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Diffusion microrheology of ferrofluids

R. Peredo-Oft and M. Herdndez-Contreras
Departamento de BBica, Centro de Investigaimn y Estudios Avanzados del Instituto Retihico Nacional
Apartado Postal 14-740, Ciudad deé\ico, Mexico.

Received 3 October 2017; accepted 29 November 2017

We provide a statistical mechanics approach to study the linear microrheology of thermally equilibrated and homogeneous ferrofluids. The
expressions for the elastic and loss moduli depend on the bulk microstructure of the magnetic fluid determined by the structure factor of the
suspension of magnetic particles. The comparison of the predicted microrheology with computer simulations confirms that as a function of
relaxation frequency of thermal fluctuations of the particle concentration both theory and simulations have the same trends. At very short
frequencies the viscous modulus relates to the translational and rotational self-diffusion coefficients of a ferro-particle.
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1. Introduction together a careful selection of wavelengths allowed them to
reduce the absorption of light by the ferrocolloids. Whereas
Ferrofluids are colloidal suspensions of permanently magneyendetiet al [6] made their microrheology experiments ob-
tized particles of nanometer size dispersed in a solvent. Thelferying a fluorescence silica colloidal particles suspended in
rheological properties such as viscosities, storage of energye ferrofluid. This way they were able to use video mi-
and dissipative moduli can be controlled with external magcroscopy to track the silica particle positions driven by its
netic fields [1], which makes them valuable in diverse technogrownian motion inside the ferrofiuid. Thus, fine tuning of
logical applications. Much of the research on these magnetihe wavelength to the order of the probe particle size allows
fluids relates to the class of magnetorheological suspensiofge determination of its mean squared displacement. There-
which develop bulk magnetization under external magnetigore, the scattered light originates only from the probe sil-
field conditions [2]. External fields produce chain-like aggre-jca colloidal particle since the molecules of the solvent are
gates of the colloidal particles, an effect that can also be deych smaller than the wavelength of the used light. Sol-
veloped in ferrofluids in the absence of fields for sufficiently ent provides the reservoir that dissipates energy from the
high particle’s dipolar moment or concentration. It has beeryansiational and rotational movement imparted by the Brow-
observed that when the fluid is subjected to an applied inpjan motion of all the colloidal particles. It was shown in
creasing shear rate they change from their Non-NewtoniaRefs. [7] and [8] that dynamic light scattering and video mi-
(nonlinear relationship of stress with the applied shear ﬂOWcroscopy in microrheology experiments allows the determi-
which it can be produced by thermal fluctuations too) to Newmation of the orientation variable, thus, providing the rota-
tonian (the stress response of the liquid is linear through gonay diffusion of the probe. From its angular displacements,
kernel with the shear rate. With the kernel been the stresg,e time-dependent mean squared angular displacement was
relaxation modulus) under magnetic fields. Such rheologimeasured. Consequently, the microrheological shear modu-
cal behavior has been demonstrated to be anisotropic througlis of the host suspension was obtained. Comprehensive the-
the use of macroscopic rheology experiments [3], and alsgyetical knowledge of the main measured rheological prop-
more recently through a no invasive technique, the passivgrties have been reached with thermodynamic [9-15], and
microrheology on a probe particle diffusing in the colloidal kinetic theories of liquid crystal dynamics [16] that involve
suspension [4] in thermal equilibrium. In their developmentmacroscopic constitutive magnetization’s relaxation mecha-
of this latter experimental technique by Masetral[5], they  nisms, and both mean field and microscopic free energies
express “bulk relaxations have the same spectrum as the mif the thermodynamic state, respectively. Thus, the exper-
croscopic stress relaxations affecting the suspended particigentally observed dependence of viscosity with magnetic
motion”. They assumed that the complex shear moduli cafe|d was accurately confirmed with a kinetic approach from
be determined from the particle’s mean squared displacemey, up to moderate concentrations before the formation of
in the linear regime of low shear flow. This technique haschain structures by the particles [17]. After the formation
a significant sensitivity and detects high frequencies of renf chains, a so-called kinetic chain theory of rod-like aggre-
laxations as compared to macroscopic rheology. Ferrofluidgates [18, 19] confirms the observations on the increase of
look dark with visible light because of its strong absorptiony;iscosity with field quantitatively. In a similar set of macro-
by the ferro-colloids. Mertelgt al. [4] were able to measure scopic experiments at low strain in a system where the finite
the translational diffusion of the probe particle with their usegj,e of the vessel containing the liquid was important [20],

of low-intensity laser beams in dynamic light scattering ex-it \as determined the energy dissipated due to aggregate’s
periments. In their research, they used small samples which
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structural deformation when they are partially bound to the2.  Translational diffusion microrheology

confining walls. It was found that the aggregates experience . ) ] ]
cohesion and movement of their inner constituting particles! acking microrheology experiments are useful techniques
which generates heat through this process. Such a heatifgat accurately provide the linear viscoelasticity of suspen-
mechanism is relevant in hyperthermia applications wheré§10ns of polystyrene particles and other complex fluids [5,
ferro-particles diffuse, rotate and stick to the boundaries irf+ 34, 35]. In these experiments it is assumed that the com-
the multicomponent medium inside of a tissue [21]. Thesg!ex shear moduli can be determined from the particle’s mean
findings have raised the interest to investigate the rheolog§duared displacement in the linear regime of low shear flow.
of complex fluids of mixtures of added polymer solutions to he rheological properties are extracted through the equilib-
the magnetorheological fluid [20, 22-24]. Thus, the theoret!ium Einstein expression of the friction on a probe particle
ical description of their observed rheology and effect of sizdhat performs a Brownian motion in the colloid. The friction
polydispersity [25-28], have been described with po|ymer5due to interaction With its neighbors, in the freq_uency space
motivated models [29, 30]. More recently, theories based or*¢(w), that affects its translational movement is related to
macroscopic thermodynamics predict as in polymer theoryh€ mean square displacementiw(w)? > and to the com-
elongational viscosity and its consequence on the ratios dlex shear modulus by

