggregates experience
cohesion and movement of their inner constituting particles
which generates heat through this process. Such a heating
mechanism is relevant in hyperthermia applications where
ferro-particles diffuse, rotate and stick to the boundaries in
the multicomponent medium inside of a tissue [21]. These
findings have raised the interest to investigate the rheology
of complex fluids of mixtures of added polymer solutions to
the magnetorheological fluid [20, 22–24]. Thus, the theoret-
ical description of their observed rheology and effect of size
polydispersity [25–28], have been described with polymers
motivated models [29, 30]. More recently, theories based on
macroscopic thermodynamics predict as in polymer theory
elongational viscosity and its consequence on the ratios of
the viscoelastic moduli [30], and of the module to viscous
dissipation time. Such predictions were adopted in the mi-
crorheology experiments of Refs. [4, 6] in order to get es-
timates for the values of all anisotropic properties. In the
present manuscript we propose expressions for the complex
shear modulus response for the rheology of an equilibrium
ferrofluid derived from a statistical mechanics approach valid
in the regime of linear shear flow of microrheology exper-
iments. The viscoelastic moduli depend on the pair distri-
bution function which captures the bulk microstructure of
the ferro-particles due to their pair direct interactions. We
show that for a given concentration of particles, ferrofluids
at equilibrium state display rheological behavior in a similar
way as it is observed to occur in non-equilibrium anisotropic
magnetic fluids under external fields and shear flow. For the
dispersed homogeneous phase of the colloid, we found that
the dissipative modulus is dominant at low frequencies where
the colloid displays a liquid character with a crossover to an
elastic fluid mode at moderate frequencies where the elastic
modulus becomes dominant at higher frequencies. The cal-
culated loss modulus has good agreement with Langevin dy-
namic simulations up to the transition to the elastic behavior
where it starts to deviate. Whereas the general shape of the
elastic modulus, as obtained from simulations of the mean
square translational displacement of a probe ferro-particle is
qualitatively well described by the model proposed. An in-
crease of the dipolar moment per particle or of their concen-
tration can lead to the formation of chain like aggregates in
absence of external fields. Our model theory of microrheol-
ogy is useful in this case too. Since the formation of chains
is taken into account properly by the pair correlation function
which describes the bulk micro-structural order of the parti-
cles due to their direct interactions. We also provide the an-
alytical expressions for these moduli when the observable is
the mean square angular rotation for experiments that observe
the rotational diffusion of ferro-particles. These viscoelastic
properties can also be used to study in the linear regime of
flow the rheology of equilibrium isotropic ferroelectric col-
loids [31–33].

2. Translational diffusion microrheology

Tracking microrheology experiments are useful techniques
that accurately provide the linear viscoelasticity of suspen-
sions of polystyrene particles and other complex fluids [5,
7, 34, 35]. In these experiments it is assumed that the com-
plex shear moduli can be determined from the particle’s mean
squared displacement in the linear regime of low shear flow.
The rheological properties are extracted through the equilib-
rium Einstein expression of the friction on a probe particle
that performs a Brownian motion in the colloid. The friction
due to interaction with its neighbors, in the frequency space
4ζ(ω), that affects its translational movement is related to
the mean square displacement< ∆ω(ω)2 > and to the com-
plex shear modulus by

G(w) =
kBT

iπa < ∆r(ω)2 >
=

iω(ζ0 +4ζ(ω))
3πd

(1)

with i =
√−1. a the particle radius.ζ0 the solvent friction

on a particle. In what follows we show how the friction on
the probe particle is obtained.

The Langevin equations of the translational and rotational
Brownian motion of the probe particle that interacts with the
others in the suspension are the stochastic Eqs. [36]

M
dV(t)

dt
= −ζ0 ·V(t)−ζ0

TR ·W(t)

+f0(t)+FTOT (t)

I · dW(t)
dt

= −ζ0
R ·W(t)−ζ0

RT ·V(t)

+t0(t)+TTOT (t). (2)

V(t) andW(t) are the translational and angular velocities of
the probe. We used a space fixed frame with origin at the par-
ticle center of mass, and frame axis following the orientation
of the probe main axis of symmetry. M andI are the mass
and particle’s matrix of moment of inertia, respectively. We
shall not consider neither hydrodynamic interactions among
particles nor external magnetic fields. The first two terms in
Eqs. (2) are the solvent friction force and torque. The short
time free particle diagonal friction tensorsζ0, ζ0

TR, ζ0
RT, ζ0

TR,
ζ0
RT represent hydrodynamic drag forces, and torques. These

friction and random forces are the only quantities that con-
vey information on the nature of the solvent. And they ignore
their molecular degrees of freedom of position and orienta-
tion coordinates and momenta. They are coupled to the ther-
mally driven solvent random forcesf0 and torquest0 by the
fluctuation-dissipation theorems

〈f0(t)f0†(0)〉 = kBTζ02δ(t),

〈f0(t)t0†(0)〉 = kBTζ0
TR2δ(t),

〈t0(t)f0†(0)〉 = kBTζ0
RT2δ(t),

〈t0(t)t0†(0)〉 = kBTζ0
R2δ(t) (3)
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andkB Boltzmann constant,T = 300K the absolute temper-
ature. The total forceFTOT and torqueTTOT on the probe
by the other colloidal particles which are at the concentration
n(r,Ω, t) =

∑N
i=1 δ(r− ri(t))δ(Ω− Ωi(t)) are given by

FTOT (t) =
∫

drdΩ [∇ψ(r, Ω)]n(r, Ω, t),

TTOT (t) =
∫

drdΩ
[
r×∇ψ(r,Ω)

+∇Ωψ(r, Ω)
]
n(r,Ω, t), (4)

with Ω = (θ, ϕ) andθ, ϕ being the polar angles,ψ(r,Ω,Ω′)
is the pair potential, and∇Ω = n̂× ∂

∂n̂ the angular gradient
operator. It should be noted thatFTOT (t) andTTOT (t) are
calculated using the probe’s dipole located along theZ axis
direction of the its local frame, that isΩ′ = (0, 0). The uni-
tary cartesian vector̂n of the orientation of any other particle
is in the direction of that particle’s axis of symmetry.

