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ABSTRACf

With the use of the Green function techniques at finite temperature
the electron spin resonance spectra is calculated in a system that pre-
sents a dynamic Jahn-Teller effect. The system is a paramagnetic ion
with total spin 1 situated in the site of a vibrating octahedron field.
The state of the ion transforms as the T1g of On and is coupled to the
£g and t2g vibrational modes. The problern is used as an example when a
simple linearisation cannot be used to decouple the Green function. The
geometric approximation, however, can be used giving appropriate results
for the line shape.

INTROruCfIQ'I

The purpose of this work is to appIy the Green function rnethod(l)
to the dynamic Jahn-Teller effect. Sornecare rnust be exerted in the
approximation of the Green functions in this particular physical pro-
blem.

We shall see how simple linearisation cannot be used in the par-
ticular problem worked here, however under the sarr:ecirctnnStances the
geornetric decoupling can be. The physical probIem is an ion with spin
1 (transforms as T1g of O¡) in the site of an octahedron which is vibra-
ting (vibrate as £g @ T2g normal modes on Oh)' In Section 11 the pro-
bIero is worked out in detail. In Section I we surnmarize the general
Jarffi-Tellerproblem. In the following section we calculate the line
shape in terms oí the advanced and retarded Green functions at finite
temperature and finally we present RPA caIculations to decouple the
equation oí metion in Section IV.
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1. 1HE JAHN- TELLER EFFECf

Jahn and Teller(2) demostrated chat for non-linear polyatomie mole-
cules there W3S at least ane deformation oí the nuclear positions that
conduced to a state with lower energy. As it was pointed OUT by Van
Vleck(3) , systems where it is speeially important the Jahn-Teller theo-
rero are in ionic crystals.

In the case oí the strong manifestation thc system can suffer a
permanent distortion given to the so ealled statie Jahn-Teller effeet.
The dynarnic effeet corres when the relation between the vibrational zero-
point of the nuclei and the electronic states are comparable in energy.
The static Jahn-Teller can be considered as the strong limit case oí
che dynamie one (4).

Ham(S) pointed out the faet chat che symmetry of the vibronie state
must be conserved; the product oí the IR associated with the electonic
and vibrational state should transfonn as a IR of che symmetry group of
che moleeule. Physieally this means chat che eleetronie charge distri-
bution should change properly, to preserve the initial total symmetry
of che system, aeeording to the motion of the nuelei. Also Ham(6) ela-
rified what ane should expect as a Jahn-Teller rnanifestation, defining
the quenching factoTs. These factors are the quanti ties by the anes
are affected the observables (angular momentum, spin-orbit interaction ...)
and they depend oí the way the corresponding operators transfonn tmder
che relevant point group, and che kind of problem worked out.

In the theoretical sense, the numerical prediction oí the Jahn-
Teller effect in different systems has shown a very interesting and
difficult problem to sol ve. The main attempts use the perturbation
approach considering a model hamiltonian that should have the relevant
physieal terms andgiving also a reasonable algebraie handling. Several
models(7) have been used for a number of limited systems with suitable
physical approximations.

Another type of approaches rnake use oí group theoretical tecJmiques,
borrowed from nuclear physics, to study the dynandc Jahn-Teller effect
for che T'g ~ (Eg + T'g) eoupling in sornespeeial eases(8).

Through the years it was of interest to deal with the effects of
crystal fields with cubic symmetry considering not only localized vibra~
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tional modes. A calculation taking into account the coupling oí the £

and 12 modes in the continuum was made by Stevcns(9). Stevens's propo-g
sition was the introduction of the Grecn funetían mcthods to calculate
the crystal spoctra. Hamot al. (10) showod the calculation oí Fe2+ in

~fgO considering spin-orbit interaction and a diserete and continuum spec-
tra oí phonons interacting with the ion.

