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ABSTRACT

The Optics of Metals is an interdisciplinary subject, of interest
for courses of Electromagnetic Theory, Optics, and Solid State Physics.
The review is meant for presentation at the undergraduate level. The
subject matter is chosen for its simplicity and includes the following
topics: the optical constants, the Drude model, inhomogeneous waves,
propagation and refraction (including the skin effect), reflectivity
(including plasma effects), bulk plasmons, and surface plasmon-polari-
tons.

I. INTRODUCTION

The Optics of Metals is an interdisciplinary subject, and nume-
rous textbooks of Electromagnetic Theory(I), Optics(z), and Solid
State Physics(3] include sections or even a chapter devoted to it. A
book has been also published on this theme(4). Most aforementioned
texts are at the graduate level.

This review is meant for presentation at the undergraduate level.

Hence the subject matter was chosen for its simplicity, from both the
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physical and mathematical point of view. At the same time the inter-
disciplinary nature of Metal Optics is stressed.

The material properties of metals may be described in terms of
their "optical constants'. Various descriptions are in use and will
be given in Sec. 2. The Drude model(s] (Sec. 3), in spite of its
antiquity, is alive and well and most useful when it comes to specific
results for physical understanding of metallic behavior. In Sec. 4 we
show that electromagnetic waves in metals are not simple plane waves:
for a finite angle of incidence of the light the planes of constant
phase and the planes of constant amplitude are not parallel to each
other. Such waves are called "inhomogeneous'. They exhibit some in-
teresting propagation characteristics (Sec. 5) such as the skin
effect and the dependence of the phase velocity on the angle of in-
cidence. Sec. 6 deals with metallic reflectivity, the plasma edge,
the critical angle, and the Brewster angle. The last two themes to
be treated usually belong to Solid State Physics, however they fit
in naturally into a presentation based on electramagnetic theory.

They are plasmons (Sec. 7) and surface plasmons (Sec. 8). We shall
derive the various modes which may propagate in the bulk of a metal
and at its surface and also discuss optical techniques for their
excitation.

With the exception of the last section, which deals with re-
latively new developments, this review is limited to semiinfinite
metallic media (Fig. 1). A tutorial article by Nestell and Christy(6)
is available on the subject of the optics of thin metallic films.

A thorough treatment of the classical theory of optical dispersion

(7). Recent advances, including experimental

was given by Christy
data on optical properties of many metals and alloys are reviewed

in a monograph by Nilsson{s).
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Fig. 1 Refraction of a plane wave from an insulator into a metal.

The metal is characterized by either its complex dielectric

constant € or its complex index of refraction N. The wave

in the metal is inhomogeneous: the real and imaginary parts
of the wavevector § point in different directions for 8#0.

Note that the case 8 >0 may be realized for n < 1.

2. THE OPTICAL CONSTANTS e, o, AND N

One of Maxwell's equations,

4',-—}:—4_:* lgg
v xH rdE T (1a)

is frequently expressed in one of two alternative forms. In the

&
first, the conduction current J is "absorbed" in an effective dis-

placement vector Def :
T 7 30 g
HHE S5 & =g (1b)
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In the second description, that part of the displacement current
which is associated with material (non-vacuum) properties is "'absorbed"
-

in an effective current Jef:

<]+

-+ 1 .+
VxH = - LIS, (1c)
The formulations (1a), (1b), and (lc) are completely equivalent and
the choice is a matter of convenience.

The linear response corresponding to Eq. (1b) is given by

=

D¢ = E«E ; £ = & %46 (2)

where € is the complex dielectric tensor. This description is appro-
priate to anisotropic crystals. Alternatively, the linear response
appropriate to Eq. (1c) is

- = - - - . 7

Jg = 0-E , g = o0, +iao (3)
where ¢ is the complex conductivity tensor. Our review will be
limited to an harmonic time dependence, i.e. all fields and sources
are proportional to exp{iwt). Then substituting Eq. (2) in Eq. (1b),
and Eq. (3) in Eq. (ic), and comparing the results we find that

Eij = éij + (4ni/w) Uij 3 (4)
> -+ -
A cubic crystal is characterized by isotropy, i.e. Defrl Jefl] E
for an arbitrary direction of the electric field. Then the off-
diagonal elements of € vanish and the diagonal elements are equal.