Both Langevin equations can be written compactly as

M
↔ · dV

↔
(t)

dt
= −ζ0

↔ ·V↔(t) + f0
↔

(t)

+
∫

drdΩ
[
∇↔ψ(r, Ω)

]
n(r,Ω; t), (5)

where
←→∇ = (∇, r × ∇ + u × d/du) is the general gra-

dient operator.r denotes the vector joining the centers of
the probe and another particle.u is a unitary vector with
orientationθ, φ. The generalized velocityV

↔
= (V,W),

M
↔

ij = Mδij (i, j = 1, 2, 3), M
↔

ij = δijIi−3 (i, j = 4, 5, 6),
with I1, I2, I3 being the principal moments of inertia of the
tracer. The friction tensorζ0

↔
is a diagonal matrix which have

the nonzero components with elementsζ0
11 = ζ0

22 = ζ0
⊥,

ζ0
33 = ζ0

‖ , ζ0
44 = ζ0

55 = ζ0
R, andζ0

66 = 0 which are external
inputs to this theory and are provided by experiment or an
external theory. For spherical particlesζ0

⊥ = ζ0
‖ = ζ0. Such

coefficients describe the particle hydrodynamic friction with
the solvent when its diffusion occurs along its dipole orien-
tation (‖), perpendicular (⊥), or performs rotational motion
R. Equation (5) can be written to first order in concentration
fluctuationsδn(r, Ω; t) = n(r, Ω; t) − neq(r,Ω), with the
profile distribution of host particles in the probe’s field given
as neq(r,Ω) = 〈n(r,Ω, t)〉 been an equilibrium ensemble
average. Thus, the Langevin equation takes on the final form

M
↔ · dV

↔
(t)

dt
= −ζ0

↔ ·V↔(t) + f0
↔

(t)

+
∫

drdΩ
[
∇↔ψ(r, Ω)

]
δn(r,Ω; t), (6)

whereneq(r,Ω) does not contribute to the total force and
torque. Similarly, a stochastic evolution equation forδn(t)
is derived with help of linear irreversible theory of fluctua-
tions [37]

∂δn(r, Ω, t)
∂t

=
[
∇↔neq(r, Ω)

]
·V↔(t)

−
t∫

0

dt′
∫

dr′dΩ′
∫

dr′′dΩ′′L(r, r′, Ω, Ω′; t− t′)

× σ−1(r′, r′′,Ω′, Ω′′)δn(r′′,Ω′′; t′) +∇↔ · j(r,Ω;t), (7)

with 〈∇↔ · j(r,Ω;t)∇↔ · j†(r′,Ω′;0)〉≡L(r, r′,Ω,Ω′;t), and∇↔ ·
j(t) been a random diffusive flux. This is the more general
form of the diffusion equation of the particles. Its solution is

δn(r,Ω, t) =
∫

dr′dΩ′χ(r′,Ω′; t)δn(r, Ω; 0)

+

t∫

0

dt′
∫

dr′dΩ′χ(r, r′,Ω,Ω′; t− t′)

×
[
∇↔neq(r′, Ω′)

]
·V↔(t′)

+

t∫

0

dt′
∫

dr′dΩ′χ(r, r′,Ω,Ω′; t− t′)

×
[
−∇↔

′
· j(r′, Ω′; t′)

]
. (8)

The diffusion relaxation of the host particles around the
probe is provided byχ(t) that fullfils

∂χ(r, r′,Ω,Ω′; t)
∂t

=

−
t∫

0

dt′
∫

dr′dΩ′
∫

dr′′dΩ′′dr′′′dΩ′′′L(r, r′, Ω, Ω′; t− t′)

× σ−1(r′, r′′, Ω′, Ω′′)χ(r′′, r′′′,Ω′′,Ω′′′; t), (9)

which has initial conditionχ(r, r′, Ω, Ω′; t = 0) = δ(r −
r′)δ(Ω − Ω′). Equation (9) can be converted into a dynami-
cal equation for the Van Hove function of fluctuations in the
concentration of particlesC(r, r′,Ω,Ω′; t) with respect to its
equilibrium value

neq(r,Ω) : C(r, r′, Ω, Ω′; t) =
∫

dr′′dΩ′′χ(r, r′′,Ω,Ω′′; t)′′

×σ(r′′, r′,Ω′′,Ω′) ≡ 〈δn(r′, Ω′; 0)δn(r′, Ω′; t)〉,
which determines the relaxation modes of the cage of parti-
cles surrounding the probe. Its initial conditionσ = C(t =
0) = 〈δn(0)δn(0)〉 is the inhomogeneous static correlation
function with inverse given by

∫
dr′′dΩ′′σ(r, r′′, Ω, Ω′′)′′σ−1(r′′, r′, Ω′′, Ω′)

= δ(r− r′)δ(Ω− Ω′). (10)
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Substituting the above solution forδn(t) into the Langevin
equation (6) leads to

M
↔ · dV

↔
(t)

dt
= −ζ0

↔ ·V↔(t) + f0
↔

(t)

−
t∫

0

dt′∆ζ
↔

(t− t′) ·V↔(t′) + F
↔

(t), (11)

where

F
↔

(t) = +
∫

drdΩ
[
∇↔ψ(r,Ω)

]

×
∫

dr′dΩ′χ(r′,Ω′; t)δn(r′,Ω′; 0)

+
∫

dr′dΩ′χ(r, r′, Ω, Ω′; t)

