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ABSTRACT

With the use of the Green function techniques at finite temperature
the electron spin resonance spectra is calculated in a system that pre-
sents a dynamic Jahn-Teller effect . The system is a paramagnetic ion
with total spin 1 situated in the site of a vibrating octahedron field.
The state of the ion transforms as the T1g of On and is coupled to the
€g and Tzg vibrational modes. The problem is used as an example when a
simple linearisation cannot be used to decouple the Green function. The

geometric approximation, however, can be used giving appropriate results
for the line shape.

INTRODUCTION

The purpose of this work is to apply the Green function method“)
to the dynamic Jahn-Teller effect. Some care must be exerted in the
approximation of the Green functions in this particular physical pro-
blem.

We shall see how simple linearisation cannot be used in the par-
ticular problem worked here, however under the same circumstances the
geometric decoupling can be. The physical problem is an ion with spin
1 (transforms as T:g of Oh) in the site of an octahedron which is vibra-
ting (vibrate as gg ] T2g normal modes on Oh). In Section II the pro-
blem is worked out in detail. In Section I we summarize the general
Jahn-Teller problem. In the following section we calculate the line
shape in terms of the advanced and retarded Green functions at finite
temperature and finally we present RPA calculations to decouple the
equation of motion in Section IV.
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I. THE JAHN-TELLER EFFECT

Jahn and Teller(z) demostrated that for non-linear polyatomic mole-
cules there was at least one deformation of the nuclear positions that
conduced to a state with lower energy. As it was pointed our by Van
Vleck(S), systems where it is specially important the Jahn-Teller theo-
rem are in ionic crystals.

In the case of the strong manifestation the system can suffer a
permanent distortion given to the so called static Jahn-Teller effect.
The dynamic effect comes when the relation between the vibrational zero-
point of the nuclei and the electronic states are comparable in energy.
The static Jahn-Teller can be considered as the strong limit case of

(4)
Ham(s) pointed out the fact that the symmetry of the vibronic state

the dynamic one

must be conserved; the product of the IR associated with the electonic
and vibrational state should transform as a IR of the symmetry group of
the molecule. Physically this means that the electronic charge distri-
bution should change properly, to preserve the initial total symmetry

of the system, according to the motion of the nuclei. Also Ham(6) cla-
rified what one should expect as a Jahn-Teller manifestation, defining
the quenching factors. These factors are the quantities by the ones

are affected the observables (angular momentum, spin-orbit interaction...)
and they depend of the way the corresponding operators transform under
the relevant point group, and the kind of problem worked out.

In the theoretical sense, the numerical prediction of the Jahn-
Teller effect in different systems has shown a very interesting and
difficult problem to solve. The main attempts use the perturbation
approach considering a model hamiltonian that should have the relevant
physical terms andgiving also a reasonable algebraic handling. Several
models(7 have been used for a number of limited systems with suitable
physical approximations.

Another type of approaches make use of group theoretical techniques,
borrowed from nuclear physics, to study the dynamic Jahn-Teller effect
for the T, ® (e  + T, ) coupling in some special cases

Through the years it was of interest to deal with the effects of
crystal fields with cubic symmetry considering not only localized vibra-
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tional modes. A calculation taking into account the coupling of the ¢
and T2y modes in the continuum was made by Stevens 9). Stevens's propo-
sition was the introduction of the Green function methods to calculate
the crystal spectra. Ham et al.(]o) showed the calculation of Fe’' in
MgO considering spin-orbit interaction and a discrete and continuum spec-
tra of phonons interacting with the ion.

We have pursued the Stevens's suggestion further using the double
time Green function theory to calculate the spectral intensity. In the
following section we present the physical problem, although it is simple
enough, it contains the main futures to calculate the electron spin re-
sonance spectrum. Besides, it has special characteristics which make
it very interesting to apply the Green function technique.

