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ABSTRACT

We determine explicitly (including the phase) the ortonormalized
eigenstates of the pseudo-Coulomb problem that are basis for the irre-
ducible representation of its symmetry group 0(2,1). Furthermore, we
have an explicit realization of the algebra ©(2,1) in terms of diferen-
tial operators, operating on the Hilbert Space L2 (r%).

I. INTRODUCTION

It is well known that the Coulomb problem with a two dimensional

repulsive potential

(%pz <R Yy o= @)y, (1.1)

with v, any real number, could be transformed through the dilatation

13 T = VP to the pseudo-Coulomb problem, whose Schrodinger equa-

b

p o=

tion, in polar coordinates, is

)

1 2 1 32 _
@ (= 53 ° 5 5 302 -y = w . (1.2]

0| —

In ref. (1), it is shown, in abstract form, that the eigenstates of

definite angular momentum |v,m > of the problem (I.2) are basis of an

*Actual address: Escuela de Altos Estudios, Universidad de Sonora,
Hermosillo Sonora, México.
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irreducible representation of 0(2,1}; that is, the generators of 0(2,1)

denoted by T,, T_, T acting on the basis, give us

X, [v,m> v (v # 1/4) + m(m + 1) lv,m + 1> (T:.3)

and

Ty |v,m> = mlu,m> (I.4)

T, coincides with the angular momentum and m 1s an integer.

In this work, the basis of the representation, is explicitly de-
termined. For this purpose, in the next section we solve (I.2), wich
gives us the eigenfunctions of the pseudo-Coulomb problem in terms of
Whittaker functions. These eigenfunctions are normalized up to a phase,
which is determined using (1.3) and well known properties of the Whi-

ttaker functions.
I11. PSEUDO-COULOMB EIGENFUNCTTONS

In order to find the pseudo-Coulomb eigenstates, we must solve
the equation (I.2). Taking angular momentum eigenstates, we can write

the states in the following form
T8 = R (o) ™. (I1.1)
v, (e v, P .

If we consider the radial functions as
NS -
(p) = —— 3 1.2
K),m /E‘

it follows from (I.2) that fv m(p} satisfies the equation

1 2

d*f — -m
fom v, 7 ) .
dp2 e [ 1+ b * BT f\)’m 0 [1T+3)

This is Whittaker's equation in the variable 2ip, whose solution

(2)

is given by

£, n(®) = Mg, |y (21P) (11.4)
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with
H+1/2  -2z/2
Z e

M, A{2) = Byl = 3 %3 2+ 0, 2) (I1.5)

AU
The second linearly independent solution of (II. 3), denoted by M
and of the same form as (11.5) with the change u=-yu, diverges at the
origen and we don't considered it. The complet set of the pseudo-Coulomb

(3)

cigenstates is

vm> = B m‘%(@ em (11.6)
with v any real, m integer and Bv,m is the normalization constant, once
we normalize the states through the condition

<w',m' fu,ms = gy - ') &t - (I1.7)

The measure is given by %—d pdb. The choice of this measure fo-
1lows from the hermiticity conditions for the pseudo-Coulomb Hamiltonian
and the group generators. Putting the eigenfunctions (I11.6) into the
normalization conditions (I1.7), gives us

* % 3 3 3 —m!'
Bv' m,BU - [<[ M-iu',]m'|(210)M-iv,|mj(210) el(m m')e
2

«wv',m'|v,m > = dpdo ,
50 oo Voo
(II.8)
which reduces immediatly to
1 ' = * El_e - .
<«v'.m'[v,m> = 7 Bv',m‘Bv,m @ g fm p Mfiv,’Jm’(21p)M_iv’|ml(21p)
o (I1.9)

by performing the € integral. If we use the following integral represen-
tation of the Whittaker fUHCtIOHS(Z)

e T i

My, Iml(ZIDJ_ T (-iv + |m| + 1/27__ JZJmI(ZXVﬁ)dX ;

o) (I1.70)
the equation (I11.9) takes the form

i(u-v')+2 2 =7 (o )A2
w'm'lvm> = § B* B 2 (@mDh: " e
' vmv,m

GO T o
rndy y21v oe /2( "
‘o

(¢]