Eq. (4) is replaced by
e = 1+ (4mi/w)o ; (5)

0 is often called the "optical' conductivity. Separating Eq. (5)
into real and imaginary parts we get



ey = 1 - (dn/w)oy , € = (4n/w)oy . (6)

The complcx index of refraction, N, provides a third descrip-
tion of the cptical constants of an isotropic dielectric medium. It
is defined by the relation

g = N2 = (n+ ik)? (7)
The real and imaginary part of € are given by

€, = n?2 -k , e, = 2nk. (8)

Conversely, the real and imaginary part of N may be found from Egs.
(8) in terms of the real and imaginary part of e. They are given
by the equations

1/2 %

2n2 (Ef + es) A (9a)

142

2k* (B # g - ~ (9b)

3. THE DRUDE MODEL

The Drude model(s) has gone a long way in explaining transport
and optical properties of conductors. The dielectric function has

all the merits of simplicity:

2

E = ]-U(m—i-%)‘ * (10)

The plasma frequency W, is given by i, = (Aﬂnezfm*)l/2 where n is
the density of the charge carriers and m* is their effective mass.
The other parameter of the model is the collision frequency (or re-
laxation frequency) v . Its reciprocal 1 = 1/v, is the collision
time. It is a phenomenological way to describe the average time
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between collisions due to complex microscopic processes such as electron-
phonon and electron-electron interaction. Note that, for v=0, the Drude
dielectric function vanishes at the frequency Wpr i.e. E(mp)=0.
By using Eq. (5) we can find the expression for the conductivity
that correspends to Eq. (10). It is given by
2

= o _ _ne‘rt
i) woeg—R Jo = —& ; ()
J, is the D.C. conductivity. This result may be derived from a simple
equation for the total force acting on an electron:
m* ﬁ = -EE - m* E . (12}
dt T

The second term is a damping force on an electron moving with the drift
velocity V. The current is given b}’cﬁ=~neV and Eq. (11) readily follows.
The real and imaginary part of the Drude dielectric function (10)
are plotted in Fig. 2. The large negative values of €; and its change
of sign atuFUﬁ)aTe characteristic of metallic behavior. The collision
frequency is chosen to be v=0.01 Ly (or mp1=100 ), which is a reasonable
value for a pure metal at room temperature. This frequency is usually
taken as a dividing line between the low-frequency region w<<v, and the
high-frequency region w>>v. However, a real metal does not often satisfy
the Drude model in a frequency range as wide as shown in Fig. 2. A fre-
quent test of the validity of the model for w>>v is plotting of experi-
mental values of £; as a function of »? (where ) is the wavelength), and
of 5 as a function of A3. 1In the case of "Drudelike' behavior both
graphs should be straight lines; this follows from Eq. (10) because

gp 21 - ué/mz i Bp = mﬁv/m3 (ve<w) (13)

The optical constants n and k for the Drude model are gotten by
substituting eq. (10) in eqgs. (9). The result is shown in Fig. 3.
Various useful aproximations are summarized in Table I. For this
purpose the spectrum is divided into five frequency regions.
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Fig. 2 Real part £) (solid line)and imaginary part €; (broken line) of
the Drude dielectric function. Note the changes of scale and
the change in sign of € from negative to positive in the vici-
nity of the plasma frequency. This is shown in more detail in
the inset. The regions I-V are defined in Table I.
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Fig. 3 Real part n (solid line) and imaginary part k (broken line) of the
complex index of refraction for the Drude model of a metal.

Table L. The optical constants of a typical metal classified according to frequency regions.
Drude Model
§ Frequency Relation Relation
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The most important limitations of the Drude model are the following:
1) It fails to describe adequately complex scattering processes, which can-
not be lumped into a single, frequency-independent scattering frequency v.
2) It ignores effects of spatial dispersion(B)'(g) (or non-local effects)
which can be described only by a dielectric function which depends explicit-
1y on the wavevector a, in addition to the frequency. These effects are
characterized by a more general response than Eq.(2), namely