I1. THE EPR PROBLEM

Let us consider a paramagnetic ion with spin 1 which is situated
at the site of an octahedron in a lattice which is vibrating(g). Our
hamiltonian will consist of an uncoupled part H  formed by the interac-
tion of the spin with the static lattice plus the phonons of the lattice,
and the interaction between the ion and the crystal field Hint’ that is

i = H0 * Hint

HO = -hmOSz g ihu}k o + Oik

H o = I (0 op) S*Ty'S
where we suppose that the magnetic field of the static lattice is direc-
ted along the Z axis, W being the magnetic resonance frequency, the ay
and ak are the annlhllatlon and creation operators associated to the -
k'th mode with frequency W S*Ty+S gives the proper spin interaction
with the crystal field being invariant under the symmetry operations of
the cubic group. The ion is in a three-fold degenerate state that trans-
forms according to the T, IR of the cubic group. The interaction will
contain only the € and ng modes if we consider the motion of nearest
neighbours. We can write for S+h S
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+ = =
i (aray) {A(352-2) + B (S,S,+5,8 ) + By(S-5+5,8 ) - (S{+CS%1 (1)

The sets {A,, C, + Ck} and (B + Bk, 1(Bk-§k), i(ck-(":k)} ,transforms
as the € and T, irreducible representations of OhArespectively.

This kind of EPR problem presents a dynamic Jahn-Teller effect. In
the following section we show how to calculate the spectral intensity.

III. SPECTRAL INTENSITY

It is very well known that if we are interested in processes that

imply an absorption in the transition associated with the operator A,

(1,9)

the spectral intensity can be written as the sum of the transition

probability times a lorentzian line of infinitesimal width for each

transition.
. E ’ 2
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Zo is the partition function associated to the canonical ensamble and
8= 1/K. I(E) can be rewritten as

L oanz @ - e m | alanl? G
(o]

1 _ 1 )
"Em"‘lE E+En~Em—lg

(3)

which can be written in terms of the double time Green functions at

(1

finite temperature defined as

«AB>> = = 1 (¢ Bn . o FEm <n|A|m><m|B|n>

ZTTZO E+En—EH_l

If we are interested in the electron spin transition, then

I(w = -2mi ﬁig [ BB, o -8 858, . } 4

that means we are taking the difference between the Fourier transforms
of the retarded and advanced Green functions.
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To obtain the line shape we only need to evaluate the Green func-
tions «Sx;sx»w under a suitable approximation. We show in the next
section some RPA calculations.

IV. DECOUPLING OF THE GREEN FUNCTIONS

The Fourier transform of the Green function (causal, retarded or
advanced) obeys the equation of motion

E <<Aj;Bi>>p = <Bi,Bi]> + <<Eﬂ\i,H:|_; B.>>p (5)

A decoupling that conserves the first two energy moments which
leads to RPA is the so called geometric approximation (GA) (11’]2). Defi-
ning the matrix notation

G = {<<Ai;Bj>>E} (6a)
M = {< E\i ;B;| >} (6b)
N = {<[Eli,PH, BJ.—_]>} (6¢)

for the one particle Green function, zero and first order moments res-
pectively, the GA looks like

G= M [EMN]T'M (7

According to the eq. (4) the set of operators which we are inte-
rested in, are the three spin components Sx’ Sy and SZ of the central
ion. The Green function matrix has dimension 3 x 3.

(13)

Conventional linearisation consists in finding a matrix K such

that

[AH] = § K; i85 ®

which gives, for the approximate Green function
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G = M {EI - K}"' (9)

One can derive from the GA the same result by two-term expansion of

(12)

In the present case the matrix M has the form

-1
eq. (7) and assuming that M exists

0 <Sz>  -<Sy>
i -<Gy> 0 <Sx> (10)
<SY> -<Sx> 0

1f we are consistent with the RPA, the thermal averages must be
calculated through second order in the coupling coefficients.

It is found that the elements <Sy> and <Sy> are zero at this degree
of accuracy and the matrix M has no inverse implying that the lineari-

(14)

Fortunately the derivation of eq. (7) by inner-projection techni-

sation involved in eq. (8) and (9) is not feasible

ques{12) does not depend of the non-singularity of the zero matrix mo-
ment. Provided the first matrix moment N is non-singular, the decoupling
makes sense, as we shall illustrate.