the yisc.oela.stic moduli [30],. apd of the module tq viscou; kpT iw(C0 + AC(W))
dissipation time. Such predictions were adopted in the mi- G(w) = - 5 =

crorheology experiments of Refs. [4, 6] in order to get es- ina < Ar(w)? > dmd

timates for the values of all anisotropic properties. In theyity ; — V—1. a the particle radius¢® the solvent friction
present manuscript we propose expressions for the comples, 5 particle. In what follows we show how the friction on
shear modulus response for the rheology of an equilibriumy,o probe particle is obtained.

ferrofluid derived from a statistical mechanics approach valid  1he Langevin equations of the translational and rotational

in the regime of linear shear flow of microrheology exper-grqynian motion of the probe particle that interacts with the
iments. The viscoelastic moduli depend on the pair distriyiners in the suspension are the stochastic Egs. [36]
bution function which captures the bulk microstructure of

)

the ferro-particles due to their pair direct interactions. We dv(t) 0 0

show that for a given concentration of particles, ferrofluids M at —C V) =Crr - W)

at equilibrium state display rheological behavior in a similar +£2()+Fror(t)

way as it is observed to occur in non-equilibrium anisotropic

magnetic fluids under external fields and shear flow. For the I. dW(t) 0 W)=l - V(D)
dispersed homogeneous phase of the colloid, we found that a R RT

the dissipative modulus is dominant at low frequencies where )+ Tror(t). )

the colloid displays a liquid character with a crossover to an

elastic fluid mode at moderate frequencies where the elastiv(t) andW (t) are the translational and angular velocities of
modulus becomes dominant at higher frequencies. The cajhe probe. We used a space fixed frame with origin at the par-
culated loss modulus has good agreement with Langevin dyticle center of mass, and frame axis following the orientation
namic simulations up to the transition to the elastic behaviopf the probe main axis of symmetry. M arbl are the mass
where it starts to deviate. Whereas the general shape of thg\d particle’s matrix of moment of inertia, respectively. We
elastic modulus, as obtained from simulations of the meahall not consider neither hydrodynamic interactions among
square translational displacement of a probe ferro-particle iparticles nor external magnetic fields. The first two terms in
qualitatively well described by the model proposed. An in-Egs. (2) are the solvent friction force and torque. The short
crease of the dipolar moment per particle or of their concentime free particle diagonal friction tensaf$, gy Brs g,
tration can lead to the formation of chain like aggregates irglgT represent hydrodynamic drag forces, and torques. These
absence of external fields. Our model theory of microrheolfriction and random forces are the only quantities that con-
ogy is useful in this case too. Since the formation of chainssey information on the nature of the solvent. And they ignore
is taken into account properly by the pair correlation functiontheir molecular degrees of freedom of position and orienta-
which describes the bulk micro-structural order of the partition coordinates and momenta. They are coupled to the ther-
cles due to their direct interactions. We also provide the anmally driven solvent random forceé§ and torques® by the
alytical expressions for these moduli when the observable ifiuctuation-dissipation theorems

the mean square angular rotation for experiments that observe

the rotational diffusion of ferro-particles. These viscoelastic (£O()£91(0)) = kpT¢026(t),
properties can also be used to study in the linear regime of 0/ 47401 o
flow the rheology of equilibrium isotropic ferroelectric col- (E)7(0)) = kpTCrr20(%),
loids [31-33]. 2 ()£01(0)) = kpTC¢%r26(t),
(£°(1)t°7(0)) = kpTCR20(1) ®)
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andk Boltzmann constan; = 300K the absolute temper- ~ 99n(r,€,t) [gneq(rv Q)} NV

ature. The total forc& o1 and torqueél'ro7 on the probe ot
by the other cojlfloidal partjcles which are at the concentration t
n(r,Q,t) =352 6(r —r'(2))5(Q2 — Q'(t)) are given by - /dt’/dr'dQ’/dr”dQ”L(r,r’, Q0 t—t)

F t :/drdQV r,Q)|n(r,Q,t),
ror(t) [Vl @ntr, 0.9 X o7 (x5 + Y (0, (7)

Tror(t) = / drdQ[r x Vi(r, ) with (V - §(0,Q:0)V -5 (¢' 500 =L(r, ¥ ,Q,Q'3¢), andV -
j(t) been a random diffusive flux. This is the more general
+ Voi(r, Q)]n(r, 1), 4 Yorm of the diffusion equation of the particles. Its solution is

with Q = (6, p) andé, ¢ being the polar angleg;(r, 2, Q)
is the pair potential, an¥q = nxd the angular gradient
operator. It should be noted thBt-or(t) andTror(t) are

on(r,Q,t) = /dr’dQ’X(r’,Q’;t)én(r,Q;O)