I\'e have pursued thc Stcvens 15 suggcstion further using the doublc
tine Grecn function theory to calculate the spectral intensity. In the
following section "c prcscnt thc physical problem, although it is simple
enough, it centains thc ~~in futures to calculate the electron spin re-
sonance spectrum. Besidcs, it has special characteristics ~nich make
i t ver}' interesting to apply thc Grecn Metían tcchnique.

1J. TIIE EPR PROBLFN

Let us consider a paramagnetic ion with spin 1 ~nich is situated
at the site of an octahedron in a lattice which is vibrating(9). Our
hJmiltonian will consist of an uncoupled part Ho formed by the interac-
tion of the spin with the static lattice plus the phonons of the lattice,
émJ thc interaction bctwcen the ion and the crystal fieId H. t' that is

m

11 H + Hinto

11 -hwoSz + 1:h"'k ak + ako k

lIint = 1: (ok +
ak) S"Tk"S

~nerc we suppose that the magnetie ficld oí the static lattiee is direc-
ted along the Z axis, w being the magnetie resonance frcquency, the ak+ o
and 0k are the annihilation and creation operators associated to the
k'th roode\Yith frequeney~. s-r k-S gives the proper spin interaction
with the crystal ficld bcing invariant under the symmetry operations of
thc eubie group. The ion is in a three-fold degenerate state that trans-
fonns according to the T IR of the cubie group. The interaction willIg
contain on)y the E and 12 roodes if we eonsider the rootion oí nearestg g
neighbours. We can write for S-Tk-S
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The sets {Ak, Ck + eI! and (Bk + Ék, i(Bk-É¡¿, i(ck-ek)) ,transfonns
as the €: and 12 irreducible representations of Oh respectively.g g

This kind of EPR problem presents a dynamic Jahn-Teller effect. In
the following section we show how to calculate the spectral intensity.

Ill. SPECTRAL INTENSITY

It is very well known that if we are interested in processes that
imply an absorption in the transition associated with the operator A,
the spectral intensity(1,9) can be written as the sum of the transition
probability times a lorentzian line of infinitesimal width far each
transition.

l (w) 1
Zo

.tim ¡; (e-SEn _ e -flEm)I<mIAln>
n,m

2£
(E+E -E )'-£'n m

(2)

Zo is the
S = 1/1<1'.

partitían function associated to the canonical ensamble and
I(E) can be rewritten as

i tim ¡; (e-SEn _ e-BEm) I<mIAln>I' ( 12
0

E+E -E +len m
1 )EtE -E -1£n m

(3)

which can be written in terms oí the dauble time Green functioTIS at
finite temperature defined.as(l)

«A;B» 1 ¡; (e-SEnZnzo
-BEm)- e <nIAlm><mIBln>

EtE -En m

If we are interested in the electron spin transition, then

l(w) -2rri lim
£->Q

«5 ;5» - - «5 ;5» . }
X X W+lE;. X X W-IE

(4)

that rreans we are taking the difference between the Fourier transfonns
of the retarded and advanced Green func~ions.
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To obtain the line shape we only need to evaluate the Green fmc-
tions «Sx;Sx»w under a suitable approximation. We show in the nex!
section sorne RPA calculations.

IV. DEaJUPLING OF 1llE GREEN FUNCfICNS

The Fourier transfonn oí the Green function (causal, retarded ar
advanced) obeys the equation of rnotion(1)

E «A. ;B. »E
1 1 «lA. ,Hl; B. »Et..:::1 - 1 (5)

A decoupling that conserves the first two energy momcnts which
leads to RPA is the so called geometric approximation (GA)(11, 12). Defi-
ning the matrix notation

G - {«A. ;B."El
1 J

M - {<!J\.. ;B~»
-1

N - {< [G\ ,f!], B~>l

(6a)

(6b)

(6c)

for the ane partiele Green function, zera and first arder mornents res-
pectively, the GA looks like

(7)

According to the eq. (4) the set of operators "hich we are inte-
rested in, are the three spin components Sx' Sy and Sz of the central
ion. The Creen function matrix has dimension 3 x 3.

