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ABSTRACT

The electric subband structure of semiconducting surface accumula-
tion or inversion layers is studied. Hartree variational functions are
used as basis states for a many-body perturbation theory. The exchange
and correlation contributions to the quasi-particle energies are evalua-
ted as a function of electron concentration and temperature. The effects
of resonant screening and final state interactions on the intersubband
optical absorption are investigated for the case of zero temperature. -
Surface channel tunneling experiments which should give direct informa-
tion on quasi-particle separations are described.

RESUMEN

Se estudia la estructura de sub-banda de capas de acumulacidén e in-
versién en superficies de semiconductores. Se usan funciones variacio-
nales de Hartree como estados de base para una teoria de perturbaciones
de muchos cuerpos. Las contribuciones de intercambio (exchange) y cor-
relacidén a las energias de las cuasi-particulas son evaluadas como fun-
cidén de la concentracidn electrdnica y de la temperatura. Los efectos
de apantallamiento resonante y de interacciones de estado final sokre
la absorcidn &ptica en la sub-banda son investigadas para el caso de tem
peratura cero. Se describen experimentos de tunelamiento a través de
"canales de superficie".

INTRODUCTION

The surface potential well formed when an attractive electric field
is applied normal to the surface of a semiconductor can give rise to
quantization of the motion of electrons normal to the surface. Because
the electrons are free to move parallel to the surface, each quantized

* Supported in part by the National Science Foundation and by the Office
of Naval Research.
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level of the surface potential well forms a two-dimensional energy band
referred to as an electric subband. The study of the subband structure
of surface accumulation and inversion layers has proved to be an interes-

(1,2)

ting problem. The first calculations of the subband structure were

made using the Hartree approximation. Comparison of these calculations

(3,4) made

with the early observations of intersubband optical absorption
it quite clear that the effects of exchange and correlation were very
important. Stern(s) evaluated the exchange energy and showed that it
lowered the energy of the ground subband by a substantial amount. Vin-
ter[ﬁ} calculated the self-energies of electrons in different subbands

by starting with the self-consistent Hartree solution and using many-body
perturbation theory. Ando(7) has evaluated the subband structure using

a density functional formulation based on the Hohenberg, Kohn and  ---
Sham(s’g) theory of an inhomogeneous electron gas. Both Vinter and Ando
restrict their consideration to the case of zero temperature when only
the ground subband is occupied. Recently Kalia et a£(10) have extended
the many-body perturbation theory to the case of finite temperatures.
Kneschaurek and Koch{11) have performed the first studies of the tempe-
rature dependence of the intersubband absorption.

One might ask why there has been so much effort devoted to the sub-
band structure of surface space charge layers. The reason is that such
systems are extremely interesting many-body systems. The electron con-
centration in a surface inversion layer can be varied over a wide range
of values simply by changing the surface electric field. Because ex-
change and correlation effects depend very strongly on the electron con-
centration, one can pass from a very weakly interacting many-body system
(at a very high electron density) to a strongly interacting one. In
addition, the Fermi temperature of the quasi-two-dimensional electron
gas of a surface inversion layer is of the order of 10! to 102°K. Thus,
one can pass from a highly degenerate electron gas at very low tempera-
ture to a nondegenerate gas at room temperature and study how correla-
tion effects depend on temperature. Finally, many-body effects are rela-
tively more important in these quasi-two-dimensional systems than in
bulk solids. The Hartree energy separations are of the order of 10 meV,
and it turns out that correlation effects can be as large or larger.

It is well-known that the quasi-two-dimensional layer compounds ex-
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hibit charge and spin density wave instabilities(Iz). It appears to be
likely that some unusual properties of inversion layers are associated
(13)

with charge density wave type instabilities
In this paper we review the Hartree approximation for the subband
structure, making use of approximate variational wave functions to avoid
excessive mumerical calculation. The finite temperature many-body per-
turbation theory is discussed in some detail, and results for quasi-par-
ticle energies as a function of temperature and inversion layer concen-

tration are presented(10).

In order to compare the optical absorption
experiments with the calculated quasi-particle separations, two addition-
al effects must be included: the depolarization effect or resonant scre-
ening and the final state interaction or vertex correction. Both of
these effects are studied by many-body perturbation theory for the case
of zero temperature(14), and a large cancellation is found. This agrees
qualitatively with the result of Ando(15) who used a very different
method of calculation and different approximations. Finally, a new ex-
perimental technique for directly observing the quasi-particle separa-
tions is discussed, the technique of surface channel tunne:—:ling(1

This technique should make it possible to compare directly the experi-

mental data and the calculated quasi-particle energies.
I. THE METAL- INSULATOR-SEMICONDUCTOR STRUCTURE

In actual metal-insulator-semiconductor (MIS) structures a number
of subtle but important effects are caused by complicated details of
the semiconductor band structure like valley degeneracy, nonparaboli-
city and anisotropy. Since the basic physics of the MIS structure can
be understood without these complications, we consider first a simple
model semiconductor whose valence and conduction band energies are given
by

m
n

a & 21,2
Eq h2k /va (m

32]
|

ﬁzkE/ZmC (2)

Here k is the wavevector measured from the T'-point, the center of the

Brillouin zone.
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In an n-type semiconductor there are a number of donor states whose
energy is in the band gap just slightly below the conduction band edge.
At zero temperature the donors will be neutral, i.e., the extra electron
of the donor atom will be bound in a hydrogen like orbit tec the donor
ion. The binding energy is given roughly by

E, = - e“n%/thti 3 (3)

where = is the dielectric constant of the semiconductor. This is sma-
ller by a factor of mc/moa; than the Rydberg, where m, is the mass of a
free electron. Typical values of this factor are of the order of 10-3,
so that donor binding energies are of the order of 10meV. Because this
binding energy is small, many donors can be ionized at finite tempera-

tures,donating their extra electron to the conduction band. A similar

picture holds for acceptor states if holes replace electrons and valen-
ce band replaces conduction band.

