revista mexicana de fisica 26 no. 2 (1979) 233-254 233

d
PHONONS AND SUPERCONDUCTIVITY:
RECENT DEVELOPMENTS

J.P. Carbotte

McMaster University
Hamilton, Ontario L8S 4M1, Canada

ABSTRACT

In this article we review recent developments which relate the
spectral electron-phonon density a?(w)F(w)- fundamental to the Eli=-
ashberg formulation of superconductivity - to the inverse lifetime
of phonons Yj(g). Neutron scattering experiments give not only the
energy of the phonon  hw,(g) (center of the group) but also the
width of the group I'yg). For Nb, measurements of Y,(g) and calcula-
tions of phonon lifetimes which take into account the band structure
have produced new information on aZUQF{uQ. After a brief review
of the tunneling technique which leads directly to (W F(w) we turn
to the discussion of the problem of soft phonons in compounds and
their possible relationship to high Tc. Exploiting the available
information on (W) F(uw) for Nb3Sn we give a quantitative argument
which demonstrates that low fregquency modes are unimportant in this
case. We also present qualitative arguments confirming the predic-
tions of calculations of the functional derivatives which show that
the most effective energies for high T, are intermediate ones, of the
order of 7KBRTc.

In the final section we describe recent work on phonon widths
in the superconducting state. The electrons condense in Cooper
pairs and therefore if the phonon energy available is less than twice
the gap these particular phonons will not decay through electron-phonon
interaction. We argue that this experiment could be a good probe of
anisotropy in the superconducting state.

RESUMEN

En este articulo revisamos trabajos recientes que relacionan la
densidad espectral electrdn-fondn a’(WF(w - fundamental a la formu-
lacién de Eliashberg de la superconductividad - con el inverso del
tiempo de vida de los fonones Y;(g). Los experimentos de dispersidn
de neutrones permiten medir la energia del fondn fiw)(g) (centro del
grupo) y, ademds, el ancho del grupo [)(g). En el caso del Nb, medida
de Y;(g) y cdlculo deltiempo de vida de los fonones, tomando en
cuenta la estructura de bandas, han producido nueva informacidén acerca
de q*(WF(W.

Despuds de una revisidn breve de la técnica de tunelamiento que
permite conocer a? (w)F(w) directamente, nos ocupamos del problema de
los fonones blandos en compuestos y su posible relacidn con altas tem-
peraturas criticas. Haciendo uso de la informacidn conocida acerca de



234

a? (W) F (w) para Nb3Sn damos argumentos cuantitatigwos que demuestran que
los fonones de baja frecuencia no son importantes en este caso. También
presentamos argumentos cualitativos, confirmando las predicciocnes de
los cdlculos de las derivadas funcionales que muestran que las energias
mds efectivas para elevar la temperatura critica son las intermedias,
de orden 7KpT.

En la seccidn final, describirmos trabajos recientes en el ancho
de banda de los fonones en el estado superconductor. Los electrones se
condensan en Pares de Cooper y, por lo tanto, si la energia disponible
es menor que el doble del ancho de la banda superconductora, el fonén
referido no puede decaer por interaccidn electrdédn-fondn. Consideramos
que estos experimentos podrian servir para medir la anisotropia en el
estado superconductor.

Simple s-p metals are made up, to a good approximation, of closed
shell ion cores of charge +Z plus Z free electrons per ion which can
easily move throughout the entire crystal lattice. The ion cores form
a regular array (Fig. 1) with small excursions off
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Fig. 1. Ion cores in a metal

equilibrium possible at finite temperature. For small vibrations of
the ions the harmonic approximation is valid and the dynamics of the
system of ions reduces to that of a system of 3N coupled harmonic
oscillators. Here 3N is the number of independent degrees of freedom.
The 3 gives the three directions (x,y,z) of motion and N is the number
of ions.

The frequencies of the normal modes of vibration of the crystal
lattice i.e. of the phonons can be measured quite accurately by the
method of inelastic neutron scattering.

Cold neutrons available around high flux nuclear reactors are in
a sense ideal probes of the phonons. The neutron is coupled directly
to the nucleus at the center of each ion because of the nuclear force.

If it is made to pass through a metal it can be inelastically scattered
setting the ions in motion i.e. creating a normal mode of vibration.



235

In the constant Q mode of operation of the triple axis spectrometer an
incident beam of neutrons of known energy and momentum is scattered
and only those neutrons having lost a definite momentum k (which is
transferred to the ions) are selected from the scattered beam. These
scattered neutrons are then analyzed in energy. The intensity I as a
function of energy transfer E froms what is called a neutron group.

