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ABSTRACf

The linear potential Schrodinger Hamiltonian can be used to classify
the rows of the oscillator representation (0;/4 + 0~/4)of SL(2~~). The
transformation properties of the generalized e1genfunctions of this Hami!
tonian -Airy functions- are seem to be particularly simple, although the
representation matrix elements do not reduce to known special functions.
The Airy basis, provides also a generalized orthonormal basis for Barga-
mannls Hilbert space of analytic functions.

1. INfROOOCfICl'l

In Reference 1, we fOlllld the matrix elements of a11 I\ series repre-
sentations of 5L(2,R) for a11 subgroup reductions using tlle tecJmiques of
canonical transfonns in order to reduce the problem to the evaluation of
a single integral. flere we sha11 do the sane for a basis of displaced
Airy fl.l1ctions.

The o.c.iUatOJl representation of 5L(2,R) = 5P(2,R) = SU(l,l) =
SO(2,l) is spanned by

11 = t (P'-Q'), 1, = t (QP+PQ), 1, = t (P'+Q') (1.1)

in the usual quantum rrechanical realization where Q and P are the coordi-
natc and morrentumoperators, self-adjoint on the real line R. Their co-
rnmutation relations are well known. On calculating the Casimdr operator
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we see that 1 = 11 + 1, - 1, = -3/16, i.e. k(l-k) = -3/16, so that the

• + +
representation generated by (1.1) is the direct sum Dosc = D1/4 • D3/4.
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This is four-fold vaIued en SO(2,l) and doubIe vaIued en SU(l, 1) 'SL(2,R).
As the inversion operator P conuwtes with (1.1), it can be used to dis-
tinguish between the two representations present in D~sc:from the 13-re-
duetian it is known that the basis functions for the D~/4 representatían
have even parity, while those of D;/4 have odd parity.

In classifying the rows oí the oscillator representatían, we can make
~~eof any of its subgroups: these belong to ane of three conjugatían
classes ~TIose representativcs are usually chascn as: (a) SOeZ) generated
by 13 giving rise to the quantum hanmonic oscillator eigenstates ~~q),

TI = 0,1,2 ... with spectnnn I(n + f) where even TI corresponds to n;/4 and
+odd n to D3/4; (b)the non-eompaet SO(l, 1) subgroup generated by 11 (or 1,)

whose speetrum eovers twiee the real line, and (e) the non-eompaet E(l)
subgroup generated by 11 + r 3 = ip2 and whose spectnun covers twice the
positive haIf-axis. Winternitz and eollaborators(3) have shown that se-
eend-order operators in the enveloping algebra of SL(2,}\) can be used to
provide corrplete and orthononnal sets oí functions on the group or its co-
set manifolds which are closely related to the separable coordinate sys-
tems on a (2+1)-dimensional hyperboloid. This has been studies in detail
by Kalnins and ~liller(4) for the nine orbits into which the seeond-order
operator space splits under the adjoint action of the group, three of -
these being related to the subgroup decompositions.

In this paper we will give sorne results fer the oscillator represen-
tation using a new type of basis provided by the generalized eigenfunc.4

tions of the operator

L = Ip' + Q (1.2)

which are the displaced Airy funetions. The speetn>n of (1.2) is eonti-
nuous and covers the real line(4,S,6). The reasons for regarding the pro-
blem as interesting are the following: Although any se1f-adjoint Schro-
dinger Harniltonian can provide a complete orthononmal (possibly generaliz-
ed) eigenbasis which can serve as a unitary representation basis for the
algebra (1.1), the eigenfunetions of the free-fall OY linear potential -
SchrOdinger Hamiltonian (1.2) are one of the relatively few solutiens
wich can be written in tenns of known special functions. 5econdly, th~
operator (1.2) is not an eIement nor belengs to the enveloping algebra of
(1.1). It is neither a subgroup nor a non-subgroup operator in the sense
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described above. It can be though of as 11 + 1, + [2(I,-Id] '/'. \Ve-
are able to present OUT Tesults because of the faet that the realizatían
(1.1) can be errbeded into a W!l SL(2,Jll algebra, where w is the Heigsen-
berg-Weyl algebra(6) with generators Q, P and 1, with the well knoon
cornmutation relations. Then (1.2) becomes a subgroup generatoT, not con-
jugate to any subgroup generator in SL(2)R) or in w alone. This will be
a feature common to any group whose algebr3 can be sirndlarly embeded, in
particular the SP(2n)R) algebra of linear canonical transformations in
n-dimensional Quantum ~rechanics(7,8). It should be noted, though, that
we are able to work only within the oscillator representation of SL(2,lR)

[ '/'because only there does 1,+1,+ 2(1,-1,)] have a simple form (1.2) in
tenms of diffcrential operators.