To be explicit we shall consider an ideal semiconductor with NA
acceptors and ND donors per unit volume with NA > ND so that the mate-
rial is p-type. At zero temperature all of the donor states will be
ionized. The extra electron from each donor state will be captured by

an acceptor, so that N, of the acceptors will be ionized and NA = ND

will be neutral. The 5a]ence band is cempletely filled and the conduc-
tion band completely empty. Clearly the Fermi energy must be at the
acceptor levels since these are partially occupied at zero temperature.
We now consider the MIS structure shown in Fig. 1. An insulating
layer of thickness § and dielectric constant €y Separates our ideal semi-
conductor from a metallic gate electrode. For the moment we can disre-
gard the degenerate n-type source and drain contacts shown in the figure.
If electrical contact is established between the metal and the semicon-
ductor, their Fermi levels will attain the same value as shown in Fig, 2
When a voltage is applied between the metal and the semiconductor, there
will be an electric field in the insulating layer. Because the normal
component of D = ¢f must be continuous at the semiconductor-insulator
interface, the electric field will not be confined to the insulator, but

will penetrate into the semiconductor. In the presence of an electric
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Fig. 1. Schematic MIS structure used for inversion layer experiments.
The number of inversion layer electrons per em? of surface is changed
by varying the voltage between the metallic gate and the semiconductor.
The degenerate n-type source and drain contacts are connected by the
surface inversion layer. A small potential difference between source
and drain contact leads to a surface current which depends upon the
conductance of the inversion layer.
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Fig. 2. Schematic of the energy bands along a line normal to the MIS
surfaces. The Fermi level is shown as a dashed line. In the semicon-
ductor, which is weakly p-type, the Fermi level lies in the band gap
just above the valence band edge at the position of the partially
occupied acceptor levels. The insulator has a large band gap, and it
has no conducting states in the vicinity of the Fermi level.
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field the energy bands of the semiconductor (and the donor and acceptor
levels associated with the band edges) will bend as shown in Fig. 3. The
electric field in the semiconductor drops from its value at the interface

to zero over a distance d; this region is known as the depletion layer.
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Fig. 3. Schematic of the band structure when a gate voltage is applied.
The positive charge density on the surface of the metallic gate elec-
trode leads to a uniform electric field in the insulator (linear poten-
tial). The lines of force originating on the surface charges of the
gate electrode terminate on negatively charged acceptors in the region
of the semiconductor where the bands are bent by the electric field
(the depletion layer). For a sufficiently large electric field the
conduction band edge at the interface is pulled below the Fermi level
of the bulk semiconductor and electrons can be trapped in the surface
potential well. In this case the conducting surface channel is called
an inversion layer.

In the depletion layer all of the acceptors are ionized since they lie
below the Fermi level of the semiconductor. The charge density per unit
volume in the depletion layer is simply - e (NA - ND), since all the
acceptors are negatively charged and all the donors positively charged.
Beyond the depletion layer charge neutrality prevails. It is convenient
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to introduce the potential energy vd(z) of an electron in the electric
field of the depletion layer. The subscript d denotes the association
of this potential with the depletion layer charge. The gradient of vd(z)
must be equal to eE(z), where E(z) is the electric field and - e is the
charge on an electron. If we take the semiconductor-insulator interface
to be the plane z = 0, then Poisson's equation in the semiconductor be-

comes

4 2 %
d . . Ei:_ N, - Ny [0 - ez - 4)

Here 6(z) is a unit step function. Integrating this equation twice with

respect to z gives

v @ = - e’ v, - NpYR 2 - e - DG - 97
S
+ V('l (0)z + Vd(o), (5)

where vd(D] and vé{O) are the values of vd(z) and its first derivative
at z = 0. We choose the zero of potential to be the value of vd(z] at
z = », This fixes the values of vd(O) and vé(O)

-2me?

2
vg©@ = Ny - NpdT (6)
, _ A4me?
vd(O) ol (NA - ND)d i (7)
Thus we find
vy(2) = %ei N, - NJ @ - 2)2 [1-6(z - ] (8)

2
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Eq. (8) describes the potential energy of an electron in the depletion
layer. The charge density in the depletion layer is uniform and equal to
- e(NA = ND). The width d of the depletion layer increases with increas-
ing voltage so that the charge per unit area of the interface contained

in the depletion layer,

= eNd S e[NA 3 ND)d % (9)

increases with increasing gate voltage. The electric field in the insu-
lator is constant and given by

E

w D
eEI = = va(D) ; (10)

the requirement that the normal component of the displacement field be
continuous. The gate voltage (voltage applied between the metallic gate
electrode and the semiconductor) is given by

-y £
ev, = dme Nd[é +§—SGJ . (11

As VG is increased the width of the depletion layer continues to increase
until vd(GJ = -(EG - EA), where EA is the binding energy of the accep-
tors. Since EA << EG’ it is often neglected in this expression. For va-
lues of VG larger than this critical value, the conduction band edge at
the surface is pulled down below the bulk Fermi level of the semiconductor.
In this situation it is possible for electrons to be trapped in the con-
duction band at the semiconductor-insulator interface. Continuing to in-
Ccrease VG simply pulls the conduction band edge further and further below
the Fermi level in the semiconductor and increases the number of electrons
trapped in the conduction band at the surface. The electrons trapped in
the conduction band form a conducting n-type surface channel. Since the
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bulk semiconductor is p-type, this conducting surface channel is called a
surface inversion layer.