×
[
−∇↔

′
· j(r′, Ω′; t′)

]
, (12)

is a fluctuating generalized force arising from the sponta-
neous departures from zero of the net direct forces exerted
by the other particles on the tracer. It groups a random force
and torque on the tracer with zero mean value, and time

dependent correlation function given by〈F↔(t)F
↔†

(0)〉 =
kBT∆ζ

↔
(t), and the time-dependent friction function on the

probe (tracer) particle is

∆ζ
↔

(t) = − 1
Ω2

∫
drdr′dΩdΩ′ [∇↔ψ(r,Ω)]

× χ(r, r′, Ω, Ω′; t) [∇↔
′
neq(r′,Ω′)]†. (13)

Using the Wertheim-Lovett’s relation [38]

∇↔ψ(r, Ω) = −kBT

∫
dr′′dΩ′′σ−1(r, r′′, Ω, Ω′′)

×
[
∇↔
′′
neq(r′′, Ω′′)

]
, (14)

we derive other useful forms of the friction function∆ζ
↔

(t)
as

∆ζ
↔

(t) =
kBT

Ω2

∫
drdr′dr′′dΩdΩ′dΩ′′ [∇↔neq(r, Ω)]

× σ−1(r, r′, Ω, Ω′)χ(r′, r′′, Ω′,Ω′′; t)

× [∇↔
′′
neq(r′′, Ω′′)]†

=
β

Ω2

∫
drdr′dΩdΩ′[∇↔ψ(r, Ω)]

× C(r, r′, Ω, Ω′; t)[∇↔
′
ψ(r′,Ω′)]†, (15)

with β = 1/kBT and C = χ ◦ σ , ◦ ≡ ∫
drdΩ, and †

is transpose. The angular average in (15) (division byΩ2)

is necessary since this is an experimental observable. In Eq.
(15) neither hydrodynamic interactions nor external magnetic
fields were included. It can also be extended to describe mix-
tures of species of anisotropic particles with axial symmetry.

The time-dependent memory function∆ζ
↔

(t) contains
the dissipative friction effects derived from the direct inter-
actions of the probe particle with the particles around it. This
memory function defines the relaxation timeτI À τB (τB

which is the relaxation time of the momenta of the parti-
cles) for the particles to diffuse a mean distance among them.
Thus, in the diffusive regimet À τB, long time overdamped
regime meanst À τI. At this time scale the momenta of
the colloidal particles have already relaxed and the only rel-
evant dynamic variables are their positions and orientations
(r(t), Ω(t)).

This is a general expression for the friction contribu-
tion on the tracer due to direct interactions with the parti-
cles about it. It depends on the microstructural inhomoge-
neous total correlation functionh(r,Ω) = neq(r,Ω)/ρ−1 of
the host suspension ofN particles at concentrationρ around
the field of the probe, and of the free friction constantsζ0

↔
throughχ(t). We now introduce the homogeneity approx-
imation which amounts to ignore the tracer’s field on the
propertiesσ, χ(t) or equivalently onC(t), which then can
be determined in the bulk solution. Thus,σ(r, r′, Ω, Ω′) ≈
σ(r =| r − r′ |,Ω,Ω′, Ω|r−r′|). It is also adopted the
Fick´s diffusion approximation forχ(t) = exp(−tL ◦ σ−1),
with L(r − r′, Ω, Ω′,Ωr−r′) = ρ[D∗0∇2 + D∗0

R ∇2
Ω]δ(r −

r′)δ(Ω − Ω′). In this approximationD∗0 = D0 + D0
other,

D∗0
R = D0

R + D0
R,other, (The caseD0

γ,other ¿ D0
γ , γ = ‖,

⊥, R was made in [36]). The short-time diffusion coefficients
D0

other = D0, D0
R,other = D0

R of the other particles are ap-
proximated by those of the tracer, andD0 = kBT/ζ0, D0

R =
kBT/ζ0

R. For spherical solid particles,ζ0 = 3πηsold, ηsol

is the viscosity of the pure solvent,d is the diameter of the
Brownian particle, andζ0

R = πηsold
3.

Using the above approximation forχ(t) andC = χ ◦ σ,
Eq. (9) can be written as

∂C(r,Ω, Ω′,Ωr; t)
∂t

= −ρ[D∗0∇2 + D∗0
R ∇2

Ω]

×
∫

dt′dr′′dΩ′′σ−1(r − r′′, Ω, Ω′′, Ωr−r′′)

× C(r′′ − r′, Ω′′, Ω′,Ωr′′−r′ ; t− t′). (16)

This last equation governs the diffusive relaxation of
C(t), as described from the tracer’s reference frame. In this
manner, we have obtained a closed approximate expression
for ∆ζ

↔
(t) in terms only of the static propertiesψ, σ and of

the phenomenological quantitiesD0 andD0
R.

From (15) the 6x6 diagonal friction matrix, where it is
ignored translational and rotational coupling is

4←→ζ (t) =
1

Ω2
β[
←→∇ψ] ◦ C(t) ◦ [

←→∇ψ]†, (17)

with Ω = 4π. In this theory the orientation of the probe
particle’s main axis of symmetry was defined with respect
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to its body fixed frame. It has its dipole oriented along the
main shaftu = (0, 0, 1). Thus, another particle’s orientation
u = u(Ω) is denoted in this frame by the polar angles of its
orientationΩj = (θj , φj) for j = 1, ..., N .

