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ABSTRACT

Ab-Initio 1GTO calculations are presented for the H, molecule.
The object of these calculations is to show a very detailed treatment
for integral evaluation and SCF procedure for ab-initio computaticns.

RESUMEN

Se presentan cdlculos ab-initio 1GTO para la molécula de H,_.
El objetivo de estos calculos es mostrar, de una manera muy detailada,
la evaluacién de las integrales y el método SCF para cdlculos ab-initio.

INTRODUCTION

Since the formulation of the late Professor Boys(]) on the eva-
luation of two electron integrals involving gaussian type orbitals
(GTO's), a number of programs have been developed to evaluate integrals
used in molecular orbital (MO) calculations. Some of them are:
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POLYATOM, IBMOL, ATMOL, MOLECQULE, HONDO, etc.; all of them make use of
the extremely important property, that a product of two gaussians cen-
tered in different atoms can be represented by one gaussian whose center
lies somewhere in the line joining them.

Most of theoretical chemistry students have access to, at least,
one of the above mentioned programs to perform quantum chemistry calcu-
lations; however, very few of the students have a detailed knowledge
of the programs they use.

The purpose of the present paper is to show, in a very systematic
way, a calculation of the H2 molecule (for several bond lengths) using
one GIO to represent each atomic orbital. These calculations have been
performed in the Hartree-Fock schemetz)
tion (CI) (see ref. (3)), has been included. Dewer and Kelemen[q}, have

, and also configuration interac-

performed a systematic calculation on H, using one Slater type orbital
(STO) in each atom; however, as most programs make use of GIO's rather
than STO's, we feel that it will be very useful to have a very detailed
computation using GIO's.

METHOD OF CALCULATIONS
1. Self-Consistent Field Equations

In Hartree units for H, ground state having only one double
occupied molecular orbital (102) gefined as ‘IrJ8 = Ng (15A + 1SB) where
TSA and 1SB represent GTO's (e~cxr
tively, N_ being a normalization constant to be defined below. Then

. 1
the total energy (Et) of the molecule can be written as Et = Ee i

AB

) centered on atoms A and B respec-

where Eg is the electronic energy and Rip is the internuclear
separation.
The electronic energy can be written as

E, = ZNE ‘_Tll + Ty + Vi + zvlz] +Jy (1)

with the following definitions:



Normalization constant:

/-

Ng=[2s,+ 0|
Overlap integral:

Sl},‘ = (151\[1513)
where

<18, | 15, = J 15, (1)* 185(1) dry

Kinetic energy integrals:

1 =455 1
Ty = <1SA[‘ 7‘?‘|1SA> = <ISB|' EVZI]SB>
1 g 1
Tz = <TSA‘- 7 V2|15B> = <]SB1‘ '5 V2|1SA>
Potential energy integrals:
A B
Vig = iy % Wy
where
VA, = <i5,|- | 18> = <ISy|- == | 18y
11 Al 1, A Sp p B
and
}'B = _.1_ 3 = -L
Vi1 <1SA| TBI 15,> <1SBI T, | 155>
Vip = <18, |- | 18> = <18]- L | 1q >
12 A Ty B B Iy 1SA =
- AT ] B ey | B
A Ty B Bl p A 8

and so-called Coulomb integral:

(4)

(5)

(6)

(7

(8)

(9)
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1
Jiy = Nt <l (1) | =— | 10.(2)> 1
11 g ag( ) | Tis | Ug( 1>, (10)
which after some very simple algebraic manipulations reduces to:

1 1
= L 3 & ¢
Jip = NG| 7 <15, 18, | 1S, 15>+ 5 <15, 15, | 18 15 =

<15, 18 | 185 15,> + 2 <18, 15, | 15, 1513’] (1)

where
1
= & s
<15A 1SB | 1SB 1SA> JI 1SA(1) TSB(IJ lSﬁ(Z) 1SA(2) iz drdr,.(12)

These (two-electron) integrals are the most difficult to evaluate,
and their computation is the most time-consuming of all the above-men-

tioned quantities.
11. Congiguration-TInteraction Scheme

In the Hartree-Fock scheme, where the ground state spatial wave-

function is represented by

Y = cg(Uog(Z) = 1SA(1)1SA(2) + 153{1)153(2) + 1SA(2}1SB{1) + TSA(1J1SB[2)_
(13)

The first two terms are the so-called ionic terms, the last two are

called covalent.