The inversion layer electrons contribute to the potential in the
semiconductor just as the depletion layer charges do. In fact, we can
write down the potential experienced by an electron in the inversion la-

yer as

v(z) = vd(z) + v (Z] = v, o (12)

Here vd(z) is the potential due to the depletion charge and is given by
Eq. (8) with d approximately equal to quG/Zneszd. The self-consistent
potential of the inversion layer electrons must satisfy the Poisson equa-
tion
2
ke (z) -4re?

ol el NC I (13)

where Ns(z) is the electron density in the inversion layer. Finally vy
is the image potential resulting from the difference in dielectric cons-
tant between the semiconductor and the insulator. Elementary electros-
tatics gives

ES 3 EO ez
Vi(z) P R £ ()
Cb 0
Since Eg is usually larger than €, the image force is repulsive.

The inversion layer electron density N, (z) can be written as

\ = ? 2
N (2) Niny g EE )|y (]2, (15)
where wn(z) and En are the nth eigenfunction and corresponding eigenvalue
of the surface potential well. f(E) is the Fermi distribution function
and Ninv is the number of inversion layer electrons per unit area of the
surface.
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IT. HARTREE APPROXIMATION

The eigenvalues En and eigenfunctions $n(z) appearing in Eq. (15)
are solutions of the Schrddinger equation

M, +v(z)] ¥ = E¥ . (16)

The potential v(z) is given by Eq. (12) , and because it contains the
term vS(z) which depends upon the solutions wn(z) of Eq. (16), the pro-
blem must be solved self-consistently. The Hamiltonian HO appearing in
Eq. (16) is actually that for an electron in a perfect crystal. The
Bloch functions wnk(r) satisfy the equation

Hownk(r) = Eﬂ{k)q)nk(r) . (17J
The Bloch functions form a complete orthonormal set

* & =
J lpnk ‘pnrk dr 611]'1' ékk' ’ (TB)

and can be written

v (0 = gir runk(l") , (19)

where unk(r) has the periodicity of the lattice. Clearly we can expand
the wavefunction ¥ of Eq. (16) in a series involving Bloch functions

W) = an AR @ (20)

Because v(z) depends only on z, the motion in the x-y plane is unaffected
by the potential v(z) and the problem can be treated as a one-dimensional
one.
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Single Band Effective Mass Approximation

Substituting Eq. (2) into the Schrddinger Eq. (16), gives a rather
complicated problem in the gemeral case. A considerable simplification
can be obtained by making the following assumptions:

i) a single band, the conduction band makes the dominant contribu-
tion to the wave function y(r) given by Eq. (20).
ii) the only important values of K in the sum appearing in Eq. (20)

come from very close to the single conduction band minimum,

which for our simple model is at k = 0.

With these assumptions we can write

v = § W Tum @n

k

where uk(r) is the periodic part of the Bloch function for a conduction
band state. The Schrildinger equation can be rewritten

(k) - E] AR + L <k|v(@) k' > AK") = 0 (22)
k!

Here e(k) is the conduction band energy and

iK' - K -

[ >
<k|v(z) |k'> = J dir e = uk* W, v(z) (23)

If we make use of the fact that A(k) is, by assumption, very strongly
peaked at k = 0, we can approximate W and W appearing in Eq. (23) by
us» their values at k = 0. Then < k|v(z) |k' > is simply the Fourier
transform of |u0(r)|2 v(z). Let's define V(z) = |u0(r}|2v(z) and call
V(k) its Fourier transform. Then Eq. (22) can be rewritten

[e(k) - E] AGK) *+ 1 V(k - k') A(k') = 0 (24)
kl

Now the introduce the envelope function A(z) defined by
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AZ) = L Ago o2 (25)
K

By taking the Fourier transform of Eq. (24) we find that the envelope
function A(z) must satisfy the equation

[e(- iv) + V(2) - E| A(z) = o0 (26)

This is just a one-dimensional Schridinger equation for a particle of
mass m in a potential V(z). The function luo(zjl2 has the periodicity
of the lattice and can therefore be expanded in the form

lug (22 = EL Mt (27)

where « is a reciprocal latice vector. The only large term in the series
will be the one with « = 0 for the simple two band model we have employed,
and we can approximate |u0(zJ|2 by wnity.

We can solve the Hartree problem analytically using a variational
approach. Let's assume that the ground state eigenfunction Ao(z) is
of the form

A (D) = [b?/z]llzz g (28)

This function vanishes at z = 0, the semiconductor-oxide interface, and
falls exponentially to zero for large values of z. At low temperatures
and moderate values of the gate voltage, only the lowest energy level

of the surface potential well is occupied. Therefore the screening char-
ge density of the inversion layer electrons is given by

N (2) N 1A, (2) ]2,

inv

b* N, 22 e (29)

1
2
where Ninv on the right hand side denotes the number of electrons per
unit area in the inversion layer. By solving Poisson's equation and

requiring the electric field to vanish at z = « and the displacement
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field to be continuous at z = 0, we obtain for v(z)

2
v(z) = dre

Nz + N b7 [3 s 0B 4 i 5 %—bzzz)J .