ﬁef(‘ﬁ = Ie F,7) E (r") &3¢

in the isotropic case. By "nonlocal it is meant that D at a point T is de-
pendent on ¥ at other points T, If e (;;;') = eg(w) &f;:;'), where § is the
Dirac-delta function, then the "local' response 5(?) = e (w E [}) is recov-
ered. In this case the Fourier transform of E(;;;‘) is independent of ﬁ and
is given by €(w). ''Nonlocal" effects are important when g/ |1-iwt| 21, where
L= vpT is the mean free path of thecharge carriers and v is the Fermi ve-
locity. In the low-frequency region wr<<1 this condition reduces to qfz 1,
which means that the mean free path is of the order of, or larger than, the
wavelength 2n/q. The mean free path usually increases as the temperature is
lowered. Therefore effects of spatial dispersion may be very important at
low temperatures; the case of the anomalous skin effect is such an examp1e€3)
In the high-frequency region wt>>1 nonlocal effects are pronounced for
qup/wzl, i.e. when the phase velocity w/q is of the order of, or smaller
than, the Fermi velocity vi. 3) Quantum mechanical effects such as band
structure and the shape of the Fermi surface are ignored. The inclusion of
these requires much more sophisticated theories. 4) A particular effect
of band structure are interband transitions, which become extremely impor-
tant at sufficiently high frequencies, usually in the visible range of the
spectrumg7)’{8)lnterband transitions may be powerful enough to cause a dras-
tic deviation of the frequency for which ¢ (w) vanishes from the value -
They may also contribute a "tail" which reaches as far as the infrared
region. Clearly the Drude model is limited to intraband transitions.

The limits of the Drude model are often pushed further by means of
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various generalizations. a) It is sometimes assumed that the collision fre-
quency v depends on the frequency w. A dependence of the form
v = vg + Bw? is predicted on the basis of a theory of electron-electron scat

(10)

tering and is helpful in accounting for certain observations for the

noble metalsgllj b) Various groups of charge carriers, each one character-
ized by its plasma frequency wj and collision frequency vimay contribute to
observed properties. Then Eq. (10) is replaced by

w.2

e(w) = 1~ § w(w +livij . (14)

c) If the ionic cores are polarizable then &;g e(w) is not equal to 1 as
predicted by Eq. (10). This shortcoming may be remedied by multiplying
Eq.(10) by the factor e, the high-frequency dielectric constant. In this
case the definition of the plasma frequency must be modified, to read

Wy = (4mne?/m*c_)}/? This procedure is also valid for highly doped polar se-
miconductors (such as InSb or GaAs) in- a frequency region not very near to
the transverse phonon frequency W In the latter case ¢ _can be as large
as 16.

The alkali metals, the noble metals, and a number of transition met-
als satisfy quite well the Drude model for frequencies sufficiently below
the onset of interband transitions. Thus Eq. (10) is usually an adequate
description of metals for infrared and lower frequencies. Moreover, the
model may hold for very high frequencies (e.g. in the visible and the
ultraviolet range), provided that the frequency of interest does not lie
too near to an interband transition threshold.

4. INHOMOGENEQUS WAVES

Assuming that our medium is homogeneous, isotropic, linear and
sourceless an arbitrary component ¢ of the electromagnetic fields satis-
fies the wave equation,

24 . £3% .
Ve - et O (15)

£
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The simplest solution of this equation is a ''plane wave",[TzJ

6 = %ei(q.r - wt) (16)

where the wavevector § is related to the frequency by means of the
"dispersion relation"

q? = q?e(w), q, =w/c. (17)

Here q  is the vacuum wavevector. By Eq. (17), in the insulating medium
(with dielectric constant €;5) the wavevector is qOJE_O , and its component

along the interface is (see Fig. 1)
o, * qO/a—osin &, - (18)

This component is continuous across the inteface; otherwise no boundary
condition couldbe satisfied. We assume that the plane of incidence is the
x-z plane, thus Gy = 0, without restriction of the generality. Then, by
Egs. (17) and (18), the normal component of the wavevector inside the con-
ductor is given by

g =g - gt =8 (e eosinZSDJ. (19)

Because € is a complex quantity, so must be q,- Its real and imaginary

part are the solutions of the equations

qu - qzi = qi (ey - € sin?e ) (20a)
.
qu] q22 q; €5 . (20b)
We find
1/2
Z(qzl’zfqo)2 = | (e - zr_csinzeo)2 o + lgy = i—:asin2601 (zn

Thus the wavevector components B and g =g, :1qz are completely de-
1 2
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termined by the optical constants of the two media (EO,El , and e;), the vac-
uum wavevector ¢, and the angle of incidence BO.
The meaning of a complex wavevector is readily understood by writing

out Eq. (16) explicitly:

- y > >
- ¢Del[qxx + qzlz - the-qzzz _ ((poe-qzzz)el(}leq.r - wt), (22)

where

"

Req = q.x + qzlf (23)

is the real part of the wavevector. The imaginary part of -ﬁ has only a nor-
mal component {qzz), thus

q=Req+iq, 2 . (24)

We have a picture of a wave propagating in the direction of Req (which is
determined by the ratio qZI/qx) and attenuated in the direction Z. These
two directions coincide only in the special case of normal incidence,

6, = 0. The planes of constant phase are perpendicular to Rea and the
planes of constant amplitude are perpendicular to the normal to the inter-
face, 7. For % # 0, these sets of planes are not parallel to each other.
A wave possessing this property is called "inhomogeneous'': at a given in-
stant t, different points on the wavefront have different amplitudes, be-
cause the attenuation depends on the depth z of material traversed.