The ionic terms appear with the same weight as the covalent, caus-
ing the unphysical situation that the H2 molecule can be equally pre-
dicted to dissociate either into two hydrogen atoms or into a hydrogen
anion and a proton. This situation can be corrected by the introduction
of Configuration Interaction (CI). In this formalism the wave function
is represented by a linear combination of Slater determ;inam:s(SJ z

For this H, 1 GIO example, the only available molecular orbitals
are the previously defined T and o, = N, (ISA - 1SBJ. Therefore the
wave function can be written as a linear combination of the six Slater



determinants which can be constructed for two electrons, starting with

these two molecular orbitals, namely

Q

b= Cﬂcg(]) o Ug(Z)Bl E C2|0g(1) o,(2al +

C3log(1) a ou(Z)ai + Cq|cg(1] B o, (2)a| +
Cslog(1) £ 0, (2)B] + Celo, (1) @ 0,(2)8] . (18)

With this wave function, the total energy is given by E =
<y|H|v> where H is the Hamiltonian which, for the present case, is
given by

o 2 =

H= - V5 - — = — - — - m— t — . (15)

Here, subindices 1 and 2 refer to electrons and A and B denote
the two nuclei; T, is the distance between the two electrons.

The coefficients Ci can be calculated by solving the so-called

secular determinant

Hy, Hy - Hig “ G
C, ' =E C, (16)
|
Hg; Hs2 - Heg Ce Cq

where

Hij = <Det(i) |[H|Det(j)>

However, the Brillouin(s) theorem, which states that all matrix
elements between the ground state and singly excited configurations
vanish, allows us to write this wave function as a linear combination

of only two Slater determinants, namely:
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V= Cilo (1) ao, (2)8] + Celo, (1) ooy (28] . (17)

(5,6,7) , however,

There are several procfs of the Brillouin theorem
for this simple case the proof follows immediately for two simple rea-
sons, a) Spin Orthogonality, b) Symmetry Orthogonality; let us consider
them separately:

a) Spin Orthogonality

An example of Ehis situation could be the matrix element H;, =
<og(1Ja(1)cg(2)B{2)[H|Ug(l)a(1)ou(2)u(2)> , which, as the Hamiltonian
does not involve spin terms, it can be written as

Hiz = <0, (1)0,(2) [H]og (2)0,(2)> <a(DB(D)]a(D)a(2)> (18)

and the second factor on the right-hand side is immediately seen to
vanish.
b) Symmetry Orthogonality

Let us consider the matrix element

Hyy = <o, (1)a(1)o, (2)8(2) [Hlog (Da(1)o, (2)8(2)> (19)

the integration over spin can be performed upon inspection, remaining

only the spatial part:
}-{13 = <gg(1]cg(2]|H|0g(|}ou(2)> = (20)

Explicitly, omitting nommalization constants,

) WL R
Hyis = <(1S, + 1550 (1) (1S, + 1S5)(2) \ Vi % T
(21)
1 1 1, 1
s s e geema | E18, # ALY (TS, v 1890 .
Ty T Tz Tq2 A B A B
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Now if A is exchanged with B, the physical situation should not
change, as there should be no difference between both "ends'" of the
molecule; it is easily seen that with this exchange, H;; becomes
- Hy;, and the only way to preserve the equality Hy3 = - H;j is
Hy; = 0.

