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ABSTRACT

The linear potential Schrodinger Hamiltonian can be used to classify
the rows of the oscillator representation (fo/4 + Dg 4) of SL(2R). The
transformation properties of the generalized eigenfunctions of this Hamil
tonian -Airy functions- are seem to be particularly simple, although the
representation matrix elements do not reduce to known special functions.
The Airy basis, provides also a generalized orthonormal basis for Barga-
mann's Hilbert space of analytic functions.

1. INTRODUCTION

In Reference 1, we found the matrix elements of all Dl': series repre-
sentations of SL(2,R) for all subgroup reductions using the techniques of
canonical transforms in order to reduce the problem to the evaluation of
a single integral. Here we shall do the same for a basis of displaced --
Airy functions.

The oscillaton representation of SL(2,R)
S0(2,1) is spanned by

1]

SP(ZR) = Su(1,1) = --

1 1

(P2-Q%), I, = 7 (QP+PQ), T

A 7 () (1.1

|

in the usual quantum mechanical realization where Q and P are the coordi-
nate and momentum operators, self-adjoint on the real line R. Their co-
mmutation relations are well known. On calculating the Casimir operator
we see that I_ = Ij + I - Is = -3/16, i.e. k(1-k) = -3/16, so that the

representation generated by (1.1) is the direct sum DSSC = D; /4 + D; /4



This is four-fold valued on SO(2,1) and double valued on SU(1,1) =SL(2,R).
As the inversion operator P commutes with (1.1), it can be used to dis-
tinguish between the two representations present in D;sc: from the I;-re-
duction it is known that the basis functions for the D;/4 representation
have even parity, while those of D;/4 have odd parity.

In classifying the rows of the oscillator representation, we can make
use of any of its subgroups: these belong to one of three conjugation -
classes whose representatives are usually chosen as: (a) SO(2) generated

by I, giving rise to the quantum harmonic oscillator eigenstates ¥ qQ)s;

n=20,1,2... with spectrum %~(n + %J where even n corresponds to D:/4 and
odd n to D;/Q; (b) the non-compact SO(1,1) subgroup generated by I, (or I,)
whose spectrum covers twice the real line, and (c) the non-compact E(1)
subgroup generated by I, + I3 = %—Pl and whose spectrum covers twice the
positive half-axis. Winternitz and collaborators(s) have shown that se-
cond-order operators in the enveloping algebra of SL(2,R) can be used to
provide complete and orthonormal sets of functions on the group or its co-
set manifolds which are closely related to the separable coordinate sys-
tems on a (2+1)-dimensional hyperboloid. This has been studies in detail
by Kalnins and Miller(4) for the nine orbits into which the second-order
operator space splits under the adjoint action of the group, three of -
these being related to the subgroup decompositions.

In this paper we will give some results for the oscillator represen-
tation using a new type of basis provided by the generalized eigenfunc--

tions of the operator
P2 + Q (1.2)

which are the displaced Airy functions. The spectrum of (1.2) is conti-

(4’5’6). The reasons for regarding the pro-

nuous and covers the real line
blem as interesting are the following: Although any self-adjoint Schrd-
dinger Hamiltonian can provide a complete orthonormal (possibly generaliz-
ed) eigenbasis which can serve as a unitary representation basis for the
algebra (1.1), the eigenfunctions of the free-fall or linear potential -
Schrodinger Hamiltonian (1.2) are one of the relatively few solutions -
which can be written in terms of known special functions. Secondly, the
operator (1.2) is not an element nor belongs to the enveloping algebra of

(1.1). Tt is neither a subgroup nor a non-subgroup operator in the sense



described above. It can be though of as Iy + Iy + [2(I5-11)]*/2. We -
are able to present our results because of the fact that the realization
(1.1) can be embeded into a W RSL(2,R) algebra, where w is the Heigsen-
berg-Weyl algebra(ﬁ) with generators Q, P and 1, with the well known
commutation relations. Then (1.2) becomes a subgroup generator, not con-
jugate to any subgroup generator in SL(2,R) or in w alone. This will be
a feature common to any group whose algebra can be similarly embeded, in
particular the SP(2n,R) algebra of linear canonical transformations in
n-dimensional Quantum Mechanics(7’8). It should be noted, though, that
we are able to work only within the oscillator representation of SL(2,R)
because only there does Il+13+[?(13—11}]1/2 have a simple form (1.2) in
terms of differential operators.