As shown in Fig. 2 I(E) vs E is small everywhere except for a peak
around some energy w which is identified as the energy of the phonon
of momentum k with the width of the group related to the phonon life-

time. (In practice multiple phonon processes complicate the picture).
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Fig. 2. A neutron group

Thus we can obtain the dispersion curves for the phonons, i.e. w vs k
as shown schematically in Fig. 3. For each direction of k in a simple
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Fig. 3. Dispersion curves for the phonons
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metal like Pb there are three branches to the dispersion curves: wy with
A = 1,2,3; one longitudinal and two transverse. Also the phonons range
in energy from zero to 10 meV (1077 eV) for Pb and k ranges over the
first B.Z. only. This is a sufficient set of momentum labels to enume-
rate the 3N normal modes of vibration,

The reason that cold a neutron of eneray “(a few meV) has a wave-
length of the order of an interatomic spacing (mR]. Therefore, on crea-
tion of a phonon , the neutron loses an amount of energy and momentum
of the order of the amount it had in the first place. This is clearly
ideal for accurate measurements.

From the dispersion curves (one for each direction in the first
Brillouin zone) we can construct the phonon frequency distribution F(w)
defined by

F(w) = % ? 6w - w, (k). (m
kA
o
T T T T
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Fig. 4. Phonon frequency distribution F(w) as given by Cowley !
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In (1) each frequency MA(E) is, in tum, put into the Dirac 6-function
which checks whether or not this particular w, is equal to w. This
gives a histogram which tells us how many phonons there are between w
and w + dw, It nmust then be appropriately normalized. Results for Pb
are given in Fig. 4.

While, to know the phonons in complete detail, it is necessary to
go back to the dispersion curves (one picture per direction of k in
the F.B.Z.) for some applications F(w) (a single curve) is sufficient.
For example, the thermodynamics of a phonon gas follows from F(w)
without reference to the dispersion curves. As a single more concrete

example, the internal energy U is given by
u = F(w)n(w) wdw (2)

where n(w) is the Bose distribution function at temperature T. Thus

we can say that all of the complex information on the phonons contained

in the dispersion curves can be condensed in to a single function F(w)

as far as themodynamics is concerned. This is a great simplification.
We now turn to the free electrons. Their most important property

is that they are nearly free. They can easily bc made to drift by a

small external electric field E leading to a macroscopic current
J = ©E (o-conductivity) (3)

The ground state of a set of IN free electrons is a Slater determinant
of those plane waves XX yith energy closest to zero with 2 electrons
per state in accord with the Pauli exclusion principle. In momentum
space (k) this defines a sphere of radius kg (the Fermi momentum) of
constant energy Ep (the Fermi energy) with all states inside occupied
and all states outside unoccupied (Fig. 5). In a real crystal the Fermi
surface is more complicated and the plane waves dre to be replaced by
Bloch states. These are details that don't bear directly on our present

discussion.
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The Fermi sphere describes well, at least in a first approxima-
tion, the normal state. When at low temperature Pb becomes a super-
conductor the [ree electrons undergo a phase transition to a new "'super
state'". The electronic wave function of lowest energy is not the Fermi
sphere hut rather a superposition of Cooper pair wave functions. Each
electron is now condensed into a "macromolecule' or condensate and a
finite cnergy A(the energy gap) is needed to break its binding to the
condensate. The exact nature of the wave function is described by
B.C.S. theory but is too complicated to repest here. It will not be
necessary. What is important to know is that the condensation occurs
if the net interaction between two clectrons is attractive. This attrac-
tion comes from the electron-ion interaction i.e. the electron phonon
interaction. As shown in Fig. 6 and electron can pull in the + ions
around it incronsiné'Tho ion density in that region. This increased

density of + charge, in turn, attracts a second clectron. Thus the pola-



o
(721
o

o O O O

O 84-2 6 +Z O
e

o 92 Bz g

e” ~ pulled in

Fig. &

rizable system of + ions provides a mechanism where by the Cculomb
repulsion p* between two electrons might be reduced and, in fact, in
some sense, overcome, leading to an effective attrnaction between two
electrons. The matrix element of the electron-phonon interaction
scattering an electron from k to k' due to the emission or absorption

of a phonon MA(E"E) is denoted by and shown schematically

%1
in Fig. 7. The most important electrons in superconductivity (i.e.
those most affected by the phase transition) are those at the Fermi
energy EF = a few e.v. They scatter to a final state of energy --