Then the only two non-vanishing terms are

H = <o, (1Na(1)og(218(2) [H] o, (Da(1ay(2)8(2)> (22)

which after some very straight forward manipulation is seen to be

I
Hig = |201 - siBil [qs,,‘ 1S, ‘ 15, 15,>—<185, 15, | 155 15>
(23)
and
Hee = <o, (Da(1)o,(2)8(2) [Hl o, (1)a(1)0, (2)8(2)> (24)
which is easily shown to become
Hee = ZNLZI ]:Tll Tz * ‘2V12:| + Ja; (25)
where
) 1
Jyp = <10,(1)10,(2) .E 1o,(1)10,(2)> (26)
-t [ 1
= o\ [E ol8, 15, ‘ 15, 15> + 5 <18, 1S, | 1S5 15p> +
<18, 15 } 15, 15> - 2 <15, 15, ': 1S, ISB>:]
and
N = (27)

W ——
L2
o - =)
which is the normalization constant for the ‘Gu orbital.
With these definitions, the CI equations can be written as



1 ie || | Y [Cl
- E | (28)

—

and the two eigenvalues of these equations are
1/2
1 - 2 )
B~ 7 [P *Beg® [(Hu * Hgg)? - 4(Hy Hgg - Hle]] (29)

where E; is the lowest energy root.
111. Evaluation of the Integrals Involfved

For the sake of brevity, here we will present only the final

formulae to evaluate the integrals involved; however, for the interested

reader, there is an excellent account of the mathematical details of
the derivations due to chs(1) .

All the formulae presented in this work are for non-normalized
gaussians. The normalization constant for 's'' type gaussian with
exponent a is

1/y
N = [E] (30)
m
a) Overlap Integral Between the Two Atoms (SAp)
ab =2
L A o
SAB [a—-_;—E] e ’ (31)

AR denotes the distance between atoms A and B.
b) Kinetic Energy Integrals (T, , Ty5)

3/2
Ty = [ = T b] 3 ab/(a + b) (32)
3ab 2AB° a’b’
Tig a+b  (a+*b)? SaB (33)



¢) Potential Energy Integrals (Vy; , Vis)

To express these integrals in a convenient way, it is useful to
define a point P = (PX, Py’ Pz) in terms of the coordinates of cen-
ters Aand B. A= (A, Ay’ Az)’ B= (B, By’ B,), and the gaussian
exponents, a and b respectively; then

aAi + bBi )
B =—ars - AT&LL. (34)

Furthermore, it is useful to define a function F(z)

1 /Z -u? T /2
Fliz} = — J e du = [7] erf(/Z) (35)
vz g
then
)
<aA|V_|bB> = [EZ“:"E] B aalj 5 F{fl‘ﬁz (a+ b)] (36)

where the subindex C denotes the coordinates of any of the centers '
A or B. <aA[VC|bB> written in a more compact way by making use of
the overlap integral SAB; then

2m T e _71/2
= [

(37)
With a change of independent variable such as u =/z t it is
easily shown that F(z) becomes

F(z) = Jl

0

Vi
e ?tar . (38)

Hence, it is clear that F(o) = 1.
Finally, the two electron integrals can be evaluated in the

following way:
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<aAbB l I | gaps = (39)
Tia

275/2 SAB SCD v
= 172

(a +b)(c + d) [a+b+c+d]WE I:‘pﬁz (a+b) (c+d)_|

a+h+c+d

- 1/2
PQ°" (a+Db)(c+d)

a#b=+c+d

erf

which making use of the function F(z) previously defined, becomes:

<a..f\bBlL | cCdD> =
Ty

5/2
2m 5.8 =t :
AB "CD F an Eab++b2:(f 3 d) (40)

1if2
(a+b)(c+d l:a+b+c+d]

where cC and dD may take the values aA or bB and the point Q is de-
fined in analogous way to P, namely
c:Ci + dDi

G = ~cva - (41)

With these formulae it is straightforward to compute the total
energy in the Hartree-Fock scheme including Configuration Interaction.

RESULTS AND DISCUSSION

Table 1 shows the basic integrals, computed with an optimized
exponent for each bond length together with their value using an STO
with an exponent of 1.0 for all cases (see ref. (4)). There are some
points worthy of notice; the optimized exponent decreases as the bond
lenght increases, and reaches the optimized value of the infinitely
separated atoms (the interested reader may like to verify that the
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optimized exponent of a gaussian for the hydrogen atom is 8/9m). The
overlap integrals are larger for STO's than for GIO's decay more
rapidly than STO's for large r. For all the other integrals it is
observed that for some bond lengths gaussian integrals are larger,
whereas for other bond lengths the situation reverses. However this
odd fact may be the result of not optimizing the STO exponent.