For insulating materials usually ep<<g and therefore, qzz« qZl
for arbitrary €,. For this reason the problem of inhomogeneousness of the
wave, although existent in principle, is not very important. On the other
hand, the optical properties of conductors cannot be described in terms of

ordinary or 'homogeneous' plane waves.
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5. PROPAGATION AND ATTENUATION IN THE CONDUCTOR

We shall first deal with the simple case of normal incidence, 90= 0.
Then q, = 0 and Egs. (21) reduce to

z(qzl,z/qo)z = (gi% + ea?)/? » €, (25)

By Egs. (9) we get

q, =4qn and 4, =gk . (26)

Z1 2 o

In terms of the complex index of refraction we may write

qQ=gq, =qN. (27

The wavelength is

2n 27w (28)

where Kp = Zﬁc/mp is the "plasmon wavelength'. By Eq. (22) the amplitude
of the wave falls off to 1/e of its value at the interface (z=0) after
penetrating into the metal to a depth z = 1/q_ . This quantity is the
"skin depth" & ; for nomal incidence, B

S Y. b . (29)
3 q qok 2rkw wp

The nommalized wavelength, A/A _, and the normalized skin depth d/lp are

plotted in Fig. 4 for a Drude metal, with n and k given in Fig. 3. In
the regions I-I1T we have A>>8§ and, therefore, the wave is damped out be-
fore penetrating into the metal to a distance of the order of one wave-

length. These regions are dominated by the '"skin effect”§13)strong at-
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tenuation of the wave, rather than propagation into the interior of the con-
ductor. On the other hand, in regionV, X<<§, meaning that the wave can
complete many oscillations before being damped out. This is the propagation
region and damping effects are quite small. Thus, above the plasma frequen-
cy, a metal becomes transparent. In the context of Solid State Physics this
phenomenon is called the 'ultraviolet transparency of metals“!sj It is
caused by the fact that the real part of the dielectric function becomes
positive and, therefore, the index of refraction (Nsn=/g,) is basically real:
the metal then behaves not unlike an insulator, as far as electromagnetic
phenomena are concerned. We shall have to say more on the ultraviolet trans
parency of metals in Secs. 6 and 7.

Now we return to the case of an arbitrary angle of incidence €, . The

wavelength is found from Eq. (23):

2m 2n
)‘= ) 30
Re q | (q,2+aq, )2 Y
Ax 21

where Ay and q, are given by Eqs. (18) y (21), respectively. One may also
define an index n', which gives the ratio of the speed of light to the phase
velocity of the wave:

.

n' = clRe Gl/w= (@ * @I /g (31)
- El + ¢ _sin2g » [(e]-eos'mze;)? s ei]l/ﬂm i (32)

It is interesting that n', and therefore the phase velocity in the conduc-
tor, depend on the dielectric constant e, of the insulator, as well as on
the dielectric constant e;+ie, of the metal. In addition, the phase veloc-
ity depends on 8. This has been recently stressed by Ciddor€14) However
the effect is most pronounced under skin-effect conditions, when q21 < qu'

The angle of refraction may be found from Fig. 1:

6 = tan ! (a,/q,) - (33)
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Fig. 4 The wavelength A and the skin depth §, both normalized to the plasmon

wavelength A, = 2ﬂc/m?, for normal incidence (BO = 0). For most metals
XP is of the order of 0.1 um. Note that A = 100 A, and
5 max P

min ~ 0.1 Ap.
By the continuity of q, across the interface we must have
-+ - -
q, = |Re q| sin® = qgn sin 8 . (34)

Hence Eq. (31) leads to
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n' sin & = n sin 6 . (35)
(o] o
This is the generalization of Snell's law of refraction, valid for an
absorptive on conductive medium. Note that n' reduces to n only under

certain restrictions. We define the "critical angle", 8 _, by equation

s:'mec = /81750 " gy 2 0w (36)