calculated using the probe’s dipole located alongAhaxis L .
direction of the its local frame, that i3’ = (0,0). The uni- + /dt /dr dSYx(r, v, Q, Qs — 1)
tary cartesian vectai of the orientation of any other particle 0
is in the dlrectlor_w of that _partlcles axis ef symmetry. y [ T (e } \<7>( /)
Both Langevin equations can be written compactly as
< t
— dV (t > >
M - dt( ) =" V() +£(1) —r—/dt//dr/dQ’ r, v, Q,Q 5t —t)
PN 0
+ /drdQ {v b, Q)} n(r, 1),  (5) o
X [—V -j(r’,Q’;t’)]. (8)

where V. = (V,r x V 4+ u x d/du) is the general gra-
dient operator.r denotes the vector joining the centers of
the probe and another particlar is a unitary vector with
orientationd, . The generalized veIoan (V,W),  ax(r,1/,Q, ;1)
M”fMéw(zgf123)M”f&jIZ3(1‘7*456) ot

with I, I, I3 being the pHrrncrpaI moments of inertia of the ‘

tracer. The friction tensaj” is a diagonal matrix which have /dt’/dr’dQ’/dr”dQ”dr”’dQ”’L(r,r’,Q,Q’;t —
the nonzero components with elemegfs = ¢5, = (9,

3y = CH ¢y = ¢ = (%, and¢ds = 0 which are external
inputs to this theory and are provided by experiment or anx o~ (r/,r”, Q', Q") x(x",x", Q", Q" 1), 9)
external theory. For spherical particlgs = CH = (9. Such

coefficients describe the particle hydrodynamic friction withwhich has initial conditiony(r,r’,Q,Q';¢ = 0) = 6(r —
the solvent when its diffusion occurs along its dipole orien-r’)é(Q2 — Q). Equation (9) can be converted into a dynami-
tation (|), perpendicular (), or performs rotational motion cal equation for the Van Hove function of fluctuations in the
R. Equation (5) can be written to first order in concentrationconcentration of particle€’(r, r’, Q, '; t) with respect to its
fluctuationsén(r,Q;t) = n(r,Q;t) — n®(r,Q), with the  equilibrium value

profile distribution of host particles in the probe’s field given

asn“(r,) = (n(r,Q,t)) been an equilibrium ensemble ,ca(r Q) : C(r,r',Q,V;t) = /dr”dQ”X(nr”’Q7Q”;t)”
average. Thus, the Langevin equation takes on the final form

The diffusion relaxation of the host particles around the
probe is provided by (t) that fullfils

0

xa(r” ', Q" Q) = (6n(r',Q;0)on(x’, Q' t)),

M - dV( ) ="V +£2(1) which determines the relaxation modes of the cage of parti-
cles surrounding the probe. Its initial conditien= C(¢t =
/drdQ )] Sn(r,t), (6) 0) = (6n(0)dn(0)) is the inhomogeneous static correlation

function with inverse given by

wheren®(r,2) does not contribute to the total force and Yo " L e

torque. Similarly, a stochastic evolution equation fai(t) /dr Ao (r, r7, Q, Q7)o (7, 1, Q7 &)

is derived with help of linear irreversible theory of fluctua- , ,

tions [37] =6(r—1')o(Q — Q). (10)
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Substituting the above solution fén(t) into the Langevin
equation (6) leads to
av
<>
NaRALD,
dt

t
—/dt’A?(t—t’)-V(t’)+§)(t), (11)
0

where
<> <>
F(t) =+ / drdQ [v u)(r,ﬂ)}
x /dr’dQ’x(r’,Q';t)én(r’,Q/;O)
+/dr’dﬂ'x(r,r’,Q,Q';t)

<] |

is a fluctuating generalized force arising from the sponta

/!

=V - j,@ht) (12)

neous departures from zero of the net direct forces exertegn

by the other particles on the tracer. It groups a random forc
and torque on the tracer with zero mean value, and tim

— T
dependent correlation function given B¥ (¢)F (0)) =

k:BTA?(t), and the time-dependent friction function on the
probe (tracer) particle is

AC(t) = drdr' dQdQ) [V ¥(r, Q)]

1
02

>/
x x(r,x',Q,Q51) [V n(r, Q)] (13)
Using the Wertheim-Lovett's relation [38]
<>
Vah(r, Q) = —kBT/dr”dQ”o_l(r,r”,Q,Q”)
=1
X {V neq(r”,Q”)], (14)

N and
we derive other useful forms of the friction functiak( (¢)
as

kT
AC() =

X 0_1(1', Q) ", Q1)

/ drdr’ dr" dQdQdQ" [V n®(r, Q)]
<«
x [V n(x”, Q")
_ % / drdr’ dQdQ [V i (x, )]
</
x C(r,r',Q,Q5)[V (', )], (15)

with 3 = 1/kgT andC = y oo, 0 = [drdQ, andf
is transpose. The angular average in (15) (divisiortBy
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is necessary since this is an experimental observable. In Eq.
(15) neither hydrodynamic interactions nor external magnetic
fields were included. It can also be extended to describe mix-
tures of species of anisotropic particles with axial symmetry.

The time-dependent memory functiak( (¢) contains
the dissipative friction effects derived from the direct inter-
actions of the probe particle with the particles around it. This
memory function defines the relaxation time > 73 (78
which is the relaxation time of the momenta of the parti-
cles) for the particles to diffuse a mean distance among them.
Thus, in the diffusive regime > 73, long time overdamped
regime meansg > 7. At this time scale the momenta of
the colloidal particles have already relaxed and the only rel-
evant dynamic variables are their positions and orientations
(x(t), (t)).