S

. - & _1
2 z J. (30)

T
16n(£s + eoi

In writing down Eq. (30) we have made the assumption that only the lowest
eigenstate wo(z} is occupied. We now evaluate

p
e ES = AO(Z) -2—]% + v(z) AO(Z) > g (31)
and obtain
- i
_ W 125 ¢? 1 g £ 2
€EH = S 4 e [Nd 6 Niny * §5§TE:_7QE;7_ b (32)

This is the energy of a single electron in the lowest subband. We want
to minimize the total energy of the Ninv electrons per wnit area with
respect to the choice of the variational parameter b. Here we must be
somewhat careful since the term involving Ninv in Eq. (32) is the inter-
action of the electrons with each other. If we simply add up Eq. (32)
for each electron, we count the interaction term twice. Therefore, in
minimizing the total energy of Ninv electrons per unit area, we replace
the coefficient 11/16 appearing in front of Ninv in Eq. (32) by 11/32.

With this replacement minimization of the energy gives an equation
for the variational parameter b

3 1.2 - 3
b + oo bO » (33)
where
3 481 me? ) 11
P e, M3 M o (34)
and
€. - €

1 5
R 7 €.+ €0 11'65 (35)
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For b0 >> @ We can approximate the solution to lowest order in o and

write

a . (36)

Typical values of the parameters appropiate for a Si-100 surface
inversion layer are: e_ = Ty g, = 3.9, m=0.916 m , N, = 10" em™?
and N, =~ 10'2cm . With these values we find < E > = 56.5meV above
the bottom of the surface potential wells. This establishes the order
of magnitude of the energies involved in the problem.

To obtain a more accurate estimate of the ground state and excited
state energies as a function of N, , one must resort to numerical cal-
culation. Stern{z) has carried oaﬁvself-consistent Hartree calculations
of the energy separations as a function of both N.nv and temperature.

1
(13) can be made by introduc-

A fairly reasonable analytic approximation
ing a sequence of variational functions AO(zJ, K2}y ..,An(z) where
An(z} has n-nodes at finite values of z and is orthogonal to all lower

variational functions.

In figure 4 we present a schematic of the energy levels, wavefunc-
tions and density of states of the first few bound states of the surface
potential well. To the right we plot potential energy vs z, the coordi-
nate normal to the surface. The semiconductor-oxide interface at z = 0
is taken to be an infinite barrier. The two lowest energy levels EO
and E, are indicated by horizontal lines and the envelope functions co-
rresponding to them are indicated by the dashed lines. To the left we
plot the density of states vs energy. At energies below E0 no states
are available. Once Eo is reached, electrons begin to fill the two-di-
mensional kX - k_ space associated with free electron motion parallel
to the surface. In two dimensions the free electron density of states
is a constant, so D(E) jumps to that constant value at E = Eo; similar
jumps appear every time a new level of the surface potential is reached.
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D(E) 4

Fig. 4. Schematic of the energy levels and wavefunctions (dashed lines)
of the first few bound states of the surface potential. To the left

we plot the density of states as a function of energy. Each time a new
quantum level occurs, the density of states experiences a jump to a new
constant (two-dimensional density of states is independent of energy)
value.

I11. COMPARISON WITH EXPERIMENT

There have been a number of spectroscopic studies of the separation
between the energy levels or subbands of the surface potential. In the
(17)

first experiments a change in the conductivity of the surface channel
was observed when the frequency of the incident radiation was appropiate
to cause transitions from the ground to the first excited subband. Later

(34)

quasi-two-dimensional electron gas of the surface inversion layer. Both

experiments involved direct observation of the power absorbed by the
of these experiments and later observations of intersubband luminescence
gave information on energy separations of the subbands as a function of
gate voltage or inversion layer concentrarion Ninv' A comparison(lg} of
the early experiments with the Hartree calculation is shown in Fig. 5.

The solid curve is the Hartree energy separation, and the open circles

are experimental results. Unfortunately, the agreement is not very good.
The large discrepancy between the calculation and experiment is associated
with the effects of exchange and correlation which are neglected in the

Hartree approximation.
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Fig. 5. A comparison of the calculated Hartree energy separation of --
the ground and first excited subbands vs Ninv with experimental results.

IV. ELECTRON-ELECTRON INTERACTTIONS

Electrons in a semiconducting surface inversion layer have wavefunc-
tions which extend of the order of SOR from the semiconductor-oxide inter-
face into the bulk of the semiconductor. The effective Coulomb interac-
tion between the electrons (neglecting screening due to the other elec-
trons in the inversion layer) is affected by the presence of the inter-
face and the extent of the wavefunction normal to the surface. The effec-
tive unscreened interaction between a pair of electrons in the inversion
layer is obtained by noting that a point charge located at the point --
(r', z') in the semiconductor sets up a potential ¢(r - r'; z, z') at the
point (r, z)} in the semiconductor whose Fourier transform with respect to

(19)

r - r' is given by

1

- €,cothgs e_q(z +z") (37)

e | galz - 2], s
ola; z,2') = L= | eUE 7 E +;5**:‘?Ocot—hqe;
This result is obtained from classical electrostatics by solving Poisson's
equation in the semiconductor, the insulator, and the metal, and imposing
the appropriate boundary conditions at the interfaces. If both z and z'
are sufficiently small compared to qal, the potential is almost indepen-
dent of z and z' and can be approximated by
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1]

L S - (38)
£ €. ¢ € coth g8

$(q)