In Ref. S, Kalnins and Miller considered the eigenfunctions of (1.2)
as a one-variable realizatían of a subgroup basis in W~SL(2,.R). However,
working within the algebra rather than within the group, the firrite tran~
fonnation properties of this basis were not fuUy explored. These are
quite simple and easy to calculate with the techniques of Ref. 6, which
we sketch in Section 2. Moreover, Airy ftm<;tions consti tute a genera-
lized basis for the Bargmann Hilbert space of analytic functions. In
Seetion 3 we build the mixed-hasis matrix elernents with the harmonic
oscillator eigenbasis, generalizing one result by Boyer(lO). Lastly, in
Section 4 we add sorne remarks on the decomposi tion oí the oscillator
representation into its irreducible components.

2. AIRY RJNCfIONS ANlJlHEIR SL(2,lR) TRANSFORMATICN

!he regular solutions of the equation L~ = A~, where L is the ope-
rator (1.2) can be found quite easilyCS,6) if we subject this to a Fou-
rier transform, whereupon we have (tQ'- P) ~ = A~ where the normalized
solutions are

(2.1)

which are orthononnal in the Dirac sense and complete for L 2 (R). The in-
verse Fourier transform (times ein/4) of (2.1) yields(11), through Airy's
integral

'1(q) (2.2)
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which; being unitary transforms oí a generalized basis [ay L2QR), are
a150 generalized basis far this space.

The Airy function Ai(Z) can be represented in terms of ~bcdonald
functions(12) or hypergeometric series

.2/ ,
3'mm

I 3n(1/3)nn=O (3;¡¡-:Z3n Z3n+l (2.3)

Z.3.'/2•
r(I!3)r(213) [

-2/'
~(2!3)

where (a) is the Pochhamrcr symbol. The Airy function is thl1S an entire
n

analytic ftmction. It has zeras on the negative real axis only. Asym-

ptotical1y, it behaves as t.-1/2 Z.'/' exp(-% Z'/2) for largzl<.and as
Ai(-Z) "" .-'/2 Z.,/, sin(% Z.'/2 + t.) for Iargz I < 2./3, so it is of

growth (3/2,2/3).
Now. the application oí a transfonmtion generated by the algcbra ~

(1.1) can be described through a complex linear canonical transform(6,8)

(:)rb¡"'/2 e-iiT/, ldq' exp(k[aq"-2qq'+dq'])f(q'l.

(2.4)
. -, ib

[exp(~~ (l,-l,}) exp (i£na 1,) exp (-2a (l,+I¡)) a (q)

where ad - be = 1. lne last term in (2.4) decompases the matrix M=(~~)
into a product oí a lower-triangular, a diagonal and an l~per-triangular
matrix. This is possible far all M except those with a = O. The Fou-
ricr transform(11) is one oí the cases wnere this decomposition fails. -
Sorre wel1-known transforms can be seen in Ref. 9. Adjoining now the

~bi5enberg-Weyl group action

[expi(xQ+yP+z])f] (q) = [T(x,y,z)f] (q) expi(Xq+txy+z) f (q+y) (2.5)

l>.ehave the product oí transfonns

F{(ab) (xyz)} = C(ab) T(xyz)
cd cd

(2.6)



whose composition,
of ~, is
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defining , = (x,y), 0=(°-1) and ,T is the transpose
1 °

defines that of the elernents of the WSL(2,IR)= WtlISL(2,IR)group. The
subgroup generated by the operator (1.2) in r;SL(2,R) is

[exp(itL)f] (q) = [F ((ci-~) (-t.í t', -t t')lf] (q) (2.8)

Lastly, eomposing (2.5). (2.6) through (2.7) and taking the limit b ~ °
we see that the subgroup of WSL(2,R),

[ (a ° -1/' en' yn 1 nF{ e a-1) (xyz)) f) (q) = a expi(-=t¡ + t' + Zxy+z)f(¡ + y),

defines the geome.tJúc transfonn subgroup.