This is a general expression for the friction contribu-
tion on the tracer due to direct interactions with the parti-
cles about it. It depends on the microstructural inhomoge-
neous total correlation functidi(r, ) = n¢(r,Q)/p—1 of
the host suspension &f particles at concentratiqmarougd
the field of the probe, and of the free friction constagfts
hroughx(t). We now introduce the homogeneity approx-
Imation which amounts to ignore the tracer’s field on the

ropertiess, x(t) or equivalently onC(¢), which then can

e determined in the bulk solution. Thusr,r’,Q, Q') ~
o(r = r—r" |,QQ,Q,_). It is also adopted the
Fick’s diffusion approximation fog(t) = exp(—tL o o~ 1),
with L(r — ', Q, ', Q,_») = p[D*'V? 4+ DV3]5(r —
r')5(Q2 — Q). In this approximationD* = D% + DY, .
Dy = D% + D% ,ipers (The caseD)) ;. < DY,y = |
L, R was made in [36])The short-time diffusion coefficients
Diper = D°, DYy e = DY, 0f the other particles are ap-
proximated by those of the tracer, abd = kp7/¢°, D%
kpT/(%. For spherical solid particle€® = 3mnsod, nsol
is the viscosity of the pure solvent,is the diameter of the
Brownian particle, and% = w0 d>.

Using the above approximation fi(¢) andC = x o o,
Eqg. (9) can be written as

9C(r, 2,8, Qs 1)
ot

t

— —p[DV? + DYV3)]

X /dt'dr”dQ”a‘l(r 7" 0, Q" Q)

X C(T" - T’/, Q”, Q,, Qr”—r’§ t— t,). (16)

This last equation governs the diffusive relaxation of
C(t), as described from the tracer’s reference frame. In this
manner, we have obtained a closed approximate expression
for A (¢) in terms only of the static properties o and of
the phenomenological quantitié®’ and DY, .

From (15) the 6x6 diagonal friction matrix, where it is

ignored translational and rotational coupling is
— 1 — St
AC(t)=ghlVeloC) o[V, (7)

with © = 4x. In this theory the orientation of the probe
particle’s main axis of symmetry was defined with respect
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to its body fixed frame. It has its dipole oriented along the(2,.. u is a unitary vector with orientation = u(f, ¢). An-
main shaftu = (0,0, 1). Thus, another particle’s orientation other equivalent laboratory rotational invariant expansion for
u = u(Q) is denoted in this frame by the polar angles of itsg(r, 21, Q2) was given by Blum [38]

orientation); = (6;,¢;) forj =1,...,N. mnl (1)
Thus, the friction matrix (17) has only five non zero di- F,Q,Q) = (4m)*? > NIRRT
agonal elementsi\(11(t) = Alaa(t) = AL (¢) is the fric- mnl Vi+
tiop on the tracer for perpendiculgr motion to the dipole or m n |
of its anisotropy vector of orientationA(s3(t) = A (1) X Z novoA
describes the parallel motion along the main axis of symme- prA
try. The contribution to the rotational friction 8{44(t) = X Yo () Yoo () YiA(€,.), (21)

NGs(t) = ACgr(t). InEq. (17)8 = 1/kgT. The gen-

eral e(x)}:)ressions(fZ)r the friction function/in (17) can be usedVith the identificationy®® := g(r), h''* := —ha(r)/1/(3),
also to study tracer diffusion on rod-shaped particles susandh''? := hp(r)\/(10/3) dictated by the symmetry of the
pensions [39] such as fd viruses on which the experimentadlipolar fluid.

techniques of birefringence [40], and forced Rayleigh scat- BY taking the Fourier-Bessel

tering measure the diffusion properties [41]. On the other oo

hand, the propagator in (1%)(t) := (dn(t)én(0)) gov- (k) = 4mit /rzjl(kr)fm”l(r)dr

erns the collective relaxation of the particle’s configuration :

variables £(¢), (1)) due to thermal fluctuations in their lo- 1451 ith j, being the spherical Bessel function, and Laplace
cal concentratiodn(r, Q2,t) = n(r,Q,t) — n®(r, ) about ot

the equilibriumn®? = (n(r,$,t)) of its local instanta- 00

N .
Curt(k,w) = / dte™" O™ (k, t)

0

neous valuen(t) = > . ; 6(r — r;(¢))6(u — u,(t)) [38].
It has initial conditionC(t = 0) = pS(r, 1, Q) =

(0n(r,Q;0)on(r’,';0)) whereS is the structure factor of 0
particles with numerical density = N/V. The tempo- Of (16) (See Ref. [36]) we find
ral evolution ofC(t) is given by Fick's diffusion law which  [_j,,c™" (k. w) — O (k, w = 0)]
amounts to an exponential relaxation time and thus corre- ' '
sponds to a Maxwell viscoelastic model. - _pan 0 7.2 *0
21+ 1)[D*k* + Dr'm(m + 1))
The colloidal ferrofluid is contained in a volunié. It Q
consist of a carrier fluid which molecular nature is not taken « Z(*l)aCTE"(k, w)e ™, (22)
into account, plus the monodisperse system of N spherical 1 ' "
particles where each one has a permanent dipolar momen .
w. ;5 is the direct pairwise interaction potential energy be_wtherez - \[( —1)and
tween particles, j. Because ferro-particles can not overlap o min m n 1 ol
their interaction is modeled by a Lennard-Jones (LJ) short Co" (kyw) = Z < a —a 0 )C (k, w)
range (sr) repulsive, and long-range dipolar (d) potentials [=|m—n|
P12 = Ugr + Py [42]. Using the above values afnl = 000,110, 112, then
" . for dipolar liquidsa. = 0,+£1, and using the approximation
v — ey [(d) - <d) ] s ag D= 20" Dif =200 [36], we getfor (22)
" " O (k)= [o(k)]a 23)
O —iw 4 p(=1)(Dk2+2D ) o (k)]s

with e the strength, and the dipolar part
And the inverse relation holds [42]