1 (20)

possibility of crystallization of the electrons into a two-dimensional

This is the form of the interaction used by Chapli in studying the

Wigner lattice. For & >> qql, ¢(q) is approximately equal to 2me/qg&, -
where & = 1 (e

2 0
many microscopic calculations. The effective unscreened interaction bet-

+ es). This is the form of the interaction used in

ween an electron in the nth level of the surface potential and one in the
th :
m level is taken to be

V@ = -e J dz dz' Iwn&)lzlwm(Z')l2 ¢z 2, =), (39)

i.e., ¢(q; z, z') is simply weighted by the probability of finding elec-
trons at z and z'. If all the electrons are in the ground subband the
unscreened interaction between them can be evaluated exactly

2me’
€q

Vool = I(a/b) (40)

where the function I(x) is given by(19)

Ix) = (1+x° [%x (35 + 5dx + 44x? + 18x° + 3x*) + 2e (e + € _coth q§) ']
(41

and b is the variational parameter in the ground state wavefunction. VOO
differs from a two-dimensional Coulomb interaction by the factor I(q/b).
For most purposes the oxide thickness ¢ is sufficiently large that coth qé
can be replaced by unity for all significant values of q. In the limit
that the inversion layer becomes very narrow (b + =), I(q/b) reduces to
Zas(es + eo)_l, giving for Voo a two-dimensional Coulomb interaction with
a dielectric constant € = 7—(25 * ao).

In the most general case, the effective interaction between electrons
in the inversion layer will depend on four subband indices. This dependen-
ce represents the fact that incident electrons in the i and £ subbands can
scatter into the j and m subbands as depicted in Fig. (6a).
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Efectron Self-Enengy

The many-body quasi-particle energy is the sum of the Hartree energy
and the electron self-energy. Diagrammatic perturbation theory has been
used by Vinter(ﬁ) to evaluate the electron self-energy at zero temperatu-
re, and more recently by Kalia et aﬁ(ja} for finite temperatures. The
diagrams depicting the self-energy calculation are shown in Fig. 6. The
Green's function G.. is represented by the double solid line shown in
Fig. (6d), which 15 an integral equation for C The single solid line
is the non-interaction Green's function G - also shown in Fig. (6b). The
non-interacting Green's function is actually diagonal in the subband indi-
ces, although the full Green's function Gi' isn't. The effective screened
interaction (the double dashed line) between electrons is given by the
equation depicted in Fig. (6c).

At finite temperature it is customary to define a self-energy func-
tien Mz, z', k, imn) over a discrete set of imaginary frequencies. The
subband self-energies are defined by expanding M in the complete set of
Hartree eigenfunctions ¢.(z). To lowest order in the effective interac-

(14)

tion the i-j element of M is given by
- - iwmn ~d?p ) S . 0 .
Mi_'l {1_(_: 1wn) g J [2]512 UiU’_J (]i B 1wﬂ lwm)Gu(R: 1%)
(42)
where the sum over £ runs over all subbands, and g = (kéT)_l. Here (ii

)
Li.l

is the non-interacting Green's function for the £th subband. Throughout
this calculation we chose f = 1.
From the Dyson equation for the effective interaction U we can obtain

the relation

_ (~ f... (kiw')
- do' “ijem =" °
Wy a5 6 2 Yosom 0 *1 5 z -~ @ (43)

-0

where z is a complex frequency, and fijtm(k;w) is simply related to the
imaginary part of Uijim(k;z = + 1in). Here VijEnJE) is the unscreened
interaction between electrons in the inversion layer. Substituting Ekq.
(43) in Eq. (42) and performing the sum over W, We find that M is a sum
of exchange and correlation terms. The exchange part of selfLenergy, qu’
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Fig. 6. (a) Schematic of the unscreened electron-electron interaction
Vijkﬂ, represented by a dashed line.
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represented by a solid line. This function is actually

diagonal in the subband indices.

(b) Noninteracting or bare Green's function G

(c) Dynamically screened electron-electron interaction is
represented by a double dashed line. It satisfies an
integral equation depicted in the figure.

(d) The interacting or dressed Green's function G is
represented by a double solid line. It satisfies an
integral equation depicted in the figure.
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is given by

& d’p _ i
M’i‘j (k) i J ) ViUij (p)n, k -p) (44)

and the correlation part by

& ) _ oy | a2 dist T L 1 - 2 =
Mij(K,lmn) = % J =B o) - w EE, 7 M, k -p)° + u] 5

nZ | or
1 ’BUJ' =t
Eiuij (psw’) n, (k -p)+ (e = 1) . (45)
Here n£(5) is the Fermi function for an electron of energy E£ + kz/ZmE,

and p is the chemical potential of the system.

Explicit calculations for the bare interaction reveal that Vijzm has
a significant contribution only if i = j and £ = m. Under these condi-
tions, the self-cnergy M becomes diagonal. For convenience, we denote
M. . by Mi’ Viijj by Vij 1 by fij'

The calculation of exchange energy is straightforward. For the eva-
luation of ME(E;iuh) we need the imaginary part of the retarded effective
interaction, fij. The latter is calculated. in the plasmon pole (pp) appro-

ximation(21’22). We make the ansatz that for w > 0

i
Im sij(k,w) = Cij(k) §(w - W) (46)

where €4 is an elefent of the dielectric matrix, e, defined by ¢+ U = V.
Substituting U =¢ =« V in Ey. (43) and letting z = ¢ + in we obtain the
Kramers-Kronig relations between the real and imaginary parts of e . Tak-
ing the RPA expression for the real part of e_l, we determine Ci.(k) and
W from the static 1limit of the KramersﬁKronjg_felations and the f-sum rule.
From the knowledge of cij and W, we obtain ImEij and subsequently fii'