It can be found, making a two-term expansion in eq. (7), what apprex-
imation is implied for the higher order Green function (this is valid
even if M~' does not exist):

EG = E<;B>, = MeN (BM-N} ' M
and comparing with eq. (5) we get
<<[A,H]; B>>E s N{F..l"/l-N}-1 M

which is not proportional to G if M 'does not exist.
To calculate the line shape of the preceding section, we only need

the (1,1) element of the Green function matrix, which in terms of Mij
and Nij 15

Mjs Rpp M
G = Mi2 Rpp Moy
<<Sx ;S>> TGN (1
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where R={R..} = wuM-N
1]

After a lengthy process to evaluate the commutators and relevant
integrals, the needed matrix elements of N are

Ni1 = Nzz = -fhe <S;> + I |5A§<(ak+a; )Si> + 5|Bk|2<(ak+u;) (8,5,%5,8,)>
3 16 O
3K UGS Eeast)
Niz = Nai = 3 Z 3|B[? <(oq%0q) (8,5,%S,5,)>

Nis = N2s =N3y; =Ng2 = 0
Nos = -2 | [B|?<(oproq) (5,5,%5,5,)> + 2|C| <(eyop) S3|  (12)

where the needed expectation values are summarized in the appendix. From
eq. (11) the Green function takes the form

) =_N.1.L]ﬂu_|_§_[_——§—z—§—-z—<s>2Nl
<<SxiSx>> w? M, , | 26NT *NT, <8, >“w-Ni, +Ni, (13)

Substituting in the line shape formula eq. (4)

_ 8 . 1 _ 1
I() = 2mi ﬁi? Ny, |(w+i€)2"YT @_ie)z_yzl
= 2q? N11 6(‘”2'Y2) (14)

where y2 = (Nfl-Nfz) [-:Szz‘2 and the resonance energy is found at
w = %y (15)
The results in egs. (2.15) are what we expect as the physical mani-

festation of our problem. Ham(1>) pointed out that no splitting can be
obtained from an interaction such as the one considered in eq. (1). The



effect is just to quench and shift the resultant energy spectra exactly

as we found out.
V. DISCUSSION

The use of Green function theory gives in a relative simple way
the energy spectra for the dynamic Jahn-Teller effect in an electron
spin resonance experiment.

No splitting was obtained in agreement with Ham's discussidon. It
is important though to evaluate the propagator at a higher level of
approximation, i.e., by including more operators in the projection basis.
In the process of doing so one should take account of the full symmetry
of the problem. Symmetry violations may occur in a linearisation ---
scheme(g). They do not occur if one used the full hamiltonian super-
operator in generating matrices like (6c). The choice of operators in
the projection basis can be motivated by physical considerations, e.g.,
dominating modes, rather than by moment generation. The general form
of the Green function matrix is given by:

<A = (Alh) (h|ET-HR) ™' (h|A)
which are matrices of the type given by egs. (6) and (7) but with a
larger set of operators involved. This technique has been successful
(16)

for systematising atomic and molecular Green's fuction calculations
APPENDIX

The integrals involved in the calculation of the N matrix are cal-
culated up to first order in perturbation theory.
The thermal averages, using the eigenfuctions of Hj as basis, can
be written as
1 =
<A = - f e B Tr|RA| dz

2mizo

where R, the resolvent, can be expanded as

R = (H-z) ' = (Ho—z)-l— (Ho-z}’l He o (Ho-z}_l ¥ nen
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where Ho, H. _ are the non-interacting hamiltonian and potential interac-

int
tion respectively, zy is the partition function azzociated to the canoni-
cal ensamble.