EF + hmA which does not differ in energy very much from EF. Thus we
will be interested only in Fermi surface to Fermi surface transitions
coming from the electron-phonon interaction G ey In fact all of the
complicated information on the electrons, the phonons and the electron-
phonon interaction can be condensed with no approximation into a single
weighted phonon frequency distribution o (w)F(w) which descrihes
completely the electron-electron interaction mediated by the phonon

as it enters superconductivity. Thus function o (w)F(w) is
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Fig. 7. An electron scatters from ¥k to k' due to the emission or the
absorption of a phonon ”;(E'_i)

in which we repeat again, only Fermi surface to Fermi surface transi-
tions are allowed and cach phonon mode is weighted by the strength of
]gk,k)\l2 for that transition.

In the Eliashberg formulation of superconductivity which is exact
to order square root of electron m to ion M mass, i.e. n J%, the critical
temperature Tc (and all other properties of the superconducting state)

is a functional of o”(w)F(w) and p*. That is

TC = Fla? (w)F(w),u*) (5)

where the complicated nonlinear coupled integral equation of Eliashberg
determines numerically the functional F. The details of these equations
are not important to us. What is more important is that all the proper-
ties of the superconducting state follow from a knowledge of a? (W) F(w)

and p*.
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Calculation of o?(w)F(w) based on equation (4) were done as early

as 1968 by Carbotte and Dynes(]]

and more recently by Tomlinson and
(2)

Carbotte These latest calculations use the real phonons revenled
from inelastic neutron scattering and a 4-plane wave pscudopotential
theory for the electronic wave functions. Results for a?(w)F(w) in
the case of Pb look very much the same as the phonon frequency distri-
bution of Fig. 4. _

More recently Alle-n[?’l has noted a relationship between phonon
lifetimes due to the electron-phonon interaction and o (w)F(w). The
phonon inverse lifetime y y 1s related to the width of the phonon

group and is given by the Fermi Golden Rule

_ 2m N 2 i :
Ty = & o ng.kl 8 e) 806 n) Sper puq) Yy (6)
It is easy to see that
) h E.B.%Z.
o’ (wF(w) = TN 9§ ng 5(M'MA(Q)] (7)

where N(0) is the single spin electronic density of states at the Fermi
surface

NO) = L & (&)
K k

Butler, Smith and Wakahayashi[4) have recently presented measurements
and calculations of the phonon lifetimes in Nb. ‘'Their results are shown
in Fig. 8. It is to be noticed that calculations agree well with the
avallable measurements. Because of this good agreements with experi-
ment they extended their calculations to 5200 points in the irreducible
wedge of the Brillouin zone and evaluated eq. (7) from this data to get
o’ (w)F(w) which is shown in Fig. 9. It agrees well with the phonon
frequency distribution F(w).
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Fig. 8. Phonon lifetimes in Nb (Butler et al(q})
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Fig. 9. Calculation of ®’F from the width of the neutron group
(Butler et al(4))



Actually it is possible to measure a®(w)F(w) directly in super-
conducting tunneling experiments. I shall now describe these beautiful
and important experiments.

The basic idea is illustrated in Fig. 10. A superconducting film is

barrier

oxide :
layer exponential

_ decay
tunnelling junction

Fig. 10

oxidized to get and oxide layer of " 20 X. A normal metal film is then
grown on the oxide. The result is a tunnel junction. The oxide layer
is to te thick enough that electrons cannot diffuse from one side to
the other. Quatum mechanically they can still tunnel. Referring again
to Fig. 10 you see a potential barrier representing the oxide layer.
On one side of the barrier is shownthe wave function of an electron
which decays exponentially in the barrier but still leaks out to the
other side. There is a finite probability for an electron to tunnel
from one side of the oxide layer to the other.

The current (I} flowing through the junction as a function of the
voltage drop (V) across it contains a sharp and detailed image of
o’ (wF(w) and p*. This remarkable fact allows us to measure these two
parameters and so obtain very valuable microscopic information on
particular metals. The exact relationship between 1 as a function of
Vand  o’(wF(w) is determined by the theory of superconductivity,

more specifically through the Eliashberg gap equations.
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Fig. 11. The normalized conductance ¢(V). From McMillan and Rowell

The normalized conductance ¢(V) of a tunnel junction is defined
as dI/dV in the superconducting state divided hy its value in the normal
state. Experimental results on o(V) vs V for a Pb-Pb junction are
shown in Fig. 11. As previously stated, the structure exhibited in
this figure is an image of the structure in o? (w)F(w).