If we neglect effects of dissipation then k = 0 and, by Eq. (8), g1 = n?
and €; = 0. Then Eq. (32) may be expressed as follows:

n' = no(si_nzec + sinzeo + |sin29C - sinzeo{)lfz V2. (37)

Two possibilities arise, namely

n' =n if 8 <686 (38)

=—
]

n_sin 6 if e
o g

Iv
[=2]

(39)

In the first case Eq. (35) becomes the same as Snell's law for a non-
absorbing insulator. In the second case Eq. (35) has a solution only for
g = 90°. Thus the incident ray suffers total rsflection. Now, in an
insulator £; > 0 (with the exception of a very narrow frequency region in
the far infrared). Then total reflection may occur at an arbitrary fre-
quency, and 6. does not depend very much on the frequency. On the other
hand, in a metal e; >0 only above the plasma frequency and, by Egqs. (36)
and (13), 6. is strongly dependent on the frequency.

The reader may be puzzled by the fact that, in an insulator, total
reflection occurs only when the ray is incident on an optically rarer me-
dium, i.e. n<ng. Isn't a metal optically denser than an insulator? The
answer is that above the plasma frequency a metal is optically rarer even

than vacuum! In fact, for v<<w, we get from Egs. (8) and (13),

B



nZ =1 -bf)z/m2 <1 for w> Wy - (40)

"

In this case, and € 1 (vacuum), Eq. (36) becomes

(s}

Sinﬁc T - we /we |, w>w . (41)
In practice, dissipative effects doexist. Because of this, as well as prac-
tical experimental considerations, the effect of total reflection is not
easy to observe in metals.

Turning to the low-frequency regions I-IIT we find that the expres-
sion for the skin depth, Eq. (29) is also valid for a finite Ce provided
that sinZg, << |g,|/eo- In region I we get from Table I and Eqgs. (29), (8)
and (6)

1 g (42)
q0V5272 ViTo w

This is the well known expression for the ''classical' skin depthgs) In: ré-
gion I the optical conductivity is very nearly independent of w and o = o,
see Eq. (11). Therefore, in this region the skin depth is inversely pro-
portional to the square root of the frequency. This behavior is well
known for radio and microwave frequencies in metals at room temperatures.
At very low temperatures, however, a drastic departure from the simple de-
pendence s« /? is observed. Then the anomalous skin effect(3j’(15) is
operative, and is caused by the fact that the mean free path of the elec-
trons becomes of the same order or larger than the wavelength. As men-
tioned in Sec. 3, the Drude theory must be replaced by a more sophisti-
cated, so-called non-local theory of conductivity.

Table 11 gives some useful expressions valid under restricted
specified conditions. The Drude model, however, has not been invoked in
the derivation.
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Table I1. Basic relations for refraction at a metallic surface*
Relation
Region Assumptions q /q q, /q between e ]
g O Z; ‘o d
q, andq,
1 2
I, Ii; 111 |e1]>>¢ _sin28 n k < (n2n2sin?e,) /2 tan!|2osin &
» 11, E1l77Ey o 9,2 qz; o o T e
AY q <<q
By > 8 n?>> e, nk/n n e n_ sin 8, 90°
9,59
i
\F
& 2 ind k H i o
B, ¥ 8, n#<<ez<<e sin’éy ik s qzl qzz“ q, n sin 6, 90
v i
B, < 8, ni»> g n nk/n 4,2, n sin [H" sin 8, I
*
= - ¢ sinZe |1/2
n= |eyp - g, sin ﬁul /

6. REFLECTIVITY

Formulas for the reflectivity, for the case described in Fig. 1, are
derived in textbooks of electromagnetism and optics. These so-called
Fresnel formulas are gotten by a straightforward application of Maxwell's

eguations and the usual boundary conditions at the interface. We shall
quote the formulas for s- and p-polarized incidence: in the first case
the electric field of the wave is parallel to the interface, while in the
second case it is the magnetic field which is parallel to it. The results

for the reflectivity are

/E; Cos By - ¥YE -gq4 sinzeo 2
R, = (43)
/t, cos 8, + /e - g, sinZf_




€ cos B, - Ve e - €ZsinZf, |2
R = = 2 (44)
p € cos B, + v‘coa - ef sin2f
For normal incidence (6, = 0), both formulas reduce to
Veo = Ve |2 n, - N |2
R = st = (45)
YE; ¥ ofE n, +N

In particular, in region I (see Table I) we have k = n >> 1, and Eq.(45)
may be approximated by

2n 1/2
R;1-_n° 1_no[2i] ‘ (46)

nt

The last expression was gotten by using Eqs. (6) and (8). Eq. (46) ex-
plains why metals are such good reflectors of light at low frequencies.
Because n >>n the reflectivity deviates very little from one, the de-
viation being proportional to (u/c;)/2. This behavior is seen in Fig.5.
The plasma edge at w_ marks the onset of the "ultraviolet transparency'
of metals. At very high frequencies e+1 and, therefore, R-+0.