2
Mo M mnl _
¢a = *ET*?,D(QthQr)- (19) C™ (k,w) = (20 + 1)
, . . inf(m,n)
uo is  the magnetic permeability of vacuum. m n 1 mnl
D(Q1, 09, 2) = 3(f1 - w)(F1a - uz) — (u; - up), where <D a —a 0o )Ca"(kw). (24)

a=—inf(m,n)

r = r/r a unitary vector with orientatiof,. Due to the

spatial symmetry of the dipolar potential the pair correlationThus
functiong(r, Q1, 5) has the fixed space rotational invariant OOk, w) = C% (k, w)
expansion of Wertheim in the form [38] ’

1
CMO(E, w) = 7[20}11(k7w) — C}Ol(k,w)]

g(r,Q1,Q2) = g(r) + ha(r) A +hp(r)D, (20) \/(3)
. . . 1
with A :=uy -ug. D(Q1,Q2,Qy) 1= 3(F12-u1) (P12 u2) — CH2(k,w) = 70[0,111(&10) +C4 (k,w)].  (25)
(u; - uy), wheret = r/r a unitary vector with orientation V/(30)
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The structure factof = o/p and total correlation func- of Mason and Weitz in order to obtain, in the case of trans-
tion h are related by lational movement, the linear relationships for the rheology
I I o mn of the ferrofluid and described by the complex frequesacy
ol (k) = pS" (k) = p[L + (=1)*hG" (k)] (26)  gependent shear modulus

SH (k) =1+ p*n" (k)

So(k)=1- r <1h110(k) 2 112) G(w) = G'(w) +1G" (w)
W V0 _ inlC + A6)

¥ 3nd
S (k) =1-2 <1h110(k) T hm) @)
’ ¢ \VB) V(30) wherer = v/(=1), AC(w) = ReAC(w) — 1lmAL (w) with
Using the invariant spherical harmonic expansion inRe,Im the real and imaginary parts of the friction function
Eq. (17) we obtain the friction function on the probe (tracer)given by the averagé\((t) = (1/3)(2A¢L(t) + A (t)).

= jwn(w), (30)

particle Using the Laplace transform
Ag(t*):igo /mﬁwe%*uﬂ/ﬁ?(z» o0
127 ﬁop*o 570 (l‘) f(w) _ /dte—zwtf(t)
oo 0
x x4 o
+ M / de2($)2{*CHO($’t*)
to 0 we find
2+/(1
+ \/2(5())0112(@'715*)}7 (28)
AC(w) = [ dte” ™t AC(t)

with the single time dependent relaxation function
Cl(z,t*) = pSél(x)eft*(“"erS/Q)/S}wl(m), a = 0,1 [36].
The first term on the right hand side of (28) was first derived
by Nageleet al [43] for spherically symmetric interacting
particles and the second term in the present manuscript.

oo

dt cos(wt) AC(t) — ¢ / dt sin(wt) AL(t)

0

0\8 0\8

Il
=

eA((w) — ImAl(w). (31)

3. Microrheology under linear shear flow and

no external magnetic field Because for dipolar particle&¢;(t) = (4/3)A¢L(t)
[36], then from Eq. (28) we determinefi{(t) from these

We assume now that the viscoelastic response of the fep_ontributions as the real and imaginary parts of the complex

rofluid to variations of strain raté(¢) is given by a linear ction function given by (31)

constitutive equation for the shear stress [5] The complex viscosity of a viscoelastic fluid is defined as
. n = n' —in”, with components) = G"/w, "’ = G'/w.
o(t) = /dt’G(t —4(0), (29) Using (30) and (31) we find that

’ w*  ImA((w*)

with shear relaxation modulus(t). Because the shear stress G (w) =wn(w) = 3 5

divided by the shear rate has dimensions of viscosity, it is 3mf3d ¢

defined the complex viscosity(t) = G(t)/4(t). In fre- " , w*  ReA((w*)

guency space, o(w) = G(w)iwy(w). Mason and Weitz [5] Gl(w) =wn'(w) = 3nBd3 ¢o (32)
proposed that the bulk stress temporal relaxation scale of

G(t) is the same time scale response as the microscopic

stress relaxation of the complex viscosijft) that affects The normalized frequeney* = wty where the Brownian
the particle motion. Thus for spherical particles undergotime ¢, = d?/D° for a particle to diffuse its diameter. The
ing translational diffusion they found(w) = iwn(w) =  short time particle diffusion coefficie®® = kz7/¢° and

¢(w)/(3nd) [5], whereas for rotational Brownian movement the friction (® = 37,,;d with 7,,; the solvent (sol) viscos-
G(w) = (r(w)/(md®) [34]. This approximations has re- ity. These equations are valid for a concentrated ferrofluid
sulted in a very useful experimental technique called mi-under a stationary shear flow. They constitute the main re-
crorheology. Thus, here we make the same approximationsults of this manuscript. Finally the storage modulus is
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1oy 2w kBT * where we introduced the auxiliary definitions
G'(w) = SdB (0 ImA¢(w™),
st 00 2
o w*¢? (SP(x) —1)° 00,y _ 1 L8P (x) 1)
mA(w)=5 / d ) = forsgay s

w2, [ SP@)+1)2
o So) {(iz) +( 5%(2) ) ] 32p*/t
Pl(z) = - ja(2)2SH (),

3
48,{)*”*4 )
Pll — 2 ¢oll .
3 0) = e g ()88 @) (36)
5111(35)
X — 2 . . .
321002\ 2 B The imaginary part is
() +e
9511 .T) 7 - w* POO( ) >|(7—:1'50
P T raare? 7 Gy G gt [l
3/2+ZL’2) + w*2 s Ts iso
< S}Ol(:c)
7 P (z)w*r* P (z)w*r*
+/dx_1()*s,; O()*s,g (37)
1+ (w*Ts,l) 1+ (w*Ts.O)
and the dissipative modulus 0 '