Tunneling results from inversion of the Eliashberg equations in Pb
are shown in Fig. 12 and compared with our calculations. The agreement
is quite good and shows that the theory of superconductivity is now
well understood. It can be used to study normal state parameters like
a’(w)F(w) and p*.

I will now give a brief discussion of two problems of recent interest
to me. The question of soft modes in the ALS compounds and their
possible relationshipo to the high values of the critical temperature
T, found in these systems is of considerable interest. For Nb;Sn, with

(5)

aTl. of 18 K, Shirane and Axe have measured the dispersion curves at
several temperatures for acoustic phonons along [110| with [170] polariza-

tion and have found considerable softening with decreasing temperature.
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Their results are reproduced in Fig. 13 in which elastic constant data
is also shown. Large decreases in phonon energies as the temperature
is reduced are clearly observed. This lead to the speculation that ‘this

softening may be responsible for the observed large value of Tc' Simple
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ECsS type formulas for the relationship between TC and a®(wF(w) and p*
leads to the idea that ’[‘C is a rapidly varying function of A-p* where 2

is the mass enhancement parameter given by

A o= 2 EELEQELEQ duw

(1) (6)
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A shift to lower frequencies in a’(w)F(w) at small w will increase X
significantly becausc of the 1/w weighting. Roughly w =/_E;7ﬁ with ks
a typical spring constant. A softening of w means a reduction of k
which in turn should mean that the lattice is more easily polarizabie.
Thus TC should increase.

We can actually test these arguments quantiatively as follows.

(

Shen 6Y hasmeasured 22 (w)F(w) for NbiSn and his results are given in

Fig. 14. A calculation of T from the Eliashberg equations based on
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this spectrum and his suggested u* gives a Tc of 18.05 K in agrcement
with experiment. Next we can get a precise measure of the role played
by low frequency phonons in Tc by simply leaving out all modes below a
lower cut-off W in ¢?(w)F(w) and repeating the calculations. Results
are shown in Table 1. Leaving all phonons below 3.8 meV out of the
calculations reduce '1‘C by only .1Q%§. This implies that most of the

modes measured in the Shirano—ﬁxc(‘ experiment are of no importance

to superconductivity. To get a significant effect on TC, say 5 K, we
need to leave out all phonons below 9.8 meV. We conclude thercfore
that softening of low frequency modes has no direct relationship to the

high TC of NbiSn.
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Fig. 14. a?F for Nb3Sn measured by Shonmrf 8
While our results are unanbiguous we present the following physical
arguments that may help understand the underlying physics. Bergmann
y 7 < . . . :
and Ralner( ) were the first to introduce the idea of functional deriva-
tives as a means of understanding how various phonon modes affect Tr'
The functional derivative of Tc with respect to uztm)F(w]léTc/ﬁng(u)|

is by definition the change AT in Tc induced by adding on to

|
L



a?{w'")F(w') and additional delta function at w' = w of weight ¢ i.e.
a?(wIF(w") » a?(w")F(w') + e6(w'-w) (7N

normalized to € in the limit € > 0 i.e.

6T | AT
Ly & m = (8)

g0

s

If the functional derivative is large at w these phonons are more
effective than those for which the functional derivative is small. A
calculation of STc/ﬁuzF(w) using the complete Eliashberg equations
yvields the results given in Fig. 15. We see that the low frequency
modes are ineffective in TC since 5TC/6a2F(w) goes to zero as w > 0,

The maxinum at w = 7kBTC can be understood as follows.

T T T T T 2,0

2 1 1 1 1 1 \

0 5 10 15 20 25 30
w (meV)

Fig. 15. The functional derivative of T, with respect to a?F and
a’F itself for NbiSn showing that u"7kpT are the most important
frecuencies for high Te.
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Consider an atom as shown in Fig. 16 which vibrates off equilibrium

according to

u = A sin(wt) (9)

where u is the excursion, A the amplitude of the simple harmonic motion

and t the time with w the phonon frequency.

u=Asin(Wwt)

At full amplitude

W T il
2

Fig. 16

The maximum polarization that can be achieved is to pull it off equiii-
brium to its full amplitude. But for this polarization to be effective
in attracting two electrons to each other the first electron should not
be farther away than a typical distance in superconductivity (the
coherence distance 50} in the time it takes the ion to vibrate to full
amplitude. An electron travels with Ve the Fermi velocity. Thus the
time T it remains within EO is EO/VF = T. For optimum polarization

we need

ol = 2 - A
—'2- SO Ll = .

Therefore the optimum phonon frequency is



because in B.C.S. theory 50 " VF/kBTc' This explains why intermediate
frequency modes are most effective for superconductivity.

