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RESUMEN

Recientemente se ha propuesto utilizar la difraccidn de los rayos
X emitidos por una muestra cristalina, bombardeada por un haz de elec-
trones, para determinar su orientacidn cristalogradfica y su parametro
de la red. En este trabajo se correlaciona la precisién en la determi-
nacidén del patrén de difraccidn con la precisidén obtenible en la orien-
tacidn y el par@metro de la red. Se muestra que el nimero de cifras
significativas en el paradmetro de la red es menor que el de las coorde-
nadas de los puntos de las lineas en el patrdén de difraccidn.

ABSTRACT

Recently, the use of the diffracted X-rays emmited by a crista-
line sample, being bombarded with a beam of electrons, has been pro-
posed for determining cristalografic orientation and the lattice para-
meter. In this paper the precision in the determination of the diffrac-
tion patern is corrilated to the obtainable precision of the orienta-
tion and the lattice parameter. It is shown that the number of signi-
ficant digits of the lattice paramter is less than those of the coordi-
nate points of the diffraction patern.

INTRODUCT ION

The technique of the diffraction of divergent X rays, known as
the Kossel method in honor of its discoverer, offers the possibility
of obtaining quantitative crystalografic information of a sample in a
scanning electron microscope (SEM), taking advantage of the narrow beam
of electrons that bombard the sample, which excit its atoms in a very

y (1)

rays, that are diffracted on their way out by the crystalographic lattice.

small region (~ 1 pm. The excited atoms emit characteristic X
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The way in which the radiation is diffracted, forms the so called Kossel
cones, which are detected by means of a photographic film, placed a few
centimeters from the sample. The intersection of the general diffracted
cones with the film forms the Kossel Pattern, which contains the infor-
mation of the crystalographic orientation and allows the determination
of the interplanar spacing, if the constituent element of the sample

is known, that is to say, that the wave length X of the emmited X rays

(2)

With today's sufficiently elaborated computational methods, it is

is known

possible to obtain a rapid and unique interpretation of the Kossel
Pattern's, by the accurate measurement of the relative coordinates of
different points of the conics on the pattern, without the need of
knowing the location of the center of the pattern nor the distance

(3)

We need to evaluate the precision, with which the method works

between the emission point and the film, as was required previously

experimentally. Therefore and evaluation is required of the uncertainty
in the orientation angles and the interplanar spacing, according with
the precision with which are measured the coordinates of the different
points of the conics, the measured percentage of the total perimeter of
the conic line and the number of data distributed over the said percen-
tage.

BRIEF ANALISIS OF THE KOSSEL TECHNIQUE

The interpretation of the Kossel patterns consists essentially
of the simultaneous solution of the general equation of Kossel conics,

generated by crystalographic planes arbitrarily orientated with respect

to the film and at a distance t (fig. 1)(4).

(o - cos®y )x* + (a - coszyz)y2 + (o - coszya)t2 =
-2 (cosy, cosy,Xy *+ cosy, Cosy,Xt + cosy, cosy,yt) = 0 (2.1

(a = sin?p = A2/4d? Bragg's Law) and the second degree
equation corresponding to a line of the pattern:

S(x,y) = Cix® + Coy® + 2Csxy + 2Cax + 2Csy + G = 0 (2.2)
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Fig. 1. Attainment of a cone of X rays reflected with a semi-angle
m/2 - 6 where 8 is the Bragg Angle. (%51 ¥4+ 2,) 1is the coordinate
system related to the cone with the plane (xo, yo) parallel to the
crystal's planes (xl, ¥« zl) is the coordinate system with center

at the APEX of the cone and having the plane (xl, yl) parallel to the
plane of the photographic film. The system (x, y, t) is placed on
the film and on it, the coefficients Cj are given. Cos Y r COs vy,
and cos 73 are the directional cosines.

which gives(s)
ik -1
c052Y1 = K C3ChC5 P cosy, '= CosY, CSCH
ccszy3 = 1 - cos’v, -cos?y, , = -KCh{cosY](stw(a)—1 (2.5

a = KCst? - cos’vs

¢ - 2C4Cs (C3Cs - CuCs) (2.37)
& = D300, ~ W) IE, + B
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where (2.3') is the sufficient and necessary condition for the existance
and uniqueness of the solution.