. . Given the known material values @ p, p, nso1, T for
v 2w kBTReA((w*) a ferrofluid, Egs. (35-37) do not depend on adjustable pa-
3mpd?  3md3(0 7 rameters. The dimensionless quantiti€s, = 7, /to =
o0 S1(x)/[8m(x? + 6)] are short (s) relaxation times associated
/ drx? to the ferrofluid’s fluctuation in concentration in transversal
6772'0* ) (e = 1) and longitudinal ¢ = 0) modes to the wave vec-
tor. And’,., = Ts.iso/to = 1/[z%(1 + 1/S%¥(z))] arising
(SP(x) = 1)*(SF (z) + 1) from the isotropic (iso) interaction of particles. In Egs. (35)
S90(7)2 [(%)2 + (sf}?(z)ﬂ)Q] and (37) the first and second terms arise respectively from the
0 radially symmetric part of the potential (either this been LJ,
o Yukawa or hardcore type) [36,43]. The second term comes
8¢0p* 2 daio ()2 from the dipolar interaction derived in this manuscript. The
9 / zj2(2) above equations show that there are three temporal relaxation
0 times of fluctuations in concentratior; () is the spherical
651 (x)? Bessel function of order 2u*? = popu?/(4nd?), v = kd, k
X ST (2)70072 is the wave number. The reduced dengity= pd? and the
[(3/2 +22) + W} projections of isotropic, longitudinal and transversal structure
factor to the wave vector, are respectively

G//(w) —

_|_

ReA((w

X

+

o8 () } o0
S (z)2w*2 ’
e T

SP(x) =1+ 3h00°( )

d

SH) =1+

45 Iha (@) + 2hp (@)

with R0%0 = %90 _ 1. For a hard ferrofluid suspension, the

obtained expression of the complex modulus can be rewritten . o
as @) =1+ 45 hale) —hp(@)].  (38)
POO(2) (whr, )2 The Fourier-Bessel transform of the projections of the to-
G (w) = /d:p v 8,150 tal correlation functiorh®%® := g(r) — 1, ha(r), andhp(r)
L+ (W] 100) were calculated according to the method of Ref. [42]. These
- structural information results from the equilibrium position
P! (x)(w*rry)?  Pgt(x)(w*rho)? and orientation of the particles and they are determined from
+ /dw 1+ (wr> ’)2 L+ (wirry)? » (3%) " Brownian dynamic simulations performed with the Lammps
0 o1 >0 package [44], which allows the calculation of the averages
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(r) = <Zi,j(i7&j) 6(r — [rijl)) In the long wave length limittd < 1, it results7, , =
9= Nimp*r? ’ toS'y (z)/48m, which yields a relationship between the
Brownian timet, and the microscopic time; . A similar

(i jiing) 00 — |rijus - uj)

ha(r) =3 > , relationship between the Brownian and microscopic times,
Nazp*r through colloid microstructure, was found by Bagetial
; 3 [47]. Figure 1 also implies that the short tinﬂ%O governing
LD(T)_i the collective isotropic density fluctuations has a larger con-
. . tribution in both moduli than the longitudinal and transversal
(X j(ing) 0(r = [riz)[Buy - £i5u; - £i5—u; - u]) 9
X . (39) modes.
Ndmp*r?

In Lammps simulations we used dimensionless units for4, Viscoelastic moduli
the particle energy at room temperature, length and mass
which were obtained with respect to those of the ferrofluidin Fig. 2 are plotted in log-log scale the elasit(w) and
Fe;03, given by the values [2];o = 5.45311072'J,d =  dissipative G” (w) modulus versus frequency at three re-
10~*m, andmy = 2.70710>' K g, respectively. They are duced densitiep* = 0.9(a), 0.5(b),0.3(c) and fixed dipo-
related by the time scalé = d\/mo/eo that measures the |ar strengthu* = 1.0. Notice that due to the used Lammps

step size in the simulations. system of units, in the plots of Fig. 2 and furthgt? is re-
Figure 1 is a log-log plot that depicts the behavior of placed byu*?/T* in all our equations leading to all figures
Ta aiso VETSUS reduced wavenumberfor a system with presented below. HeresT* = 0.759559¢,. The simulation

dipole moment:* = 1, and density* = 0.3. This figure results forG” andG’ are depicted in black filled circleand
shows that; ., > 77, > 77, that is, isotropic fluctuations black star symbok, respectively. These properties were ob-
of concentration decay more slowly than longitudinal onestained following the method of Masat al.[5] which require
Thus, transversal mOdeSJf) decay more slowly than lon- the use of the simulation or experimental results of the mean
gitudinal ones. This phenomenon has also been observed Isguared displacement in Eq. (1). Whereas, the theoretical
other authors in ferrofluids and dipolar colloids [46,47]. In predictions of Egs. (35-37) for these properties are given in
gray void star symbol fo&G”, and gray void circle for G'.
We can observe that the model predictions of Egs. (35-37) for

L L L A both properties are in qualitative agreement with the simula-
tion results from low concentrations up to the crossover re-
gion where the elastic response of the ferrofluid overwhelms
the viscous modulus and dominates at high frequencies. Af-
] ter this transition region, and for the highest concentration
p* = 0.9. Figure 2(a), the elastic modulus disagree with the
simulated value at all frequencies. However, there remains
3 good agreement for the viscous modulus from low up to the
crossover region. We note that whether this system presents
a partial aggregation of particles such as chains or not Eqs.
(35-37) are generally valid. In our model system where there
are no chains. In general, the theoretical predictions for the
] viscoelastic moduli yield the same trends observed for these
properties as obtained from simulations. At low frequencies
(long times) the ferrofluid is viscous, and at the short time it
3 is an elastic medium.