All the needed expectation values were calculated up to first order

giving the following results:

Cyrosy = o (M0 &0 (11efMo 4 D)

<(oq o) (5,5,+5,5,)> = 2 F(huo) (1+e0)
<o) (5> = 4 F (Zhuy) S0

E(b) = be—ﬁ:ka Ea(l—e”ﬁb)(z <nk>0+1)—“hmk(1+e'8b)j / (1+¢BPto, ¢ ~Blug)

<nk> = L——— = <u; ck>
% eP %1 =

REFERENCES

1. J. Linderberg and Y. Ohrn, Propagators in Quantum Chemistry, Academic
Press, London, 1973; D.N. Zuvareb, Usp. Fiz. Nauk 71 (1960) 71; --
English Transl.: Soviet-Phys. -Usp 3 (1960) 320;

2. H.A. Jahn and E. Teller, Proc. Roy. Soc. Al61 (1937) 220 ; H.A. Jahn,
Proc. Roy. Soc. A164 (1938) 117.

3. J.H. Van Vleck, Phys. Rev. 52 (1937) 246; J. Chem. Phys. 7 (1939) 61 ;
J. Chem. Phys. 7 (1932) 72. a

L. Classical review articles: M.D. Sturge, in Solid State Physics, ed.
By F. Seitz, D. Turnbull, and H. Ehrenreich (Academic Press, N.Y.) 20,
(1967) 91; F.S. Ham, in Electron Paramagnetic Resonance, ed. by S.
Geschwind Plenum Press, N.Y., (1972) p. 1; R. Englman, The Jahn-Te-
ller Effect in Molecules and Crystals, Wileym N.Y.,(1972).

There is a nice qualitative discussion of the Jahn-Teller effect by
T.L. Estle in Optical Properties of lons in Solids, ed. by B. Di
Bartolo, Plenum Press, N.Y.(1974) p. L19.

5. F.S. Ham, Int. J. Quatum Chem., 5 (1971) 191.

6. F.S. Ham, Phys. Rev. A138 (1965) 1721; F.S. Ham, Phys. Rev. 166
(1968) 307. __—

7. A. Abragaman and M.H.L. Pryce, Proc. Phys. Soc. A63 (1950) L09 ;

W. Moffitt and A.D. Liehr, Phys. Rev. 106 (1957)7 1195 ;

W. Moffitt and W. Thorson, Phys. Rev. 108 (1957) 1251 ;

H.C. Longuet-Higgins, U. Opik, M.H.L. Pryce, ana R.A. Sack, Proc.
Roy. Soc. A244 (1958).




32

8.

FwWw N = O {¥e]

o\

M.C.M. 0'Brien, J. Phys. Ch (1971) 2524; R. Rowestain and Y. Merle
d'Aubigué, Phys. Rev. 55717971) 4611; B.R. Judd, Can. J. Phys. 52
(1974) 999. In these works the authors take as basis a five dimen-
sional harmonic oscillator function classified by the chain of groups
U(5) = 0(5) = 0(3) > 0(2) for restricted cases. The recent general
solution of this problem by E. Chacdn, M. Moshinsky and R.T. Sharp,
J. Math. Phys. 17 (1976) 668 , shall permit new applications to dif-
ferent Jahn-Teller problems.

. K.W.H. Stevens and F. Persico, Nuovo Cimento, B41 (1966) 37 ; H.A.

Ham, Van Eekelen and K.W.H. Stevens, Proc. Phys. Soc., 90 (1967) 199.
F.S. Ham, W.M. Schwarz and M.C.M. 0'Brien, Phys. Rev. 185 (1969) 548.
J. Linderberg and M. Ratner, Chem. Phys. Letters, 6 (1970) 37.

0. Goscinski and B. Lukman, Chem. Phys. Letters 7 (1970) 573.

L.M. Roth, Phys. Rev. Letters 20 (1967) 1431.

We cannot reach the eq. (9) from the GA (eq. (7)) because R neither
has inverse if we put N = kM.

. See Ham's discussion in reference 5.
. P. Jérgensen, Molecular and Atomic Applications of Time-Dependent

Hartree-Fock Theory, Annual Rev. Phys. Chem. 26 (1975) 359.