It is evident from Fig. 5 that, at oblique incidence, the plasma
edge is displaced to a higher frequency. We may derive this effect from
Eqs. (43) or (44), assuming that €, is negligible. If the second terms
in both the numerators and denominators of these equations are imaginary,
then the reflectivites are equal to one. Fore, = 1 the condition is

g2 e

€1 eosin?0, 1 - B sin2% = cofp, - <0 . (47)

We conclude that, for w < w_/cos Bo’ an ideal metallic surface is perfect-
ly reflecting (Rs = Rp =1).
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Fig.5 Reflectivity of a metallic surface for normal incidence (6, = 0) and
oblique incidence (8, = 45°). 1In the latter case results are shown
for s-polarized (Rg) and p-polarized ( ) light. Note that, at
oblique incidence, the plasma edge is displaced to a higher frequen-
cy, given by mp/cos 6. These graphs correspond to an experiment
with frequency scan.

The plasma edge also comes into play in the case of angular scan
(Fig.6): the frequency is kept at a constant value, greater than Wps and
the angle 8, is varied. Neglecting again e;, and using Eq. (36), Eq.(43)

may be rewritten in the form

_ |cos 8, - Vsin?6¢ - sin“6, |2
+ : ; (48)
cos 6 + /<in’B_ - sinZ@
o c 0

For any frequency, above w_, the critical angle 6_ is a real angle, given
by Eq. (36). Then, by Eq. (48), if 8, 2 BC we have Rs = 1. (The same is
also true for R). Of course, this is just what we would expect from the
definition of the critical angle. (see discussion following Eq. (36)).

The interesting point is that, for g5, = 1, the condition 6, 2 % is identi-
cal with the condition w < w _/cos 6, (or Eq. (47)). Thus we are led to the
understanding that, for a finite angle 8_, a metal is perfectly reflecting

(if ¢, is neglected) between the frequencies o and wp/cos B, because total
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reflection takes place. Of course, it is also perfectly reflecting below w_,
although for a different reason. In this frequency region € < 0 and no elec-
tromagnetic fields can penetrate into the interior of the metal due to the
screening effect of the free electrons at the surface.

We also note that RP' Eq. (44), vanishes for an angle given by
tan 6, = (E/so)llz. The RHS of the last equation defines the well known
Brewster angle (tan 6 = n/ny) of optics. Clearly, By < B.- While the mini-
mum in RP is too small to be notable on the scale of Fig.6(a) (withw= 2mp) .
it is very important in the case of Fig. 6(b) (withw = 1.1 mp).

7. PLASMONS

In the foregoing sections we were discussing waves which may propa-
gate in a metallic medium when an external wave is incident at the surface
of this medium. Therefore the waves in the conductor correspond to forced
oscillations, driven by the incident wave. In the absence of damping effects
these waves are transverse, i.e. the fields t and 7 are both perpendicular
to q. Now consider an obliquely incident and p-polarized wave. Tne normal
component fo the displacement vector is continuous across the interface and
therefore Dzo = e(w) Ez' This equation may be satisfied with Dza =0,

e(w) =0, and E, # 0. 1In words: with no external excitation whatsoever the
medium supports an oscillating electric field at a frequency such that the
dielectric function vanishes. According to Eq. (13), in the absence of
damping, this happens at the plasma frequency, w = iy This is then a na-
tural frequency of the system, and the corresponding '‘plasma oscillations'
are normal modes. If e(w) is given by Eq. (10) then the equation e(w) = 0
has the approximate root w = “‘p - iy/2. This means that the plasma oscil-
lations decay with a time constant 2/v = 2T.