Our derived expressions of Egs. (35-37) have the same
frequency dependence as a continuous mechanical (mec) mo-

T T T T T T T T T T T TTTTT

10 DY 1 0_1 TABLE |. Parameters of mechanical Maxwell model

* * t Gmec so 7_*
FIGURE 1. The viscoelastic model of Egs. (5-8) has three charac- L s AL

teristic relaxation times; ,, = 7s,a/to, @ = iso0, 1,0 whose log- 0.1 14 21.88 1/61.14
arithmic plots are provided here versus dimensionless wave num- 0.1 1.6 22.38 1/61.14
berxz = kd. Dipolar strength is;u*Q_ = _1 and red_uce_d density 0.3 1.0 15.64 1/42.94
p* = 0.3. Transversal mode relaxation timg'", longitudinalr ',

and isotropic one,%0 for polarization fluctuations with respect to 0.5 1.0 28.19 1/57.63
wave vector. 0.9 1.0 622.20 1/299.15
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FIGURE 2. Logarithmic plot of elasticG’ and lossG” moduli

versus logarithm of dimensionless frequengy = wt, at three
different concentrations and fixed dipolar moment. TheoryGor
is denoted with symbad and simulation withe. Theory result of
G" is denoted by gray open star and simulatiorkby

FIGURE 3. Brownian dynamic simulations of viscoelastic moduli
as a function of frequency for a fixed concentration and dipolar mo-
ment. Simulation calculation af’ is denoted withs and the con-
tinuous line attached to it is the fit with the mechanical Maxwell
continuous model. Similar description for the loss moduifs

del of Mazxwell viscoglastiltlzity given by [45]G’ .. ConsequentyGy, = (1/373d*)D°/D. The effective vis-
G (wrr)”/[1 + (wTp)”], G" = Gi*“wrr/[1 + (WTR)"]  cogity of the ferrofiuid at the overdamped, diffusive regime
with a single relaxation timeg for magnetization relaxation. £ 15 is
A fit of these relationships to our simulations 6f, G” is
given for instance in Fig. 3 for a ferrofluid with concentra- oo =1 ZRGAC(W =0)
tion p* = 0.1, and dipolar strength* = 1.6. From this plot e 0 ’
we qbtained the parameters of Table | at various thermody- ReAC(w = 0) . 37BdPG" (w)
namic states. o = lim [W*] =
The value ofr* = 1/w* is wereG’ = G”. In Fig. 3
we provide the adjustment of such continuous model. Ta- 7 (8% (@) — 1)277 .,
ble 1 yields the values of the storage modulus expressed as 1+ e /dm : S0 (2)
toG*° /nso1, aNdT* = T/t after a fitting to our simula- r 0
tions for G’ (symbole), G (symbol void grayx). In this 0
figure, continuous line is the above macroscopic model for 128mp* /dx‘ (2)2(6 + 22)
G’, G”. In the continuous mechanical model the magnitude 3 /2
of the complex viscosity i) (w)| = 19/+/1 + (w*T*)2 0
with 9 = toGI*r*. On the other hand, the magnitude X [2(721)% +3(720)°] - (41)
of the complex viscoelastic modulus that follows from the _ ) .
statistical microscopic model of Egs. (35-37)/igw*)| = Our results for viscoelastic moduli imply thé&t’ (w) >

G'(w) up to a crossover* for quiescent ferrofluid. Mean-
while for magnetorheological fluids under external mag-
netic field it is known through experiments that typically
these moduli show a reverse relationship regarding frequency

|?(w*)|/37rd = t9y/G"?(w) + G"2(w)/w* Which at zero
frequency yields the static effective viscosity = tyGo,
where the storage modulus of the ferrofluid is given by

1 Al(w=0) G'(w) > G"(w) [20,24].
Go = 3rd33 IC : (40) Figure 4 depicts the effect on the viscoelastic moduli of
Egs. (35-37) of an increase in dipolar magnetic strength for a
At longtimes, the self-diffusion of a particle i® =  fixed concentration of the ferrofluid. In this case, the theory
kpT/ReAl(w = 0) = D°/[1 + (ReA¢™ + ReA()/¢0]. predictions show the same trends as our simulation calcu-
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FIGURE 5. Translational self-diffusion coefficiedd/D° versus;
FIGURE 4. Logarithm of viscoelastic moduli versus frequency and density (a) and dipole strength (b). Simulation calculations are de-

two dipolar strength and fixed concentration. Theory@bris de- picted with symbobk and theory predictions with.
noted with symbob and simulation withe. Theory result of5” is
denoted by gray open star and simulatiorxby G" is given further by Eq. (45) belovy',l( ) is the spherical