P(ml + 7= i) (Im| + 4+ iv)

-2iv_ix %2 (° -
: d .
X e L zlm’(nyp) J2|ml(2x/5)do (1.11)
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(4)

Taking into account
- me
J:leml{zy./a lemt(za./ﬁ) dp = vy §(x-y) (11.12)

the integral simplifies with the use of Dirac's delta, giving

i(y-v')+1 2 mm(uwv')/2
s o sy = ik 8 B 2OV emph° e d dy
» ’ mm' Oy, mov,m 1 A 1 i y
I(jm| +5 - iv) T(|m| + 5+ iv') }

gl (11.13)

The last integral is evaluated with the change t = In Yy, obtaining

00

dy yZi[\J-\J') = g &§(v-v') . (11.14)
s ¥

From (I1.7), (11.13) and (T1.14) we find that the normalization

constant is

1 1
oL som Yr(nl +Z- Tl + 2 e iv) /2
“’“‘ nvZ (2[m])!

(I11.15)

where §(v,m) is a phase.
111. DETERMINATION OF THE PHASE

Taking into account the recursion relations of the Whittaker func-
tions, we immediatly obtain the following formulas for the radial part of

the wave function (IT.1):

Difv,lml} R, |n| Ci(v,1m}) R“,lmliJ m# 0
D,,Im) R, 5 = C, 0 R, 4 (I11.1)
where
1
|m| (|m| + =)
P, vilmfy = = v-——p+—2— + (|m| f_%) E%' (111.2)
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(Im| + %) ¥ g

5 )

4(Im[ + ) ([m| + 1)

c, (v,Im])

C. (wm)) = 4i |n| (n] - . (111.3)

From reference (1) it is deduced that the 0(2,1) generators, in
polar coordinates, take the form

+ip 19,193,198, 22 111.4
Ti e {H+086212038+28p+18p88} (I11.4)
Ty &= =1 (111,55
§ )

where H is the pseudo-Coulomb Hamiltonian and T, coincides with the an-
gular momentum operator. Applying T, to the pseudo-Coulomb eigenstates and
making use of (I.2) we obtain B

- i(m + Do
T: [v,m> = B\;,m (Ti Rv,im{) e - ; (I11.6)
where
m(m + =
= 2 1, d
Ti (vom) = - |y - 5  nty) = (T31.79

The difference between this operator and U+(\),|m|) rest in the fact
that this last is defined for positive values of m. We note that

D, (v,|m|) m> 0
T,v,m) =
P, (v,|m]) m<o0 (111..8)
thus i(m+1)0
D:(\),lm|) RV’lmf Gt ML m2>0
T, |v,m = Bv,m

D _(v,|m|) R, | fme oo . (L9
+

, | m|

Utilizing (II1.1) and after a small computation we obtain
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{M— C, (v, |ul)

. >
+ | >
Bv’|u111 . ]U=m]v, mt 1 m =0
T, |v,m> = (111.10)
[ EEL;LEL—— c (U,|u[)] [v, m1> m<0

B 2%
U"h{t” * L=m

If we compare this equation and (I.3), we find a unique recursion

formula for the coefiecients Bv i given by

v+ (Il +
) .

- B A O
vl R R I e

For this equation and (II.15) we have the relation between the --

phases
§v,  Im[ +1) = -3 +s(v, x[m) , (111.12)

and under the condition that the phase for zero angular momentum is zero,

we have

§(v,m) = 12‘“ . (1T1.13)

IV. CONCLUSION

We have shown that the eigenstates for the pseudo-Coulomb problem,
given explicitly by

% 1 . s q . &
[v,m > = e?(v-im)/z /T(|m| 2 )T ([m| + 2 iv) M—iv,[m

w2 (2|m|) Vo

I(le] im
e

(Iv.1)

formabasis for an irreductible representation of the Lie algebra o(2,1)
of the symetry group 0(2,1) of the problem. Furthermore, we have given
an explicit realization of the algebra o(2,1) in terms of formal diiferen-

tial operators, operating on the Hilbert Space 1L>(R%).
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