From the system of equations (Z.3), the uncertainities in the para-
meters of the lattice may be deduced to depend on the precission with
which the coefficients of (2.2) are determined. It has been reported in
the literature{é), what seems to us is the theoretical evaluation of the
expected precision of the Kossel method, which is far from that experi-
mentally obtainable.

So as to evaluate the experimental precision in a general way, a
program was prepared so as to give the coordinates of several points of

a theoretical curve:
S(x',yY) = axtt +aytt taxly' +ax! vagy' +1=0 (2.4

and after, process this data so that it would simulate what is experi-
mentally expected. This was acomplished by introducing a parameter P
that corresponds to the number of significant digits that may be read
with certainty on a traveling optical microscope and finally generat-
ing a random digit for the P+1 decimal position. That is to say, the
number of significant digits was cut down to P by means of the INTEGER
function and with the aid of the RANDOM function, the next digit was
generated:

= 107 wr 10" + 0.5

accordingly

1

g p -
v =10 w10t 0.5) + 107D INr(o-RND + 1)-5)  (2.5)

The data generated in this manner was fed to the computer so that
it would adjust the coefficients of the second degree general equation
by means of the least squares method:

S(x',y') = Elx:2 + E?_y]2 +EXY *BX ®Ey ®1=0 (2.6)
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In the same way, 10 groups of data for equation (2.4) were generated,
having as fixed parameters, the value of P and the mumber n of data to
be used. This is equivalent to having 10 readings of the coordinates
of each point of the line. The values obtained for each coefficient of
(2.6) were processed so as to obtain the standard deviation as a func-
tion of the number of data and the parameter P:

o, s .5 /0 .
s 121 = Sal 121 /@121 Bij - B 0
where
10
I - 351 . (2.8)

In the figure 2, it may be seen, that the standard deviation

decreases very slowly as the number n on data increases. Simultaneously

AE
102 -
. p=3
10" - , 4
[ - IC . — N
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Fig. 2. Dependance of the standard deviation AE of the coefficients
E; of the eguation (2.6) as a function of the number of significant
digits (P) with which the data is read and of the number n of data.
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it was observed, that the function (2.6) evaluated for each of the points
of the line (x;, yi), differs slightly from zero by a value ASi, in

such a manner that the function

b Slxtad) :
A_S _ \/ 1 1 Z 1 I (2.9)
n(n-1) =1 (8S(x] , y{)/ay]

is a function from which its minimum value may be taken as indicative

of the accuracy with which the coefficients have been adjusted (fig. 3).
This permits to avoid the evaluation for the experimental case, of ten
different groups of data; because the calculation of AS gives information

about the value of AE.

10°° - ! — ] 1, 48
10 10 10

Fig. 3. Relation between the function AS and the value of standard
deviations of the coefficients AE.

Another of the points of interest, in relation with precision, is
the dependence of the percentage of the perimeter of the line in which

the data is homogeneously distributed, with the precision obtainable in
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the coefficients. Figure 4 shows the typical graph of the results
obtained in this way; and from it, may be concluded the convinience of

measuring at least 40% of the total perimeter of the curve.

10-s 1 |  C(%)

I | |

1
0 20 40 60 80 100

Fig. 4. Variations in the standard deviation as a function of the
perimeter of the curve on which the data is distributed homogeneously

(n = 40 data).

PROPAGATION OF ERRORS

Experimentally, it is not easy to determine the centre of the
pattern, upon which the emission source is projected(g). This compels
having the coordinates of the different points of the curve, referred
to an arbitrary system, which generally is that of the travelling optical

microscope, with which the measurements are being made.
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Therefore, as a final step, the relationship between the coeffi-
cients Ci of equation (2.2) refered to the system (xoy) and the coe-
fficients E; of (2.6) related to the system (x'o' y') should be found
and with this, the propagation of error AEj and its influence on the
coefficients Ci (Fig. 5) will be determined.

/
/

/ =
s Tan ]RZ

/

Fig. 5. Squematic diagram of the relation between the coordinate sys-
tems (x' o' y') and (x o y) on which the coefficients E; and Cj are
determined respectively.