Bessel function of order 1 ar(@% = 7d®ns0.
|atI0nS HOWeVer the predICted mOdule pI‘OVIdeS Only a qual' In F|gS. 5 and 6 S|mu|at|0n Values are g|Ven by Synbo|
itative agreement. In Figs. 5 and 6 are provided the longwhereas the theory calculations of diffusion coefficients are

time * = 0) translational and rotational self-diffusion provided by symbob. From these plots, we can see that in
coefficients, respectively, of the probe particle versus simyeneral theory predictions for the diffusion properties yield
ulations results. These properties are given/BYyD® =  good agreement with simulations both as a function of dipo-
1/[1 + A¢/Co] where the friction due to direct interaction |ar strength and ferrofluid concentration. The diffusion of
between particles is the particles becomes restrained when there is an increase
AC . 3rBd3G (w) in d_ipolar inte_raction or con(_:entration. _We_notice th_a_t the
o - ulHo [w*] static translational and rotational self-diffusion coefficients

are amenable to be measured experimentally. There are, how-
ever, independent Brownian dynamic simulation calculations
for these properties reported in Refs. [48, 49].

s 500 )2
1 /d$$4( ,O( ) ) szso

- 6r2pr SP (x)
1287t T, , 5. Rotational diffusion microrheology
-‘r#/dl‘jz(aj) (6 4 z7) _ _ _ _ _ _
d In this section, we provide the viscoelastic moduli of the fer-
. 2 . 12 rofluid when the probe particle performs rotational Brownian
x [2(m31)% + 3(750) ] (42) " motion [7]. From the friction function of Eq. (17) for the ro-

tational diffusion of the probe particle we obtained the elastic

. e 0
Whereas for the rotational diffusioRr/D}, = 1/[1 + modulus of the magnetic fluid

A(r /(L] and the friction contribution is

o0

ACR ) 37Tﬁd3GH(w):| w* 16p* *4 *
—_— 1 _— / =
¢F oD { w* G W) (37Tﬂd3 105 /dle

* k4 x
_ 12 / dajy ()2 (6 + 22) 675%)@: 2L BSE@EP]
0 + (w5 q)? 14 (w*rg)?
X [67(721) +38(720)°] - (43) And the viscous modulus is
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1.00 ] ' ' ] have observed that for very low or very high concentrations
‘{q}‘ Uv*= 1.0 the dipolar dependent terms are much smaller either in the
0.95 - o . viscoelastic moduli of Egs. (35,37) , Eq. (41), and in the dif-
O .00 ] . fusion coefficients, Eqs. (42-43), then their symmetric parts
Q- s . which depend on"?°. The resulting expressions will still de-
0 .85 | § pend only on the radially symmetr&’ component, and yet
080 they will provide a good approximation for these properties.
@ . _
706 o2  oa o6 o8 10 6. Conclusions
D*
Using a Langevin equation approach we derived analytical
o] oo expressions for the elasti¢’ and loss modulusz” valid
° in linear viscoelasticity of a ferrofluid and no external mag-
9] " netic fields. We approximated the collective dynamic of fluc-
0.8 p*= 1.0 1 tuation in concentration regarding a single relaxation time.
oo L) . . . .
O 0.7 - Such temporal decay of thermal fluctuations coincides with a
E 0.6 ] Maxwell model of viscoelasticity. These expressions depend
o5 p*= 1.0 ] on the microstructure of the magnetic fluid through the struc-
o ture factor determined by direct particle interactions. For
o4 (b,) -] model systems at different thermodynamic states of equilib-
0020410608 L0 TS S e s rium, magnetic moment and concentration, the prediction of
LLx the viscoelasticity yields the observed trends that result from

Langevin dynamic calculations. At low frequencies of ther-
mal fluctuations of polarization, the dissipative mode is dom-
inant. At high frequencies, the ferrofluid behaves as an elas-
tic material. The viscous modulus at long times relates to the
self-diffusion coefficient of translational and rotational diffu-

sion of a ferro-particle. We point out that the approach pre-

FIGURE 6. Rotational self-diffusion coefficienDr /D%, versus;
density (a) and dipole strength (b). Simulation calculations are de-
picted with symbok and theory predictions with.

(W) = ( w* )1287Tp*,u*4 /dle (@)2(a? +1) sentgd in ourmanuscript gllows the determi_nation of three es-
31 3d3 105 sential dynamical properties of the magnetic suspension: the

0 viscosity, translational and rotational tracer diffusion coeffi-
67(7_;1)2 cients. Both diffusion coefficients display the same tendency

(45)  as the results of simulation calculations. In a forthcoming

manuscript, we introduce our extension of the present ap-
We propose to use our Egs. (35-37) and (41) for theoroa_ch to incllude time—dep_end_ent external magnetip an_d elec-

rheology of ferrofluids in an experimental study as fouows:trlcflelds acting on ferroflwd_s in the regime of.apph(.adilmear

Ferro-particles need to be made with a fluorescence dye idfationary shear flows and its comparison with existing ex-

order they do not absorb all light in experiments of video mi-Periments.

croscopy which allows determining their positions. At low

concentration and a proper selection of wavelength as indiacknowledgments

cated in Ref. [4] may allow for this case. Since the measure-

ment of each particle orientation would be difficult, even with The authors acknowledge to the General Coordination of In-

the determination of the spatial coordinates, it is feasible tdormation and Communications Technologies (CGSTIC) at

obtain the radially symmetric component g(r) of the pair cor-CINVESTAV for providing HPC resources on the Hybrid

relation function using Egs. (38) moreover, (39). Thus, it canSupercomputer "Xiuhcoatl” that have contributed to the re-

be ignored the transversal contributionsl! = 110,112. We  search results reported within this paper.
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