In Ref. 5, Kalnins and Miller considered the eigenfunctions of (1a2)
as a one-variable realization of a subgroup basis in WRSL(2,R). However,
working within the algebra rather than within the group, the finite trans
formation properties of this basis were not fully explored. These are -
quite simple and easy to calculate with the techniques of Ref. 6, which
we sketch in Section 2. Moreover, Airy functions constitute a genera-
lized basis for the Bargmann Hilbert space of analytic functions. In -
Section 3 we build the mixed-basis matrix elements with the harmonic
oscillator eigenbasis, generalizing one result by Boyer(10J. Lastly, in
Section 4 we add some remarks on the decomposition of the oscillator -
representation into its irreducible components.

2. AIRY FUNCTIONS AND THEIR SL(2,R) TRANSFORMATION

The regular solutions of the equation LY = AY, where L is the ope-
rator (1.2) can be found quite easily(s’ﬁ) if we subject this to a Fou-
rier transform, whereupon we have (%—Qz— P) ¥ = A¥ where the normalized
solutions are

-ill/4

ﬁf (@ =e (ZHJ'I/2 expi(-)\q+% § ), A€ 'R (2.1

which are orthonormal in the Dirac sense and complete for L2(R). The in-
verse Fourier transform (times elﬂ/4) of 1(2.7) yie1d5(11), through Airy's

integral

‘Pf(q) = 2!/ Ai(2/3[9-2]) =fox(q+x) (2.2)



which; being unitary transforms of a generalized basis for L*(®), are -
also generalized basis for this space.

The Airy function Ai(Z) can be represented in terms of Macdonald
functions“z) or hypergeometric series

L) = 1 VT3 Kigs G 2¥/2)

-2]3 o X o
_3 ; ] 3°(/3n ., 3 Yy /s, ¥ R
FZ73) n=o 0! T(73) n=o Gn + 1) (2.3)
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where (a)n is the Pochhammer symbol. The Airy function is thus an entire
analytic function. It has zeros on the negative real axis only. Asym-
ptotically, it behaves as A VR A exp(-% 7%/2) for |argz|<mand as
e B bl sin(% AR %ﬂ) for |argz| < 2n/3, so it is of
growth (3/2,2/3).

Now, the application of a transformation generated by the algebra -
(1.1) can be described through a complex linear canonical transform s8]

[c(iﬁ)ﬂ(q) = (arb) /2 71T Lqu' exp(3p(aa'*-2aq'+da’D £(a"),

(2.4)
xpS (1-1,) exp (itna™1,) exp (-32 T+1: N (@

where ad - bc = 1. The last term in (2.4) decomposes the matrix Mz(zg)
into a product of a lower-triangular, a diagonal and an upper-triangular
matrix. This is possible for all M except those with a = 0. The Fou-
rier transform(n) is one of the cases where this decomposition fails. -
Some well-known transforms can be seen in Ref. 9. Adjoining now the --
Heisenberg-Weyl group action

[expixQryPrz) £] (@) = [T06y,2) 6] (@) = expi(xqrpy+2) £ () (2.5)

we have the product of transforms

F) o) = o Tow2) (2.6)



whose composition, defining £ = (x,y), 95(?-5) and E' is the transpose
of &, is

M, 51- 2} Mz, &2, 22} = MMy, E)M, + &,, 2!"22*‘%‘ EJMzQEz’T}. (2.7)

defines that of the elements of the WSL(2JR) = W®SL(2JR) group. The -
subgroup generated by the operator (1.2) in WSL(2,R) is

[t f] @ = [F QD Ct,3t2, 191 @ @8

Lastly, composing (2.5), (2.6) through (2.7) and taking the limit b + 0
we see that the subgroup of WSL(Z,R),

(G 2 (o0} €] @ = a7/ expiSh + M+ Louny@ e ),

defines the geometric transform subgroup.

The basic argument for finding the transformation of the Airy func-
tions ‘Pf’ (@) under SL(ZJR) can now be given: we decompose the general
M= (Cd) into a transform (2.8) in the subgroup generated b)é L, times a
geometrici:;\';ransfom (2.9). The former will only multiply ‘l’l (@) by a

factor e (below, t = -b/a), while the latter one has its action given

explicitly by (2.9):

2 2
@Dy l@ = FE. 021 B0 rid Y2l 5.1 1@

e~iAb/a[F{(ig_]) (,g’% g o )}\yf] (@ (2.9a)

R B2 A UNNCER )
which shows that the function \F (q) is self- reproducmg( ) under canoni-
cal transforms.