Convent¡anal linearisation(13) consists in finding a matrix K such
that

¡; K .. A.
j 1J J

which gives, far the approxirnate Creen function

(8)
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G M {El Kfl (9)

One can derive from the CA the sarue result by two-term expansion of
eq. (7) and assuming that M-' exists(12) .

In the present case the matrix ~Ihas the form

o <5z> -<Sy>
i -<Sz> o (10)

<Sy> -<Sx> O

If we are consistent with the RPA, the thermal averages must be
c~Jculated throughsecond arder in the coupling coefficients.

1t 15 found that the elements <Sx> and <Sy> are zera at this dcgrcc
of accuracy and the matTix ~l has no inverse implying that the lineari-
sation involved in eq. (8) ffild(9) is not feasible(14).

Fortunately the derivation of eq. (7) by inner-projcction techni-
qucs(12) does not de¡~nd of the non-singularity of the zero matrix mo-
mento Provided the first n~trix moment N is non-singular, the decoupling
makes sensc, as we shall illl~trate.

1t can be fotmd, making a twa-term expansion in eq. (7), what apprcx-
imation is implied [OY the higher arder Creen function (this i5 valid

-1even if M does no! exist):

E G E«A;B»E

and comparing with eq. (5) we get

wnieh is not proportional te G if M-Idees not existo
To ealeulate the line shape of the preceding seetion, we only need

the (1,1) element of the Creen funetion matrix, which in terms of Mij
and Nij is

(11)
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.nere R = {R.. } = w M.N
1J

After a lengthy process to evaluate the cornmutators and relevant
integrals, the nceded matrix elements oí N are

Nll = N22

3 E 3/R. l' «o. +0.+) (S S +S S »-1( --K - K + Z Z +

Nll (12)

where the nceded expectation values are surnmarized in the appendix. Frem
eq. (11) the GTeen function takes the forro

( 13)

Substituting in the line shape formula eq. (4)

l (w) 2.i

= 2.' N" 6(w'.y')

, ,
.neTe y' • (N".N1,) I<S,>' and the Tesonance energy is found at

w = ! Y

(14)

(15)

The results in e<;s. (2.15) aTe what we expect as the physical mani-
festation of our problem. Ham(15) pointed out that no splitting can be
obtained from an interaction such as the one considered in eq. (1). The
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effect is just to quench and shift the resultant energy spectra exactly

as we fOlmd out.

V. DISQJSSIQII

The use oí Green function theory gives in a relative simple way
the energy spectra for the dynamic Jahn-Teller effect in an electron

spin resonance experimento
No splitting was obtained in agreement with Ham's discussión. It

is important though to evaluate the propagator at a higher level of
approximationJ i.e., by including more operators in the projection basis.
In the process of doing so one should take account of the fuIl symretry

oí the problem. Symmetry violations may accur in a lineaTisatíon
scherne(9). They do not occur if one used the fuIl hamil tonian super-

operator in generating matrices like (6e). The choice oí operators in
the projection basis can be motivated by physical considerations. e.g.,
dominating modes. rather than by mament generatíon. The general form
of the Green funetían matrix is given by:

+«A;A »E

.hich are matrices of the type given by eqs. (6) and (7) but with a
larger set oí operatoTs involved. This technique has been successful
far systematising atomic and molecular Green's fuction calculations(16) .

APPENDlX

The integral s involved in the calculation oí the N matrix are cal-
culated up to first order in perturbation theory.

The !hermal averages, using the eigenfuctions oí Ho as basis, can
be written as

<1\> 2n~zo f e-BH TrlRAI dz

~ncrc R, the resolvent, can be expanded as

R =
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the non-interacting ~ltonian and potential interac-
Zo is the partitían function azzociated to the canoni-

where H ,H. areo lnt
tion respectively,
cal ensamble.

AII the needed expectation

giving the following results:

values were ealculated up to first arder

2
h'k

+«~ +~ )(S S +S S »
-K-K +z z+
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