Thus, the friction matrix (17) has only five non zero di-
agonal elements;4ζ11(t) = 4ζ22(t) = 4ζ⊥(t) is the fric-
tion on the tracer for perpendicular motion to the dipole or
of its anisotropy vector of orientation.4ζ33(t) = 4ζ‖(t)
describes the parallel motion along the main axis of symme-
try. The contribution to the rotational friction is4ζ44(t) =
4ζ55(t) = 4ζR(t). In Eq. (17)β = 1/kBT . The gen-
eral expressions for the friction function in (17) can be used
also to study tracer diffusion on rod-shaped particles sus-
pensions [39] such as fd viruses on which the experimental
techniques of birefringence [40], and forced Rayleigh scat-
tering measure the diffusion properties [41]. On the other
hand, the propagator in (17)C(t) := 〈δn(t)δn(0)〉 gov-
erns the collective relaxation of the particle’s configuration
variables (r(t), Ω(t)) due to thermal fluctuations in their lo-
cal concentrationδn(r,Ω, t) = n(r,Ω, t) − neq(r, Ω) about
the equilibrium neq = 〈n(r, Ω, t)〉 of its local instanta-
neous valuen(t) =

∑N
i=1 δ(r − ri(t))δ(u − ui(t)) [38].

It has initial conditionC(t = 0) = ρS(r,Ω; r′,Ω′) :=
〈δn(r, Ω; 0)δn(r′, Ω′; 0)〉 whereS is the structure factor of
particles with numerical densityρ = N/V . The tempo-
ral evolution ofC(t) is given by Fick’s diffusion law which
amounts to an exponential relaxation time and thus corre-
sponds to a Maxwell viscoelastic model.

The colloidal ferrofluid is contained in a volumeV . It
consist of a carrier fluid which molecular nature is not taken
into account, plus the monodisperse system of N spherical
particles where each one has a permanent dipolar moment
µ. ψij is the direct pairwise interaction potential energy be-
tween particlesi, j. Because ferro-particles can not overlap
their interaction is modeled by a Lennard-Jones (LJ) short
range (sr) repulsive, and long-range dipolar (d) potentials
ψ12 = usr + φd

usr = 4ε0

[(
d

r

)12

−
(

d

r

)6
]

, r < 2.5d (18)

with ε the strength, and the dipolar part

φd = −µ0

4π

µ2

r3
D(Ω1,Ω2, Ωr). (19)

µ0 is the magnetic permeability of vacuum.
D(Ω1,Ω2, Ωr) := 3(r̂12 · u1)(r̂12 · u2) − (u1 · u2), where
r̂ = r/r a unitary vector with orientationΩr. Due to the
spatial symmetry of the dipolar potential the pair correlation
functiong(r, Ω1,Ω2) has the fixed space rotational invariant
expansion of Wertheim in the form [38]

g(r, Ω1, Ω2) = g(r) + h4(r)4+hD(r)D, (20)

with4 := u1 ·u2. D(Ω1,Ω2, Ωr) := 3(r̂12 ·u1)(r̂12 ·u2)−
(u1 · u2), wherer̂ = r/r a unitary vector with orientation

Ωr. u is a unitary vector with orientationu = u(θ, φ). An-
other equivalent laboratory rotational invariant expansion for
g(r, Ω1,Ω2) was given by Blum [38]

f(r, Ω, Ω′) = (4π)3/2
∑

mnl

fmnl(r)√
(2l + 1)

×
∑

µνλ

(
m n l
µ ν λ

)

× Ymµ(Ω)Ynν(Ω′)Ylλ(Ωr), (21)

with the identificationg000 := g(r), h110 := −h4(r)/
√

(3),
andh112 := hD(r)

√
(10/3) dictated by the symmetry of the

dipolar fluid.
By taking the Fourier-Bessel

fmnl(k) = 4πil
∞∫

0

r2jl(kr)fmnl(r)dr

[42] with jl being the spherical Bessel function, and Laplace
transform

Cmnl
,α (k,w) =

∞∫

0

dteiwtCmnl
,α (k, t)

of (16) (See Ref. [36]) we find

[−iwCmn
,α (k,w)− Cmn

,α (k, w = 0)]

= −ρ4π

Ω
(2l + 1)[D∗0k2 + D∗0

R m(m + 1)]

×
∑
n1

(−1)αCn1n
,α (k, w)[σ−1]mn1

,α , (22)

wherei =
√

(− 1) and

Cmnl
,α (k,w) =

m+n∑

l=|m−n|

(
m n l
α −α 0

)
Cmnl(k,w)

[42]. Using the above values ofmnl = 000, 110, 112, then
for dipolar liquidsα = 0,±1, and using the approximation
D∗0 = 2D0, D∗0

R = 2D0
R [36], we get for (22)

C11
,α (k, w)=

[σ(k)]11,α

−iw + ρ(−1)α(D∗0k2+2D∗0
R )[σ(k)]11,α

. (23)

And the inverse relation holds [42]

Cmnl(k, w) = (2l + 1)

×
inf(m,n)∑

α=−inf(m,n)

(
m n l
α −α 0

)
Cmnl

,α (k, w). (24)

Thus

C000(k, w) = C00
,0 (k, w)

C110(k, w) =
1√
(3)

[2C11
,1 (k, w)− C11

,0 (k,w)]

C112(k, w) =
10√
(30)

[C11
,1 (k, w) + C11

,0 (k,w)]. (25)
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The structure factorS = σ/ρ and total correlation func-
tion h are related by

σmn
,α (k) = ρSmn

,α (k) = ρ[1 + (−1)αhmn
,α (k)], (26)

S00
,0 (k) = 1 + ρ∗h000(k)

S11
,0 (k) = 1− ρ∗

d3

(
1√
(3)

h110(k)− 2√
(30)

h112

)

S11
,±1(k) = 1− ρ∗

d3

(
1√
(3)

h110(k) +
1√
(30)

h112

)
. (27)

Using the invariant spherical harmonic expansion in
Eq. (17) we obtain the friction function on the probe (tracer)
particle

4ζ(t∗)=
ζ0

12π2t0ρ∗

∞∫

0

dxx4
(S00

,0 (x)− 1)2

S00
,0 (x)

e−
x2t∗

2 (1+1/S00
,0 (x))

+
4
√

(3)ζ0ρ
∗µ∗4

t0

∞∫

0

dxj2(x)2{−C110(x, t∗)

+
2
√

(10)
25

C112(x, t∗)}, (28)

with the single time dependent relaxation function
C11

α (x, t∗) = ρS11
α (x)e−t∗(x2+3/2)/S11

α (x), α = 0, 1 [36].
The first term on the right hand side of (28) was first derived
by Nägeleet al [43] for spherically symmetric interacting
particles and the second term in the present manuscript.