The second problem I wish to discuss is that of phonon lifetimes
in a superconductor. As I have said before when a metal becomes super-
conducting the simple free electron wave function of Fig. 5 does not
apply any longer and to pull and electron out of the condensate takes
energy A. A phonon decays thorugh the electron-phonon interaction by
the creation of a hole particle pair.

T I 1 I
Nb3Sn[cs0]Ty &
| =018

—-T=6 K
| e-T=26 K

-
(S]
o

NEUTRON COUNTS

(8]
o
I

HW (meV)

Fig. 17. The neutron group sharpens up at low temperatures when the
phonon energy becomes smaller than 2A. At 6 K the sample is in the
superconducting state. At 26 K it goes to the normal state.



251

In the superconductor at zero temperature no such hole-particle
excitations exist with energy less than 2A because of the condensation.
Thus in a superconductor a phonon with energy less than 24 will have an
infinite lifetime. The neutron group for that phonon should sharpen
up, its width being due only to instrument resolution. This effect is
seen clearly in Fig. 17 for Nb;Sn. The 6 degree results are in a

superconducting sample which is normal at 26 K.

Extensive measurements in Nb are summarized in Fig. 18. To under-
stand these results it is necessary to know one more fact about super-
conductivity. As the temperature is increased real quasiparticle exci-
tations exist in the superconductor. These excitations carry the heat.
Their presence interfers with the condensate which is not quite as
bound so that the gap at T,A(T),is reduced over its value at zero tem-
perature (T=0). The reduction in A is small at small T but increases
rapidly as TC is approached, at which point it is zero. The tempera-
ture variation 2A/T) is shown as an insert in Fig. 18 where the values
of the energy of the three phonon mode investigated is shown as dashed
lines labelled A, B and C. A and B are below the value of 2A at zero
temperature while C is above. For+a given phonon energy the width of
the phonon group is measured as a function of temperature. At low

temperatures this width is zero for both A and B but not for C since it
corresponds to an energy larger than the 2A(0) value and hence this

phonon can decay via the electron-phonon interaction through the crea-
tion of a pair of excitations out of the condensate. As the temperature
is increased the width of both A and B increases very slightly due to
coupling to the few thermal excitations present. But the width increases
guite abruptly as the value of twice the pap (at that temperature) becomes
equal to the phonon energy, where a new channel for decay opens up due to
the creation of real excitations out of the condensate. This rapid
increase occurs at lower temperature for B than for A because the phonon
energy in B is higher than in A. These are beautiful results which
demonstrate the dramatic effect of the presence of the condensate in the

superconducting state.
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253

The same effect can be observed in the ultrasonic attenuation of
finite frequency ultrasound. Two types of experiments are conceivable.
The frequency of the ultrasound can be varied to sweep through the gap
value at some fixed temperature. Alternatively for a fixed ultrasound
frequency the temperature can be varied so as to change the gap value.
In both cases a sharp increase in the attenuation should be observed
at w = 2A(T). This was indeed found to be the case in experiments by
Liall et 31(8) for the case of aluminum. The rise at 2A(T), however,
was found not be as sharp as expected indicating anisotropy in the gap
values. In a real material the gap at the Fermi surface needs not be
isotoropic but can change with orientation in momentum space. For a
Fermi surface with several sheets it can have quite distinct values
from one sheet to the other with less variation on a given sheet. We
have recently analyzed the ultrasonic attenuation for this case. Results
are presented in Fig. 19 in the case of two distinct gaps. It is seen
that the attenuation is small for low temperatures and that it increases
abruptly when excitations out of the condensate can be used to attenuate
the ultrasound wave. The increase in attenuation, however, proceeds
in steps, the higher gap coming into play only at higher temperature
than the lower one. These steps have not yet been observed but should
be there. The effect promises to be a good probe of gap anisotropy.

TABLE 1
Lowerwcut off 0 2.8 3.8 9.8
c
TC(K) 18.05 18.00 17.89 13.05
ATC(K) 0.0 0.5 .16 5.0

Calculation of T, from the Eliashberg equations based on the a’F(w) and
u* for Nb3Sn suggested by Shen(6). We can get a precise measure of the
role played by soft phonons by cutting a’F at we and using in the calcu-
lations of T¢ only the part of the curve at higher w's. If we leave out
of the calculation all the frequencies up to 3.8 we do not get a very
significant change in T¢: soft phonons are not very important for super-
conductivity.
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Fig. 19. Ultrasonic attenuation versus temperature for two values of
the gap.
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