The action (2.9) is well defined on \Pf (q) not only for real matri-
ces M but for complex ones as well as long as the kernel is a decreasing
Gaussian or at most oscillating (as for M real), the condition being -
Imb*a 2 0. When a = 0, unimodularity implies b = -1/c and a different
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0 -1/c
decomposition of M = (¢ 'd ) is needed. Using (2.9) and (2.1 !V, we
find

C 9% @ = 'Y o Pl @ -
(2.9b)
= ~ 1/2 -
- DT @ = (0 Vexp [ tcag?¥ e

Egs. (2.9) give the transformation of the ‘i’l-basis under SL(2,R). The
operator (2.4) is still unitary if seen as a mapping between feL?(R) and
co™ feFy, Hilbert spaces of analytic functions a la Bargmann described
in Ref. 8. In particular, for the Bargmann transform“s) where

L g )=
B /7 (_i ‘})’

- 1/u
[C(B)‘Ff] (@) EWf (@ =2 exp (% q2-v2 q% - A)wf 3 q-%)

=2 e G a? /2 a3 A% - 270 2 a0

This is an entire analytic function over the complex plane €. The fac-
tor exp ;— q?, however, places it just outside the Bargmann Hilbert space
Fy which consists of functions of growth (2,1/2). Nevetheless, (2.10)

provide a generalized orthonormal basis for as in the corresponding sca-
lar products“sj

£

L G - =mwtedy o '
2 5 )B - (‘PA‘,“P)‘ ) = ('{(l"wk ) - S(A‘A } (2.11)

3. SL(2,R) MATRIX ELEMENTS IN THE AIRY AND MIXED BASES

We want to calculate the SL(2,R) representation between the Airy -
basis states ‘Fi(q) given by (2.2), that is

DE (ab

v
AP e d)

ab £ _L,2f3 -1)2 .. 5 bs b
ae e @Y ) =2 a Tempi(-qz g7 - 7 M) x

(v

i ; e VA h: ..
< [ a0 M@ lea]) ool - MR B -
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= 3
D) iy & - &4 I dq expi(@ - 320 . 4, 4 21)q)

c:
Ai(z’/3[% z—r = A,

where in the last three terms we have used the transform(”) C(1 0)

the fact that ]C( | = P is the inversion operator. Although the -
last integral appears somewhat simpler than the first it does not seem -
possible to evaluate it in terms of known special functions with the aid
of (2.3). We will search for its evaluation in terms of series using -
mixed basis matrix elements through calculating the overlap of (2.9) with
the orthonormal harmonic oscillator wavefunctions ‘{'h (q) 1n terms of -
their Bargmann 'cr:;msforms(8 1) ‘{fh (@ = (2m~ 1/"( n) /2 i.e

h alhs o P 2
0, » € d)wA ) =

1
=1

(@2 , CJE'( 1) @ d)w )g (3.2)

1 a-ic b-id
Cm (c-ia  b-ibYy g

n
~~
=1

We must thus find the Taylor expansion of

(=]

1 @ ic b-id
672 G35 G0 @ = Gy explag® galAi(vqre) = 50 A (@,8,7,8)q"
n:
i =3 3.3
with M [c d) and (3.3)
d+ib)? d+ib
A 27/12(3_ [12 e T A]

(a+ic)/2(a-ic), B = - V2 (d+ib)/(a-ic)? (3.4)

Q
]

v = 2%/ (a-i0), § = -2/°[a + (@+ib)?/2(2-10)?],

where o, B, y and & are thus independent quantitites.



We expand first
Al + 6 = E m‘L i_m = z s n
(va + ) N e (2) e L A@®)q (3.5)

Exchanging double summations we find

) s%k-n ) §3k-n+1
AY®) = ) (me2) /3] IUR * 5VRIW- 0 e me1)/3] R Gy 340

where [r] is the integer part of r and

U = 3 s e, Vs X N3 (6.7

thus providing a series representation for the nth derivative of Airy

function. Of course Ao(é) = Ai(8), while An(O) involves two summands,

one is nonzero when n = 0 mod 3, and another when n = 1 mod 3, which -
reconstitute the series (2.3). Making now use of the known series ex-

pansion of the exponential functions, (3.6) and a triple-summation ex-

change, we find for the coefficients of (3.3)

In/2| n-2¢ n-28-m
A (U. S)Yla) = l;é m=§0 z%m' An 217_ m(s), (3.8)

where the relation between the Greek and Latin entries is given by (3.5).