3. Microrheology under linear shear flow and
no external magnetic field

We assume now that the viscoelastic response of the fer-
rofluid to variations of strain ratėγ(t) is given by a linear
constitutive equation for the shear stress [5]

σ(t) =

t∫

0

dt′G(t− t′)γ̇(t), (29)

with shear relaxation modulusG(t). Because the shear stress
divided by the shear rate has dimensions of viscosity, it is
defined the complex viscosityη(t) = G(t)/γ̇(t). In fre-
quency spaceω, σ(ω) = G(ω)iωγ(ω). Mason and Weitz [5]
proposed that the bulk stress temporal relaxation scale of
G(t) is the same time scale response as the microscopic
stress relaxation of the complex viscosityη(t) that affects
the particle motion. Thus for spherical particles undergo-
ing translational diffusion they foundG(ω) = iωη(ω) =
ζ(ω)/(3πd) [5], whereas for rotational Brownian movement
G(ω) = ζR(ω)/(πd3) [34]. This approximations has re-
sulted in a very useful experimental technique called mi-
crorheology. Thus, here we make the same approximations

of Mason and Weitz in order to obtain, in the case of trans-
lational movement, the linear relationships for the rheology
of the ferrofluid and described by the complex frequencyω
dependent shear modulus

G(ω) = G′(ω) + ıG′′(ω)

=
iω(ζ0 +4ζ(ω))

3πd
= iωη(ω), (30)

whereı =
√

(−1), 4ζ(ω) := Re∆ζ(ω) − ıIm∆ζ(ω) with
Re, Im the real and imaginary parts of the friction function
given by the average4ζ(t) = (1/3)(24ζ⊥(t) + 4ζ‖(t)).
Using the Laplace transform

f(w) =

∞∫

0

dte−ıωtf(t)

we find

4ζ(ω) =

∞∫

0

dte−ıωt4ζ(t)

=

∞∫

0

dt cos(ωt)4ζ(t)− ı

∞∫

0

dt sin(ωt)4ζ(t)

≡ Re∆ζ(ω)− ıIm∆ζ(ω). (31)

Because for dipolar particles4ζ‖(t) = (4/3)4ζ⊥(t)
[36], then from Eq. (28) we determined4ζ(t) from these
contributions as the real and imaginary parts of the complex
friction function given by (31)

The complex viscosity of a viscoelastic fluid is defined as
η = η′ − iη′′, with componentsη′ = G′′/ω, η′′ = G′/ω.
Using (30) and (31) we find that

G′(ω) = ωη′′(ω) =
ω∗

3πβd3

Im∆ζ(ω∗)
ζ0

G′′(ω) = ωη′(ω) =
ω∗

3πβd3

Re∆ζ(ω∗)
ζ0

. (32)

The normalized frequencyω∗ = ωt0 where the Brownian
time t0 = d2/D0 for a particle to diffuse its diameter. The
short time particle diffusion coefficientD0 = kBT/ζ0 and
the frictionζ0 = 3πηsold with ηsol the solvent (sol) viscos-
ity. These equations are valid for a concentrated ferrofluid
under a stationary shear flow. They constitute the main re-
sults of this manuscript. Finally the storage modulus is

Rev. Mex. Fis.64 (2018) 82–93



88 R. PEREDO-ORT́IZ AND M. HERNÁNDEZ-CONTRERAS

G′(ω) =
2ω∗kBT

3πd3ζ0
Im4ζ(ω∗),

Im4ζ(ω∗)=
ω∗ζ0

3π2ρ∗

∞∫

0

dx
(S00

,0 (x)− 1)2

S00
,0 (x)

[(
2ω∗
x2

)2 +
(

S00
,0 (x)+1

S00
,0 (x)

)2
]

+
8ζ0ρ∗µ∗2ω∗

9

∞∫

0

dxj2(x)2

×
{
− 6S11

,1 (x)[(
3/2+x2

S11
,1 (x)

)2

+ ω∗2
]

+
9S11

,0 (x)[(
3/2+x2

S11
,0 (x)

)2

+ ω∗2
]
}

, (33)

and the dissipative modulus

G′′(ω) =
ω∗

3πβd3
+

2ω∗kBT

3πd3ζ0
Re4ζ(ω∗),

Re4ζ(ω∗) =
ζ0

6π2ρ∗

∞∫

0

dxx2

× (S00
,0 (x)− 1)2(S00

,0 (x) + 1)

S00
,0 (x)2

[(
2ω∗
x2

)2 +
(

S00
,0 (x)+1

S00
,0 (x)

)2
]

+
8ζ0ρ∗µ∗2

9

∞∫

0

dxj2(x)2

×
{

6S11
,1 (x)2[

(3/2 + x2) +
S11

,1 (x)2ω∗2

(3/2+x2)

]

+
9S11

,0 (x)2[
(3/2 + x2) +

S11
,0 (x)2ω∗2

(3/2+x2)

]
}

, (34)

with h000 = g000 − 1. For a hard ferrofluid suspension, the
obtained expression of the complex modulus can be rewritten
as

G′(ω) =

∞∫

0

dx
P 00

0 (x)(ω∗τ∗s,iso)
2

1 + (ω∗τ∗s,iso)2

+

∞∫

0

dx

[
P 11

1 (x)(ω∗τ∗s,1)
2

1 + (ω∗τ∗s,1)2
+

P 11
0 (x)(ω∗τ∗s,0)