TABLE 1

RASIC INTEGRALS FOR SEVERAL BOND LENGTHS. = SEE TEXT FOR ONE GTO (G)
AND STO*(S) CALCULATIONS

! |

rglan 5y, Tt : =¥y, vy, A1y a2y azfi2y il
5.0 0.49 S 0.85839 0.50000 0.30658 1.72933 1.47152 0.62500 0.50705 0.43665 055452
¢ 0.78270 0,73500  0.48132 1.95553 1.61573 0.78987 0.59389 0.48389  0.67780

1.5 0.3 §  0,72517 0.50000 0.19524 1.58369 1.11565 0.62500 0.40537 0.29684 0.43033
G 0.64848 0.56500  0.26689 1.62256 1.11964 0.70467 0.42325 0.29302 0.54317

2.0 0.33 5  0.58465 0,50000 0.11278 1.47253 0.B1201 0,62500 030804 0.18416 0.42597
G 0.51685 0.49500  0,14327 1.40591 0,77466 0.64820 0.30155 0.17316 0.44790

5.0 0.28 5  0.34851 0,50000 0.02489 1.33003 0.39630 0.62500 0.16074 0.05851 0.31980
G 0.28365 0.42000 0.01906 1.17724 0.33569 0.59708 0.13962 0.04804 . 0.32508

5.0 0.28 S  0.0958 0.50000 .-0.00780 1.19995 0.08086 0.62500 0.03495 0.0037: 0.19957
G 0.0%019 0.42000 -0.01691 1.04440 0.02395 0,59707 0.01134 0.00054 0.19996

7.0 028§  0.02219 0.50000 -0.00381 1.14286 0.01456 0.62500 0.00€54 0.00017 0.14264

0.00105 0.42000 =-0.00157 0.98726 0.00060 0.59708 0.00030 0.00000 0.14286

* Exponent of 1.0

**With optimized exponent.

Table 2 provides a comparison between the total energy using
GIO's and STO's as well as showing the effect of CI on the total
energy for several bond lengths. It is observed that the STO calcu-
lations give lower energies than the GTO ones (as it was expected);
however, the optimum bond length is roughly the same for both STO and
GTO, a very fortunate situation. It is also observed (see Fig. 1 for
the GTO results) that the inclusion of CI has no appreciable effect
on the optimum bond length, but as discussed earlier, CI provides
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the correct dissociation into two H atoms. The dissociation energy
is calculated to be -4.043 eV which can be compared with the experi-
mental and one-STO values of -4.746 and -2.644 eV (ref. (4)) respec-
tively. It is to be noted that the GIO gives better dissociation
energy (DE) than the STO, which may be due to the fact that upon
computing DE with STO's one has to substract the energy of H, from
the exact energy of 2H, while when computing DE with GIO's one subs-
tracts from the energy of 2H as computed with the optimized exponent.

TABLE 2

TOTAL ENERGY FOR SEVERAL BOND LENGTHS, FOR ONE STO (S) AND ONE (GTO)

CALCQULATIONS
rABCauJ - Energy (au)
G(CI)* s G
1.0 0.8956 0.9859 0.8850
1.5 0.9962 1.0972 0.9800
2.0 0.9805 1.0808 0.9580
3.0 0.9089 0.9828 0.8613
5.0 0.8525 0.8343 0.6942
7.0 0.8488 0.7708 0.6250
= 0.8488 1.0 0.5737
E, = -0.4244

H
-=-0.2487
EH 8

* Energy calculated Including Configuration Interaction.

Figure 2 shows a plot of the square of the CI wavefunction coef-
ficients (C;, C:) against the H-H bond length. The resulting graph
has a curious shape and shows that about 3.5 on the value of C? starts
to be of importance.

We would like to acknowledge interesting discussions and sugges-
tions with Carmen Varea and A. Pisanty.
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Fig. 1. Total energies as a function of bond length.
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Eig. 12. Square of the coefficients of the CI wave function as a func-
tion of the bond length.
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