The center of the pattern is obtained by the interaction of the
focal axis of two or more Kossel conics using the following procedure:

a) determination of the center of symmetry of each conic

5 " .2
% = (BE, < BE] 7 BE, ~E)

1 oy 2
Yo (E,E, - E,E,) / (EE, - EJ) (3.1)
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and of the angle that the mayor axis of the conic has with respect to
the coordinate axis

tan ¢, =R, = (E,-E, # V' (E,-E,)*® + 4B3)/2E, (3-2)

(the correct sign is determined according to the canonical equation of
the curve),

b) the equations of the focal axis, as a function of the center of
symmetry and of the correct angle, come as

y ! = a£x1 + b, (3.3)

where

I T 1
by = Yoo = Ri%oe

c) the center of the pattern is then at the intersection of the

focal axis
a,-b ab, - a,b
yh = =8, 2L _Lh (5.4)
m ok m /]

£ #m

The coordinate system is transfered to the point so obtained and
the equation of the line will be given as in (2.2), with its coeffi-
cientes Ci related to the coefficients Ei by the equations

¢, = E ,

C, = E, ,

e, = B, ,

C, = E, +E;x +Ey'

C, = E, +E,y' +E;x

C, = S(x!,yh) (3.5)
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Applying directly the propagation of error(g)

to equations 3.1,

2, 3, 4, 5 and 2.3, the uncertainties in the characteristics parameters

of the crystal lattice are obtained: the directional cosines, the dis-

tance t and the interplanar spacing (for a given A). The results obtained

for an experimental case which had three curves is shwon in table 1.

OONIC # 1 CONIC # 2 CONIC # 3
Ei AEi Ei L\Ei Ei L‘.Ei
2.75577E-3 3.9B-7 2.47768E-3 5.4E-7 2.47853E-3 3.7E-7
3.40427E-3 4.8E-7 3.29530E-3 7.1E-7 4.21424E-3 6.3E-7
8.5848E- 4 1.2E-7 =7.9317E- 4 7.7E-7 5.58934E-4 8.3E-8
-4.64376E-2 8.5E-6 -4,5151E- .2 1.3E-5 5.5006E- 2 1 AB2E
3.01622E-2 3.7E-6 =2.62975E-2 7.9E-6 -1.7512E- 2 1« 8Ex5
1 1 1 1

Xy Axo Ys Ayo Ri ARi bi Ab 5 k Ak
LA 21.283 | 2.8E-2 | -14.227 1.8E-2 | -.69125 | 2.3E-4 .48473 | 6.1E-4 | 230.03 | 8.6E-1
f2 22.513 | 2.1E-2 13.399 1.2E-2 .60960 | 6.7E-4 | -.32460 | 1.9E-4 | 244.42 | 7.2E-1
# 3 [-23.843 | 1.5E-2 7.3179 | 3.2E-3 | -.29416 | 6.8E-4 .30419 | 2.5E-4 | 210.92 | 4.7E-1

The crystal lattice parameter d is

d = (1.6358 ¢ 2.3E-3) A
The pattern center was found in (0.59, 0.11) with a standard deviation of Ar = 0.1 mm.
The distance between the sample and the photographic film was t = 25.21 + 0.11 mm.

Table 1. Experimental results for three Kossel lines showing the error propagation for
the several parameters.

CONCLUSIONS

From what was said before, it may be deduced, that the precision

with which the parameters of the crystal lattice may be obtained, depends
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fundamentally on the uncertainty with which the coordinates of the di-
fferent points of the line can be determined. This is because, the
error propagates up to these parameters through the different equations.
In the same manner, it is deduced, that the precision does not increase
notably for perimeters greater than 40%, nor for a number of data
greater than 30.

The error introduced by the computer by rounding off digits is
neglectable in comparison with the experimental uncertainty (for the
BS7500 it is 107 '%).

The precision in reading the coordinates of points on the lines
is limited fundamentally by the measuring system of the optical micros-
cope and by the grain size of the film, because this determines the
minimum width that a line has on a photograph. For example, a film
with a resolution of 200 lines per milimeter, would have curves with a
5 um width and all the coordinates would have a minimm error of
+ 2.5 um.

Besides the grain size, the folding or curvature that the film
presents, diminishes the precision of the experiment, therefore the
possibility of using glass substrates for the emulsion should be studied.
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