The basie argurnent for finding the transfonnation of the Airy fune-
tions~; (q) under SL(2,IR) can nowbe given: we deeompose the general
M = (~) into a transfonn (2.8) in the subgroup generated by L, times a
georne~rie transfonn (2.9). The forrner will only multiplY~; (q) by a
factor eiAt (below, t = -b/a), while the latter ane has its action given
explieitly by (2.9):

= e-Hb/a[F{(aO_l)(_~1. b' 1. b' )}~tJ(q). ca a'2 iT'6 3T A

_1/' en' bo 5 b' b t n b"
= a expi(=- - ;:t - -".,. - - ).)~ ('" + -)2a a 12 a a A a 2a2'

(2.9a)

which shows that the funetion ~; (q) is self-reprodueing(9) under eanoni-
cal transfonns.

The aetion (2.9) is well defined on ~f(q) not only for real matri-
ces M but for complex ones as well as long as the kernel is a decreasing
Gaussian or at mest oscillating (as for M real), the condition being -
1mb *a ~ O. Whena-O, unimodularity implies b = -l/e and a different
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(O-l/c) (1)
decomposition of M = c d is needed. Using (2.9) and (2.1) 1, we

find

(2.9b)

Eqs. (2.9) give the transfonnation of the ~A-basis tmder SL(2,R). The
operator (2.4) is still tmitary if seen as a mapping between f£l'(lR) and
C(M)feFMoHilbert spaces of analytic ftmctions a la Bargmann described
in Ref. 8. In particular, for the Bargmann transform(13) where

1 1 - i
B=-=(. 1)',2 -1

l/It 1 S
rC(B)~~ 1 (q) =if~ (q) = 2 exp (- q'./2 q+- - A)~t (12" q_l)1: A A 2 12 A 2

(2.10)

This is an entire analytic nmction aYer the complex plane ([. The fac-
tor exp t q2, however, places it just outside the Bargmarm Hilbert space
FB.hich consists of ftmctions of growth (2,1/2). Nevetheless, (2.10)
provide a generalized orthononnal basis for as in the corresponding 5C3-

lar products (13)

(2.11)

3. SL(2,1:<)MATRIXELEMENTSIN THEAIRYANOMIXEDBASES

We want to calculate the SL(2)R) representation between the Airy -
basis states ~(q) given by (2.2), that is

v"t, (a b) = (~t C(a b)~ t ) = 2'/3a-l/'expi(_~!!2. - le A) X
AA cd A" cd A . 12a' a



21/'(2 )-1/' .(5 d' dA + TI)
1lC expI 12 2" - e "4 J dq expi (~ - ~ -

R 6 2e ~+A']q)
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. (11) 0-1.nere In the last three tenns we have used the transfonn C(l o) and
the faet that ICC~~) l' = P is the inversion operator. Although the -
last integral appears somewhat simpler than the first it dces not seem -
possible to evaluate it in terms oí known special functions with the aid
oí (2.3). We will search for its cvaluation in terms oí series using -
mixed basis matrix elements through ealeulating the overlap of (2.9) with
the orthonormal harmonic oscillator wavefunctions ~ (q) in terms oí

(8 11) -h -1/4 n -1/' ntheir Bargmann transfonns' r- (q) = (2TI) (n!) q i.e.
n

h C(a b)~ i )(~n e d A

(_h 1 1 -i a b i
~n C7z Ci 1) C(e d)~A )B (3.2)

= (~h 1 a-ic b-id i
n S (e-ia b-ib)~A )B

Werust thus find the Taylor expansion of

IC¡} (~=~~ ~=~~)~I(q) = ~ explaq'+ Bq/Ai(yq+o) =~ L An(a,B,y,o)qn
n=O

with M=(~ ~) and (3.3)

2'/1'( - )_1/' [~¡d+ibl' - ~ A]c~= a-le exp 12 a-le 3 a-le

a • (a+ie)/Z(a-ie), B - - Ir (d+ib)/(a-ie)' (3.4)

y = 25/'/(a-ie), 0= _21/'[A + (d+ib)'/Z(a-ie)'],

where a, B, y and ó are thus independent quanti ti tes.
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lI"eexpand first

00

Ai (yq + o) • I (yq(n=O n. ~ Ai(z)
dzn

A (o) qn
n

(3.5)

Exchanging double sUlllllations we find

I
= k-¡ (n+2)/31

o,k-n
oVRIT3K-ñJ:

I
+ n k=1(n+l)/31

o3k.n+l
VR (3k-n+l)! (3.6)