The quasi-particle energies are the solutions of Dyson's equation.
Rice(zs) has pointed out that if the self-energy is evaluated only to
lowest order in effective interaction, it is inappropriate to solve the
exact Dyson equation since it generates not only the lowest order terms in
effective interaction, but also selected higher order terms which should
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not be included in the calculation. Instead, the self-energy should be
evaluated at a frequency corresponding to the noninteracting quasi-par-
ticle energy, that is

|12 g ol .
mok-u +ReM(kE +smk - (47)

w () =E +zm

r| =

The quasi-particle energies E:(E) are then given by uﬁ(gj # s

We have evaluated the exchange and correlation parts of the self-
energy as a function of temperature at several values of the inversion
layer concentration for the three subband model. A comparison of the
quasi-particle separation E, - E, including exchange-correlation effects
with the Hartree energies and with experiment is given in Fig. 7 for the
case of zero temperature. Clearly the effects of exchange and correla-
tion are very important, and they bring the theoretical calculations much
closer to the observed energy separations.

30
20} QUASI- PARTICLE
= ENERGIES
>
@
E
° I i
w HARTREE
10~ ENERGIES
s
(o]
\ 1
0
0 I 2 3

Ninv [IO'z em™2 ]

Fig. 7. A comparison of Hartree energy separations and many-body
quasi-particle energy separations vs Njpy with experiment for the
case of zero temperature. These results are taken from the work
of Vinter(18)
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The material most commonly studied has been silicon. The conduction
band of silicon has six minima located along the 100 directions approxi-
mately 85% of the wave vector from the zone center to the face of the
Brillouin zone. The constant energy surfaces are ellipsoids of revolu-
tion about the 100 axis on which the minimum is located. The effective
mass along the direction of the axis of revolution is large (m =0.96 m )
while the mass in the direction normal to the axis is small (m =0.19 m ).
For a silicon 100 surface inversion layer the two ellipsoids whose heavy—
mass axis is normal to the surface form the lowest energy level of the
surface potential. The lowest energy level of the four ellipsoids whose
light-mass axis is normal to the surface is higher in energy. Because of
this structure of the conduction band of silicon, the surface electric
subbands fall into two groups. The labels 0, 1, 2,... on the subbands
denote the ground, first excited, second excited,... subbands of the two
heavy-mass ellipsoids. The labels 0', 1',... denote the subbands of the
four light-mass ellipsoids.

According to the self-consistent Hartree calculation most of the
electrons reside in 0, 1, and 0' subbands, therefore in the temperature
range of interest, the 3-subband model is expected to be a reascnable
approximation. Figure 8 illustrates the variation of self-energies of
0, 1, and 0', subbands with temperature. At low and intermediate tempera-
tures the main contribution to the self-energy of the 0th subband comes
from exchange. The small size of Dg results from the large cancellation
between the first and second terms in the parenthesis of Eq. (45). As
the temperature increases, the population in the 0t subband decreases;
this results in a decrease in the exchange energy and an increase in the
correlation contribution to the self-energy. At extremely high tempera-
ture, the self-energy becomes very small indicating that the system appro-
aches the classical limit. The exchange energy for the excited subbands
is very small at low and intermediate temperatures; the main contribution
comes from the correlation part. For these subbands almost no cancella-
tion occurs between the two terms in the parenthesis of Eq. (45), because
the first term has a negligible value at low and intermediate tempera-
tures. With increase in temperature, the exchange contribution grows and
the correlation part diminishes. Finally, at very high temperatures,
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the total self-energies for the 0' and 1 subbands become very small. It
should be observed that the self-energies for the 0' and 1 subbands show
a remarkably similar dependence on temperature.

10.0 - -

SELF-ENERGY (meV)

-20 1 |
0 100 200 300
T(2K)

Fig. 8. Temperature dependence of the self-energies (solid lines) and
exchange energies (dashed lines) of the 0, 1 and 0' subbands of a
Si-100 surface inversion layer.

In Fig. 9 we display the quasi-particle energies at the subband mini-

ma as a function of temperature for N, = = 10'*4cm”.  For very low concen-

trations (N. = 10''/cm?) the subband separations turn out to be almost

inv
independent of temperature. At higher concentrations they increase

slightly with increasing temperature. The exchange-correlation energies
are quite insensitive to the value of the wave vector k parallel to the
surface, so that the self-energy effects produce only a rigid shift in
the subbands.
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Fig. 9. Temperature dependence of the quasi-particle energies at
k = 0 for the 1, 0 and 0' subbands. These energies are calculated

for N, = 10'"%cm % and N, = 3.2 x 10 'em
inv d

V. DEPOLARIZATION EFFECT AND VERTEX CORRECTION

In comparing the calculated subband separations with experiments on
optical absorptions or luminescence, two important effects have been

neglected. These effects are the resonance screening(zq’zs’zo]

(or de-
polarization shift) and the final state interaction(15) (or vertex cor-
rection or exciton effects). The physical processes associated with the-
se two effects are shown in Fig. 10. Fig. 10a shows the process associa-
ted with intersubband absorptionin the Hartree approximation. An electron
is excited to the nth subband leaving a hole behind in the ground subband.
The inclusion of exchange-correlation effects in the quasi-particle ener-
gies simply replaces the bare Green's functions of the Hartree approxima-

tion by the dressed Green's functions represented by the double solid
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line of Fig. 10b. The depolarization shift or resonant screening effect
results from the processes shown in Fig. 10c. The dynamic polarizabili-
ty of a noninteracting two level system (0 and 1 subbands) is given by

2N

;b
(o), _ " inv 10
Xlﬂ (q - D)w) - U_lz_ E%g (48}

A%
is the number of electrons in the inversion layer. The diagram corres-

a) 0 (b)

where E;;, 1is the energy separation between the 0 and 1 levels and Nin

(c) + A +

o e e e

Fig. 10. (a) Intersubband absorption in the Hartree approximation.
An electron in an excited subband is created and a hole
left behind in the ground subband due to absorption of
an incident photon.