In reviewing the literature, we can point out that Boyer(Io) has treated

a particular case of the expansion coefficients (3.8). As these are re-

lated to several other overlap coefficients, generating functions and in-

tegral relations, we establish the precise connection in the Appendix.
The mixed basis matrix element (3.2) is thus

o, e D b = a0 @A @eyes) (3.9)

with the constant CN?defined in (3.4) and, noting that C} and A (1)
are real,
/21" oA . 1 sfe_1/3p,,,)
(2m) / ) n! A GG - Z,277 -2 +§])An(a,3,y,a)

k)\(cd) IM n=0
(3.10)



These D-matrices do not become diagonal for any subgroup. Their wunitary

R

bl (3.11)

L, Aab 5 b
Dia e = Daxr €
is a consequence of (3.1), but is not manifest in the form (3.10). We -
can use the property of the Yf functions given by the extreme members of

(2.2) and (2.9) to show that

@ Dvid @ = e A hvY (gan, (3.12)

and use this in proving the relation

£

ab -bx/a D £ ab
At +ax, A+x

D ih = ol (3.13)

(
between the matrix elements (3.1).

The mixed matrix elements between the Airy basis and coherent states
are given by (3.3) directly, while the mixed matrix elements with the
eigenstates(s) of I3 # I;(8's and oscillating exponentials) are given by
(2.9) and its Fourier transform, which can be readily implemented through
matrix algebra and amounts to a transformation (a,b,c,d) » (c,d,-a,-b).
The mixed matrix elements with the repulsive oscillator eigenfuctions of
I, are essentially the Mellin transform of a function related to (2.9).
It does also not seem to lead to known special functions.

4. THE IRREDUCIBLE PIECES OF THE OSCILLATOR REPRESENTATION
The D;/4 and D;/3 irreducible components of the oscillator represen-

ta1:ion(ZJ can be seen to correspond to the matrix (3.1) evaluated between
the even and odd parts of the basis functions, i. e.

/2 % /4, 1
vt @ 7 B@ v gl (4.1)

Now, as |L,P| # 0 the functions (4.1) are not eigenfunctions of L in -
(g.l). The situation is akin to considering the even and odd parts of
imq
e

-id/dq. The row-label A still runs over the real line.

, cosine and sine functions, none of which are eigenfunctions of --
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APPENDIX

The overlap coefficients Cn(yB, aB] (Ref. 10, Egs. (5.22)-(5.25) by
C.P. Boyer, see also Ref. 5) can be related to ours in (3.8) through com
parison of the Gaussian, exponential and Airy coefficients of our q and
Boyer's Zp * The former one implies g = i/a q while the latter ones,
ap = +y/2 V2B and ay = + a3(28)'3/2. (Variables from Ref, 10 appear the
subscript B, the rest refers to our (3.5)). These last two relations
imply a8 = y*, so that we have the restriction

ab + cd = 9i, (A.1)

in addition to the unimodularity ad-bc = 1: the Cn(yB,aB) has two free
parameters while we have three. All of Ref. 10 parameters can thus be
written in terms of, say, a and c as

Poa? 28) =t 2 a2 4 )Y (A.2)

ap

vy = %/35 B} a; = -4)\/(a® + c?) - 160/(a® + c?) (A.3)

+ i/ q =+ i [(a+io)/(@-i0)]"" a. (A.4)

‘B
Substituting now (A.1)-(A.4) into the expansion (3.4) we can relate

Viexp (-2 a3 - yp) (2 i) ¢ (rpeag)  (A5)

A (a,8,7,8) = (407" ag
when (A.1) holds. Use of Eq. (5.24) of Ref. 10 now allows us to express
a subset of the An (a,B,v,8) in terms of a single integral involving the
Fourier transform of the Airy function with a harmonic oscillator func-
tion. This last relation can also be obtained from (3) when we remember
that the latter are self-reproducing(g) under canonical transforms.
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