2

1 + (ω∗τ∗s,0)2

]
, (35)

where we introduced the auxiliary definitions

P 00
0 (x) =

1
18π3βd3ρ∗

x4
(S00

,0 (x)− 1)2

S00
,0 (x)

P 11
1 (x) = −32ρ∗µ∗4

9πd3β
j2(x)2S11

,1 (x),

P 11
0 (x) =

48ρ∗µ∗4

9πd3β
j2(x)2S11

,0 (x). (36)

The imaginary part is

G′′(ω) =
ω∗

3πβd3
+

∞∫

0

dx
P 00

0 (x)ω∗τ∗s,iso

1 + (ω∗τ∗s,iso)2

+

∞∫

0

dx

[
−P 11

1 (x)ω∗τ∗s,1

1 + (ω∗τ∗s,1)2
+

P 11
0 (x)ω∗τ∗s,0

1 + (ω∗τ∗s,0)2

]
. (37)

Given the known material values ofd, µ, ρ, ηsol, T for
a ferrofluid, Eqs. (35-37) do not depend on adjustable pa-
rameters. The dimensionless quantitiesτ∗s,α = τs,α/t0 =
S11

,α (x)/[8π(x2 +6)] are short (s) relaxation times associated
to the ferrofluid’s fluctuation in concentration in transversal
(α = 1) and longitudinal (α = 0) modes to the wave vec-
tor. And τ∗s,iso = τs,iso/t0 = 1/[x2(1 + 1/S00

,0 (x))] arising
from the isotropic (iso) interaction of particles. In Eqs. (35)
and (37) the first and second terms arise respectively from the
radially symmetric part of the potential (either this been LJ,
Yukawa or hardcore type) [36, 43]. The second term comes
from the dipolar interaction derived in this manuscript. The
above equations show that there are three temporal relaxation
times of fluctuations in concentration.j2(x) is the spherical
Bessel function of order 2.µ∗2 = µ0βµ2/(4πd3), x = kd, k
is the wave number. The reduced densityρ∗ = ρd3 and the
projections of isotropic, longitudinal and transversal structure
factor to the wave vector, are respectively

S00
,0 (x) = 1 +

ρ∗

d3
h000(x)

S11
,0 (x) = 1 +

ρ∗

3d3
[h4(x) + 2hD(x)]

S11
,1 (x) = 1 +

ρ∗

3d3
[h4(x)− hD(x)] . (38)

The Fourier-Bessel transform of the projections of the to-
tal correlation functionh000 := g(r)− 1, h4(r), andhD(r)
were calculated according to the method of Ref. [42]. These
structural information results from the equilibrium position
and orientation of the particles and they are determined from
Brownian dynamic simulations performed with the Lammps
package [44], which allows the calculation of the averages
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g(r) =
〈∑i,j(i 6=j) δ(r − |rij |)〉

N4πρ∗r2
,

h4(r) = 3
〈∑i,j(i 6=j) δ(r − |rij |)ui · uj〉

N4πρ∗r2
,

hD(r)=
3
2

×
〈∑i,j(i 6=j) δ(r − |rij |)[3ui · r̂ijuj · r̂ij−ui · uj ]〉

N4πρ∗r2
. (39)

In Lammps simulations we used dimensionless units for,
the particle energy at room temperature, length and mass
which were obtained with respect to those of the ferrofluid
Fe2O3, given by the values [2];ε0 = 5.453110−21J , d =
10−8m, andm0 = 2.70710−21Kg, respectively. They are
related by the time scalet′ = d

√
m0/ε0 that measures the

step size in the simulations.

Figure 1 is a log-log plot that depicts the behavior of
τ∗s,α,iso versus reduced wavenumberx for a system with
dipole momentµ∗ = 1, and densityρ∗ = 0.3. This figure
shows thatτ∗s,iso > τ∗s,1 ≥ τ∗s,0, that is, isotropic fluctuations
of concentration decay more slowly than longitudinal ones.
Thus, transversal modes (τ−1

s,1 ) decay more slowly than lon-
gitudinal ones. This phenomenon has also been observed by
other authors in ferrofluids and dipolar colloids [46,47]. In

FIGURE 1. The viscoelastic model of Eqs. (5-8) has three charac-
teristic relaxation timesτ∗s,α = τs,α/t0, α = iso, 1, 0 whose log-
arithmic plots are provided here versus dimensionless wave num-
ber x = kd. Dipolar strength isµ∗2 = 1 and reduced density
ρ∗ = 0.3. Transversal mode relaxation timeτ11

,1 , longitudinalτ11
,0 ,

and isotropic oneτ00
,0 for polarization fluctuations with respect to

wave vector.

In the long wave length limitkd ¿ 1, it resultsτs,α =
t0S

11
,α (x)/48π, which yields a relationship between the

Brownian timet0 and the microscopic timeτs,α. A similar
relationship between the Brownian and microscopic times,
through colloid microstructure, was found by Bagchiet al
[47]. Figure 1 also implies that the short timeτ00

,0 governing
the collective isotropic density fluctuations has a larger con-
tribution in both moduli than the longitudinal and transversal
modes.