(b) Same process as in (a) except that dressed Green's func-
tions are used in place of the bare Green's functions of
the Hartree approximation.

(c) In the absorption process not just single electron-hole
pair creation must be considered, but the infinite chain
of processes depicted in the figure must be included.

(d) The first order correction to the polarizability asso-
ciated with final state interaction or vertex correction.
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ponding to this polarizability is Fig. 10a in the Hartree approximation
or 10b when the electron self-cnergies are included. However, the reso-
nances inthe infrared absorption do not occur at the poles of Xf?)' be-
cause the incident radiation polarizes the electron gas. This means
that the entire infinite chain of polarization bubbles must be included
in the response function. The full response function X;,can be calcu-

lated by summing this series; we obtain

xl(:} (q = 0,w)
¥ (q =00 = — (49)

10
1 -V (g=0) Xf:)(q = 0,uw)

1010

where Vi1, represent the scattering of an electron from 0 to 1 due to

the Coulomb interaction. It is easy to see that the poles of ¥, , occur
= 2 ¥ } E

Mg CE L W B Y

to as the depolarization shift.

instead of at w = Elu. This is referred

The effect of final state interaction or exciton shift arises from
the interaction between the excited electron and the hole which it leaves
behind in the ground subband. Ando“sJ has investigated this effect
using a density functional approach. He neglects the wavevector and fre-
quency dependence of the vertex correction, and finds qualitatively that
the exciton-like shift tends to cancel the depolarization shift. Kalia
et a£(27) have studied the vertex correction by evaluating the first or-
der correction Xf;J(q = 0,w). This orrection is shown. in Fig. 10d as
the replacement of ¥ © by X(O) + X(T). These authors find that in the
plasmon pole approximation there is a very large cancellation between the
depolarization shift and the vertex correction. Their results for the --
0+ 1and 0> 2 transitions as a function of Ninv are shown in Fig. 11.

The dashed curves are the quasi-particle energy differences. For all

() (0)

10 10
resonance energy, so that stopping at the first order correction is rea-

values of Ninv’ the value of 7 is very small compared to 7 at the
sonable. Because the resonance energies and quasi-particle separations
are so close together, it appears to be adequate to use the calculated
values of the quasi-particle energies in a comparison of theory and op-
tical experiments. The large degree of cancellation between the depola-
rization shift and vertex correction has been demonstrated only for the
case of zero temperature. However, if we go ahead and compare the quasi-
particle separations at finite temperature with the result of Koch and

Kneschaurek(1]) we obtain reasonable qualitative agreement.
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Fig. 11. The quasi-particle energy difference E,,and E,, as a func-
tion of Njpy are shown as dashed curves. These are compared with
the positions of the resonance absorption peaks if only the depola-
rization effect is included (dot dashed curve) and when both depo-
larization and final state interactions are included (solid curves).
The solid curves are always very close to the quasi-particle sepa-
rations, showing that the depolarization shift and vertex correction
tend tgzcancel. These calculations are performed with Nd = 3.2 x
107~em. =,

The evaluation of the vertex correction at finite temperature is a
difficult numerical problem, and we have no justification for assuming
the depolarization shift-vertex correction cancellation will continue
to hold at finite temperatures. It would be very useful to have an in-
dependent measurement of the quasi-particle separations in which no de-
polarization or vertex correction effects occurred. The next section

discusses one possible experiment of this type.



VI. SURFACE CHANNEL TUNNELING

We propose a potentially very useful new method of subband spectros-
copy which involves tunneling into the surface Channel(16).

The basic idea of a surface channel tunnel junction (SCTJ) is pre-
sented in the following three figures. In Fig. 12 the normal MOSFET
structure is shown. In Fig. 12a degenerate n-type source and drain con-
tacts at the surface of a weakly p-type semiconducting substrate are
shown. This structure is separated from a conducting gate electrode by
an insulating (here shown as oxide) layer. The band structure just inside
the semiconductor as a function of position along a line parallel to the
interface is shown in Fig. 12b for the case when no gate voltage is applied
across the insulating layer. The Fermi level is shown as a dashed hori-
zontal line. In the degenerate n-type regions the Fermi level is above
the conduction band edge, while in the p-type substrate it is just slight-
ly above the valence band edge. At very low temperatures no carriers
are present in the substrate, and it behaves like an insulator. The --
highest er2rgy occupied states in each region are indicated by the cross
hatching. Figure 12c shows the band structure along the same line just
inside the semiconductor when a gate voltage large enough to produce a
surface inversion layer is applied. Now the two degenerate n-type con-
tacts are connected by a conducting surface channel. In Fig. 13 the ener-
gy bands along a line perpendicular to the interface are shown for the
surface channel depicted in Fig. 12c. Near the semiconductor-oxide in-
terface, the conduction band edge is below the Fermi level as was shown
in Fig. 12c. The energy bands are bent in the vicinity of the surface
by the self-consistent field of the depletion charge and the inversion
layer electrons. The motion of the electrons in the surface channel in
the direction normal to the surface is quantized, and a sequence of elec-
tric subbands is formed. Within a given subband each electron is in the
same quantum mechanical state of motion perpendicular to the surface,
but acts ac a free electron with respect to the degrees of freedom para-
1lel to the surface. Thus, each subband acts like a quasi-two-dimensio-