.mere [rJ is the integer part of r and

Uk = 3k-2/3 (1/3)¡/r(2/3), Vk = 3k'1/'(2/3)k"(3k+l)r(1/3) (3.7)

thus providing a series representation fer the nth derivative oí Airy
function. Of course A (o) = Ai(o) , .mile A (O) involves two slJ1lllands,o n
ene is nonzero when n :: O rrOO 3, and another when n :: 1 rood 3, which -
reconstitute the series (2.3). Making now use oí the known series ex-
pansion of the exponential functions, (3.6) .and a triple-sUlllllation ex-
change, we find for the coefficients of (3.3)

(3.8)

.mere the relation between the Greek and Latin entries is given by (3.5).
In reviewing the literature, we can point out that Boyer(10) has treated
a particular case oí the expansion coefficients (3.8). As thcse are re-
lated to several other averIap coefficients, generating ftmctions and in-
tegral relations, we establish the precise connection in the Appendix.

The mixed basis matrix element (3.2) is thus

(3.9)

with the constant S-; defined in (3.4) and, noting that e; and An(l)

are real,

25/. -2'/' [A'~] )An(a,B. y ,o)

(3.10)



9

These D-lTI.'ltrices do not becorre diagonal far any subgroup. Their tmitary

is a consequence of (3.1), but
can use the property of the ~
(2.2) and (2.9) to show that

O}, ( d -b)'
1\1\ -e a

is not manifest in
functions given by

(3.11)

the form (3.10). We-
the extreme JrenDcrs oí

(q-ax) , (3.12)

and use this in proving the relation

(3.13)

between the matrix elemcnts (3.1).
The mixed matrix elements betwecn the Airy basis and coherent states

are given by (3.3) directly, while the mixed matrix elements with the
eigenstates(S) of 1, + I¡(c's and oscillating exponentials) are given by
(2.9) and its Fourier transform, which can be readily implemented through
rnatrix algebra and amolmts to a transfonmation (a,b,c,d) ~ (c,d,~a,-b).
The mixed matrix elernents with the repulsive oscillator eigenfuctions oí
I¡ are essentially the ~~llin transform of a function related to (2.9).
1t does a150 not seem to lcad to known special functions.

4. TIIE IRREDUCIBLE PIECES OF TIIE OSCIU.ATOR REPRESEm'ATION

The 0;/4 and 0;/3 irreducible components of the oscillator represen-
tation(2) can be seen to correspond to the matrix (3.1) evaluated between
the even and odd parts oí the basis fmetions, i. e.

(4. 1)

Now, as IL,pl , O the functions (4.1) are not eigenfunctions of L in -
(2.1). The situation is akin to considering the even and odd parts of
ei.m::¡,cosine and sine Metions, none oí which are eigenfunctions of --
-id/dq. The row-Iabel A still runs over the real lineo
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APPENDIX

The overlap eoeffieients Cn(YB' aB) (Ref. lO, Eqs. (5.22)-(5.25) by
C.P. Boyer, see also Ref. 5) can be related to ours in (3.8) through eo~
parison oí the Gaussian, exponential and Airy coefficients oí OUT q and
Boyer's zB : The fomer ane inl>lies zB = .:!:. iva q "hile the latter anes,

- - -'1'~ = + y/2 ,ff¡l and ~ = + ,,'(2a) . (Variables from Re£. 10 appear the
subseript B, the rest refers to our (3.5)). These last two relations
imply aS = yl, so that we have the restriction

ah + cd = 9i, (A. 1)

in addition to the unimodularity adobe = 1: the Cn(YB,aB) has two free
parameters ,,¡lilewe have three. All of Re£. 10 parameters can thus be
written in tcrms oí, say, a and e as

¡ ,,' _3/2 + S/2 ') - '1' (A.2)aB (26) = - 2 (a' + e ,

YB '1'6 - a' -4>./(a' + e') - 1601(a' + eJ (A.3)~ B

.:!:.i.Tciq=~i '/' (A.4)zB = [(a+ie)/(a-ie)] q.

Substituting now (A.l)-(A.4) into the expansion (3.4) we can relate

(A. 5)

when (A.l) holds. Use of Eq. (5.24) of Ref. 10 now allows us to express
a subset oí the A (a,B,y,ó) in terms oí a single integral involving the

n
Fourier transform oí the Airy function with a harmonic oscillator func-
tion. This last relation can also be obtained from (3) when we remerrber
that the latter are self-reproducing(9) under canonical transfoIlTlS.
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