Tt is not difficult to see that the plasma oscillations -umlike the
electromagnetic waves studied in the previous sections- are longitudinal,
i.e. the electric field oscillates in the direction of propagation. Indeed,
it follows from Eq. (1b) that
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Reflectivity R

Fig.6.a

Fig.6.b
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Angle of incidence 6 (degrees)

Reflectivity of a metallic surface at a constant frequency w = 2w,:
angular scan for p-polarized (solid line) and s-polarized (dashed
line) ligth. Note that the results for Rp and Rg differ appreciably
only in a limited frequency region. Almost all the light is reflec-
ted for angles larger than the critical angle 8.. There is a mini-
mum in at the Brewster angle Oz which, however, is not notable on
the scale of the figure.

Reflectivity R

60 70 80

Angle of incidence 8, (degrees)

Same as (a) for w = 1.1mp- The Brewster minimum causes Rp to deviate
qualitatively from Rg.
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¥ .‘ﬁef:o = e(w) iq-E . (49)

When e(w) = 0 we may have af # 0, i.e. Eq. (49) is consistent with an elec-
tric field component along the wavevector. The formal proof follows from
the following considerations. If €(w) = 0 then the RHS of Eq. (1b) vanishes.
Therefore we have ¥xli = 0 and V-l = 0, as well. These two equations imply

a spatially constant, or vanishing, magnetic field. We are not interested in
the first possibility, so we shall take H = 0. Then it foellows from another
Maxwell's equation, that

xE= -1¥-0. (50)

ELE

Therefore, gxE = 0 i.e. E||q. It is interesting that, unlike in other
electromagnetic wave phenomena, the oscillations of E are not accompanied by
oscillations of fi. Thus the plasma oscillations are an electric phenomenon.

The dispersion relation,w versus q, of the plasma waves is shown in
Fig. 7 (labeled L). The horizontal line exhibits ''dispersionless' behavior,
j.e. w= const. However, this simple result is shortcoming of our local
theory (see Sec.3). In a nonlocal theory e also depends on the wavevector,
and the equation ¢(wq) = 0 has a q-dependent solution for w. A small-q

expansion gives the following result:(s) »(8),(13)

w2=wd * (3/5) @VE . (s1)

It is obvious that plasma modes may be excited in a metal only by
p-polarized light, which possesses a normal component, E_, of the electric
fic1d. Melnyk and Harrison(g) have developed a theory ofbplasmn excitation
in metals. They suggest that the effect is amplified in thin metallic
films; in this case nonlocal effects play an important role. Lindau and
Nilsson(g) have successfully carried out the corresponding experiment.
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q

Fig. 7 The fundamental electromagnetic modes of a simple metal (schematic):
transverse bulk (T), longitudinal bulk (L), and surface (S) mode.

The dispersion relation of the transverse waves is given by Eq.(17).
Upon substituting Eq. (13) and rearranging, Eq. (17) may be written in the

form

W= Wl o+ c?e? (52)

The last result makes it particularly clear that propagation of electromag-
netic waves (with real q) in a metal is possible only for w > - This fits
neatly into the picture of the plasma edge and the ultraviolet transparency.
The transverse solutions (52) are shown in Fig. 7 (labeled T). In the limit
of very high frequencies the free electrons cannot follow, any more, the
oscillations of the electric field. Then the propagation in the metal becomes
like propagation in vacuum, and the dispersion relation approaches the

"light line".
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8. SURFACE PLASMON-POLARITONS

In the preceding section we limited the discussion to bulk modes of
the metallic medium. This means that the boundary and the adjacent insulat-
ing medium had no effect at all. We shall now show that the interface be-
tween a metallic and an insulating medium supports certain normal modes of
the electromagnetic field. They are known as "'surface plasmon-polaritons''.
(Several review articles are listed in Ref. 16).

We rewrite Eq. (17) in the form

2 +qg2 = g2 i 53
QG *49; =ae (53)
The corresponding equation for the insulator reads

2 -
g T al g . (54)

We have used the fact that Qs unlike q,, is continuous across the interface.
Next we take the x-component of Eq. (1b):

quy = - gk, . - (55)
Because E, and H), are continuous, for the insulating medium we write

quy = = 8By (56)
Dividing Egs. (55) and (56) we find

4, £ (57)