4. Viscoelastic moduli

In Fig. 2 are plotted in log-log scale the elasticG′(w) and
dissipativeG′′(w) modulus versus frequency at three re-
duced densitiesρ∗ = 0.9(a), 0.5(b), 0.3(c) and fixed dipo-
lar strengthµ∗ = 1.0. Notice that due to the used Lammps
system of units, in the plots of Fig. 2 and further,µ∗2 is re-
placed byµ∗2/T ∗ in all our equations leading to all figures
presented below. HerekBT ∗ = 0.759559ε0. The simulation
results forG′′ andG′ are depicted in black filled circle• and
black star symbol?, respectively. These properties were ob-
tained following the method of Masonet al.[5] which require
the use of the simulation or experimental results of the mean
squared displacement in Eq. (1). Whereas, the theoretical
predictions of Eqs. (35-37) for these properties are given in
gray void star symbol forG′′, and gray void circle◦ for G′.
We can observe that the model predictions of Eqs. (35-37) for
both properties are in qualitative agreement with the simula-
tion results from low concentrations up to the crossover re-
gion where the elastic response of the ferrofluid overwhelms
the viscous modulus and dominates at high frequencies. Af-
ter this transition region, and for the highest concentration
ρ∗ = 0.9. Figure 2(a), the elastic modulus disagree with the
simulated value at all frequencies. However, there remains
good agreement for the viscous modulus from low up to the
crossover region. We note that whether this system presents
a partial aggregation of particles such as chains or not Eqs.
(35-37) are generally valid. In our model system where there
are no chains. In general, the theoretical predictions for the
viscoelastic moduli yield the same trends observed for these
properties as obtained from simulations. At low frequencies
(long times) the ferrofluid is viscous, and at the short time it
is an elastic medium.

Our derived expressions of Eqs. (35-37) have the same
frequency dependence as a continuous mechanical (mec) mo-

TABLE I. Parameters of mechanical Maxwell model

ρ∗ µ∗ t0G
mec
0 /ηsol τ∗

0.1 1.4 21.88 1/61.14

0.1 1.6 22.38 1/61.14

0.3 1.0 15.64 1/42.94

0.5 1.0 28.19 1/57.63

0.9 1.0 622.20 1/299.15

Rev. Mex. Fis.64 (2018) 82–93



90 R. PEREDO-ORT́IZ AND M. HERNÁNDEZ-CONTRERAS

FIGURE 2. Logarithmic plot of elasticG′ and lossG′′ moduli
versus logarithm of dimensionless frequencyω∗ = ωt0 at three
different concentrations and fixed dipolar moment. Theory forG′

is denoted with symbol◦ and simulation with•. Theory result of
G′′ is denoted by gray open star and simulation by?.

del of Maxwell viscoelasticity given by [45]G′ =
Gmec

0 (ωτR)2/[1 + (ωτR)2], G′′ = Gmec
0 ωτR/[1 + (ωτR)2]

with a single relaxation timeτR for magnetization relaxation.
A fit of these relationships to our simulations ofG′, G′′ is
given for instance in Fig. 3 for a ferrofluid with concentra-
tion ρ∗ = 0.1, and dipolar strengthµ∗ = 1.6. From this plot
we obtained the parameters of Table I at various thermody-
namic states.

The value ofτ∗ = 1/ω∗ is wereG′ = G′′. In Fig. 3
we provide the adjustment of such continuous model. Ta-
ble 1 yields the values of the storage modulus expressed as
t0G

mec
0 /ηsol, andτ∗ = τR/t0 after a fitting to our simula-

tions for G′ (symbol•), G′′ (symbol void gray?). In this
figure, continuous line is the above macroscopic model for
G′, G′′. In the continuous mechanical model the magnitude
of the complex viscosity is|ηmec(w)| = η0/

√
1 + (ω∗τ∗)2

with η0 = t0G
mec
0 τ∗. On the other hand, the magnitude

of the complex viscoelastic modulus that follows from the
statistical microscopic model of Eqs. (35-37), is|η(ω∗)| =
|←→ζ (ω∗)|/3πd = t0

√
G′2(ω) + G′′2(ω)/ω∗ which at zero

frequency yields the static effective viscosityη0 = t0G0,
where the storage modulus of the ferrofluid is given by

G0 =
1

3πd3β

4ζ(ω = 0)
ζ0

. (40)

At longtimes, the self-diffusion of a particle isD =
kBT/Re∆ζ(ω = 0) = D0/[1 + (Re∆ζLJ + Re∆ζdi)/ζ0].

FIGURE 3. Brownian dynamic simulations of viscoelastic moduli
as a function of frequency for a fixed concentration and dipolar mo-
ment. Simulation calculation ofG′ is denoted with• and the con-
tinuous line attached to it is the fit with the mechanical Maxwell
continuous model. Similar description for the loss modulusG′′.

ConsequentlyG0 = (1/3πβd3)D0/D. The effective vis-
cosity of the ferrofluid at the overdamped, diffusive regime
t À τB is

η0 = ηsol
Re∆ζ(ω = 0)

ζ0
,

Re∆ζ(ω = 0)
ζ0

= lim
ω→0

[
3πβd3G′′(ω)

ω∗

]
=

1 +
1

6π2ρ∗

∞∫

0

dxx4
(S00

,0 (x)− 1)2τ∗s,iso

S00
,0 (x)

+
128πρ∗µ∗4

3

∞∫

0

dxj2(x)2(6 + x2)

× [
2(τ∗s,1)

2 + 3(τ∗s,0)
2
]
. (41)

Our results for viscoelastic moduli imply thatG′′(ω) >
G′(ω) up to a crossoverω∗ for quiescent ferrofluid. Mean-
while for magnetorheological fluids under external mag-
netic field it is known through experiments that typically
these moduli show a reverse relationship regarding frequency
G′(ω) > G′′(ω) [20,24].