nal electron gas.
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Fig. 12. Normal MOSFET configuration. Degenerate n-type source and

drain contact are diffused into a weakly p-type substrate. The con-
ducting gate electrode is separated from the semiconductor by an in-
sulating layer as shown in (a). (b) and (c) show the band structure

as a function of position along a line parallel to the interface but
just inside the semiconductor for the case of zero gate voltage and

a large gate voltage respectively. In (c) a conducting surface
channel (the surface inversion layer) connects the source and drain
contacts.
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Fig. 13. The band structure along a line normal to the interface for
the case of a surface channel as shown in figure 12c.
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(28)

have simply replaced the degenerate n-type source contact by a metallic

One type of SCTJ structure is shown in Fig. 14. 1In Fig. 14a we
contact which forms a Schottky barrier with the semiconductor. In prac-
tice the metallic contact is chromium silicide or platinum silicide which
is formed by evaporating the transition metal onto the silicon wafer and
heating at a prescribed temperature for an appropriate length of time.
The band structure along a line just inside the semiconductor is shown
in Fig. 14b for the case of zero gate voltage. Both the source and drain
contacts are highly conducting, but the substrate is insulating at low
temperature. In Fig. T4c, we show the same band structure for the situa-
tion in which the applied gate voltage is large enough to create a sur-
face inversion layer. Now the conducting surface channel is separated
from the metallic source electrode by a Schottky barrier tunnel junction.
The tunnel junction connects what is essentially a three-dimensional
metallic source with a quasi-two-dimensional n-type surface channel. When
a source-drain voltage is applied across the device, almost the entire
voltage drop will appear across the tunnel junction. Fig. 15 shows a
situation in which only the lowest subband of the surface channel is
occupied. As scon as a voltage is applied such that the Fermi level in
the source region is higher than in the surface channel, electrons can
begin to tunnel from the source into unoccupied states of the ground
subband. In direct specular tunneling both energy and the component
of wavevector parallel to both the surface and to the juction will be
conserved. The tunneling probability will depend upon the overlap in
the direction normal to the surface of the wave function for the sub-
band with the wave functions of the electrons in the source region. The
tunnel current from the source into the ground subband should be a con-
tinuous function of the applied source-drain voltage. At the voltage
V, however, a new process, tunneling into the first excited subband,
becomes possible. The occurrence of this new tumneling proces should
lead to breaks in the conductance dI/dVg, as a function of the source-
drain voltage Vgp. The applied source-drain voltage at which the nth
discontinuity in the slope of conductance occurs should be equal to the
energy separation of the nth subband and the ground subband less the
Fermi energy of the surface channel (measured from the minimum of the
ground subband). Thus by studying the I-V characteristics as a function
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of both V_D and Vgate’ the dependence of the subband separation on elec-
S

tron concentration can be determined experimentally. If readily tunnel-

able SCTJ's can be prepared, this technique offers a very powerful means

of studying many-body effects in quasi-two-dimensional systems.
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Fig. 14. One possible SCTJ configuration. A metallic source elec-
trode replaces the degenerate n-type source contact of figure 12.

A Schottky barrier is formed between the metallic source contact
and the bulk p-type silicon as shown in (b). When a large gate
voltage is applied, the Schottky barrier between the gate electrode
and the surface channel forms the tunnel barrier as shown in (c¢).
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Fig. 15. The energy levels of the surface channel are shown on the
right. Only the lowest subband is taken to be occupied. The Fermi
level in the surface channel is a distance above the bottom of the
ground subband Eg. The Fermi level in the source is indicated to
lie a distance V; above the Fermi level in the surface channel. At
this applied source-drain vcltage tunneling into the first excited
subband becomes energetically possible.

VII. SUMMARY

The quasi-two-dimensional electron gas of a semiconducting surface
inversion layer 1s anextremely interesting many-body system. The elec-
tron concentration can be varied continuously in a single sample over a
wide range of values; because of this the relative importance of exchan-
ge-correlation in comparison with Hartree effects can be varied. In the
present paper we have investigated the simplest many-body theory. The
electron self-energy has been calculated only to the lowest order in the
dynamically screened interaction. Comparison of Hartree energy separa-
tions with many-body quasi-particle energy differences demonstrates how
large the exchange-correlation effects are.

The problems involved in comparing the calculated quasi-particle

separations with experimental data on optical absorption has been dis-
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cussed. The depolarization shift tends to increase the resonance energy
above the quasi-particle separation by an amount proportional to the
electron concentration. The vertex correction or final state interaction
has been studied in the plasmon-pole approximation, but only the lowest
order correction term has been evaluated, and only for the case of zero
temperature. We obtain a very large cancellation between these two --
effects, so that the quasi-particle separations are quite close to the
resonance energies observed experimentally. This is in qualitative agree-
ment with results obtained by Ando, although the methods of calculation
and approximations used are very different. We have not carried out a
calculation of the vertex correction at finite temperatures.

The possibility of directly observing the quasi-particle separations
by the technique of surface channel tunneling has been described. This
technique may prove to be a very useful method of probing the electronic
structure of semiconducting surface inversion layers.
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