Figure 4 depicts the effect on the viscoelastic moduli of
Eqs. (35-37) of an increase in dipolar magnetic strength for a
fixed concentration of the ferrofluid. In this case, the theory
predictions show the same trends as our simulation calcu-
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FIGURE 4. Logarithm of viscoelastic moduli versus frequency and
two dipolar strength and fixed concentration. Theory forG′ is de-
noted with symbol◦ and simulation with•. Theory result ofG′′ is
denoted by gray open star and simulation by?.

lations. However, the predicted module provides only a qual-
itative agreement. In Figs. 5 and 6 are provided the long-
time (ω∗ = 0) translational and rotational self-diffusion
coefficients, respectively, of the probe particle versus sim-
ulations results. These properties are given byD/D0 =
1/[1 + ∆ζ/ζ0] where the friction due to direct interaction
between particles is

∆ζ

ζ0
= lim

ω→0

[
3πβd3G′′(ω)

ω∗

]

=
1

6π2ρ∗

∞∫

0

dxx4
(S00

,0 (x)− 1)2τ∗s,iso

S00
,0 (x)

+
128πρ∗µ∗4

3

∞∫

0

dxj2(x)2(6 + x2)

× [
2(τ∗s,1)

2 + 3(τ∗s,0)
2
]
. (42)

Whereas for the rotational diffusionDR/D0
R = 1/[1 +

∆ζR/ζR
0 ] and the friction contribution is

∆ζR

ζR
0

= lim
ω→0

[
3πβd3G′′(ω)

ω∗

]

=
128πρ∗µ∗4

105

∞∫

0

dxj1(x)2(6 + x2)

× [
67(τ∗s,1)

2 + 38(τ∗s,0)
2
]
. (43)

FIGURE 5. Translational self-diffusion coefficientD/D0 versus;
density (a) and dipole strength (b). Simulation calculations are de-
picted with symbol• and theory predictions with◦.

G′′ is given further by Eq. (45) below,j1(x) is the spherical
Bessel function of order 1 andζR

0 = πd3ηsol.
In Figs. 5 and 6 simulation values are given by symbol•

whereas the theory calculations of diffusion coefficients are
provided by symbol◦. From these plots, we can see that in
general theory predictions for the diffusion properties yield
good agreement with simulations both as a function of dipo-
lar strength and ferrofluid concentration. The diffusion of
the particles becomes restrained when there is an increase
in dipolar interaction or concentration. We notice that the
static translational and rotational self-diffusion coefficients
are amenable to be measured experimentally. There are, how-
ever, independent Brownian dynamic simulation calculations
for these properties reported in Refs. [48,49].

5. Rotational diffusion microrheology

In this section, we provide the viscoelastic moduli of the fer-
rofluid when the probe particle performs rotational Brownian
motion [7]. From the friction function of Eq. (17) for the ro-
tational diffusion of the probe particle we obtained the elastic
modulus of the magnetic fluid

G′(ω) = (
ω∗

3πβd3
)
16ρ∗µ∗4ω∗

105

∞∫

0

dxj1(x)2

×
[
−67S11

,1 (x)(τ∗s,1)
2

1 + (ω∗τ∗s,1)2
+

38S11
,0 (x)(τ∗s,0)

2

1 + (ω∗τ∗s,0)2

]
. (44)

And the viscous modulus is
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FIGURE 6. Rotational self-diffusion coefficientDR/D0
R versus;

density (a) and dipole strength (b). Simulation calculations are de-
picted with symbol• and theory predictions with◦.

G′′(ω) = (
ω∗

3πβd3
)
128πρ∗µ∗4

105

∞∫

0

dxj1(x)2(x2 + 1)

×
[

67(τ∗s,1)
2

1 + (ω∗τ∗s,1)2
+

38(τ∗s,0)
2

1 + (ω∗τ∗s,0)2

]
. (45)

We propose to use our Eqs. (35-37) and (41) for the
rheology of ferrofluids in an experimental study as follows:
Ferro-particles need to be made with a fluorescence dye in
order they do not absorb all light in experiments of video mi-
croscopy which allows determining their positions. At low
concentration and a proper selection of wavelength as indi-
cated in Ref. [4] may allow for this case. Since the measure-
ment of each particle orientation would be difficult, even with
the determination of the spatial coordinates, it is feasible to
obtain the radially symmetric component g(r) of the pair cor-
relation function using Eqs. (38) moreover, (39). Thus, it can
be ignored the transversal contributionsmnl = 110, 112. We

have observed that for very low or very high concentrations
the dipolar dependent terms are much smaller either in the
viscoelastic moduli of Eqs. (35,37) , Eq. (41), and in the dif-
fusion coefficients, Eqs. (42-43), then their symmetric parts
which depend onh000. The resulting expressions will still de-
pend only on the radially symmetricS00

,0 component, and yet
they will provide a good approximation for these properties.

6. Conclusions

Using a Langevin equation approach we derived analytical
expressions for the elasticG′ and loss modulusG′′ valid
in linear viscoelasticity of a ferrofluid and no external mag-
netic fields. We approximated the collective dynamic of fluc-
tuation in concentration regarding a single relaxation time.
Such temporal decay of thermal fluctuations coincides with a
Maxwell model of viscoelasticity. These expressions depend
on the microstructure of the magnetic fluid through the struc-
ture factor determined by direct particle interactions. For
model systems at different thermodynamic states of equilib-
rium, magnetic moment and concentration, the prediction of
the viscoelasticity yields the observed trends that result from
Langevin dynamic calculations. At low frequencies of ther-
mal fluctuations of polarization, the dissipative mode is dom-
inant. At high frequencies, the ferrofluid behaves as an elas-
tic material. The viscous modulus at long times relates to the
self-diffusion coefficient of translational and rotational diffu-
sion of a ferro-particle. We point out that the approach pre-
sented in our manuscript allows the determination of three es-
sential dynamical properties of the magnetic suspension: the
viscosity, translational and rotational tracer diffusion coeffi-
cients. Both diffusion coefficients display the same tendency
as the results of simulation calculations. In a forthcoming
manuscript, we introduce our extension of the present ap-
proach to include time-dependent external magnetic and elec-
tric fields acting on ferrofluids in the regime of applied linear
stationary shear flows and its comparison with existing ex-
periments.
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