Eqs. (53), (54), and (57) may be solved for the three unknowns Ays Ay» and

A5t The results are



!‘ £ € \‘yz
U = 9 ‘—é‘oj (5%
= € (59)

qz qO (e+ €0}”7

(60)

q, =g €
Z o} TE:—EEST77 5

We shall neglect dissipation, assuming that € is real. Of course,
€, is real and positive. Then we can see from Egs. (58)-(60) that, in a
frequency region such that e(w) < - €4, both q, and q,, are imaginary,
however ay is a real quantity. Such a state of affairs has the following
interpretation. We have an electromagnetic mode which propagates in the
x-direction (in the plane of the interface) with a wavevector given by
Eq. (58). Its amplitude is maximal at the interface and falls off expo-
nentially away from it, with decay constants given by Eqs. (59) and (60)
in the respective media. It should be stressed that this decay is not
caused by dissipation of energy. Indeed, we have "switched off" the phe-
nomenological damping (v = 0), by assuming that € is real. Thus the
exponential decay is an intrinsic property of the mode, in fact just the
property that makes it a surface mode.

If we substitute Eq. (10) in Eq. (58) and solve for w versus qQy
we get a dispersion relation for surface plasmon-polaritons. It is drawn
schematically in Fig.7 (labeled S). The limiting frequency, Wes of these
excitations is gotten from the condition that the denominator of the

square root in Eq. (58) vanishes. Neglecting dissipation we have
£+Eo=l-w;/w2+eo=0 (61
or

¢ o o i3
vy =mp/m * Ex)" 1= (62)

If the metal is bounded by vacuum the RHS reduces tot»pffif This is the
well known surface plasmon frequency. It is a natural frequency of oscil-
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lation of the plasma at the surface, just as wp is a natural frequency of
oscillation of the bulk plasma. Both the electrons and the electric field
oscillate in the x-z plane. The tip of the vector F traces an ellipse in
this plane, at any point as a function of time (or, at any instant, as a
function of x).

At this point the reader may wonder vhether surface plasmon-polar-
itons may be excited at a metallic surfacc by direct incidence of light.
The answer, at least for a smoooth surface, is "no''. We may find the rea-
son by suitably rewriting Eq. (58):

1/2
A = qOJE_O = * qcfg_o : (63)

le| - g4

For simplicity we assume that our metal is bounded by vacum. Then Eq.(63)
becomes q, > Qs which reads: the wavevector of the surface plasmon-polari-
ton must be larger than the wavevector in vacuum. On the oter hand, for an
obliquely incident wave, G = q.sin 8, < q.. We conclude that direct excita-
tion is not possible because it would viclate the law of conservation of
momentum (of the light).

The missing momentum may be supplied in a more sophisticated, Attenu-
ated Total Reflection (ATR), experiment. It involves three media: a prism,

a thin metallic film, and air (Fig.8). The prism boosts the wavevector of
the incident light to a value qonp, where n, is the refractive index of the
prism (usually between 1.5 and 4). Then q, = qonp sin 6,. This may be made
larger thar q,, as required by Eq. (63), provided that np sin 8, >1. There-
fore, the surface polaritons may be excited only for angles of incidence
which are greater than the critical angle between the prism and the air.

In the geometry of Fig.8 the incident wave actually tunnels through
the thin film and excites a plasmon-polariton at the free metallic surface.
An optimum choice of the film thickness leads to experimental dispersion
relations which usually fit the theoretical one (for two media), Eq. (58),
very well. Of course, the light must be p-polarized, because the excita-
tion involves the component Ez, as well as Ex' The configuration of Fig.8
is known as the "Kretschmarm{”)geometry"; it has been suggested by S:Lmn“s)
for an experiment by undergraduate students. An alternative configuration
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-the ”O’tto“gJ geometry''- involves an air gap between a prism and a massive

metallic film. An experiment for students in this geometry was described by
(20)

Barker*.

light detector

source

prism

L ;e thin metallic film

surface wave

Fig. 8 Schematic representation of the excitation and detection of surface
electromagnetic waves (surface polaritons).

Fig.9 shows the result of theoretical simulation of an optical experi-
ment in the geometry of Fig.B.(ZIJ Note the dramatic minimum in the reflectivi-
ty for p-polarized light, which is completely absent for s-polarization.
Indeed, the minimum occurs at an angle greater than the critical angle between
the prism and the air which bound the thin metallic film. Roughly speaking,
the energy corresponding to the difference between Rg and Rp at the minimum
has gone into the excitation of a surface plasmon-polariton. In Fig.9 the
frequency w is kept constant; for this frequency the wavevector of the exci-
tation is gotten from the equation

q, = anp sin emin (64)
Repeating the same procedure for other values of , one may trace "experimen-

tally" the entire dispersion curve w versus Qy- This technique, and the re-
sulting curve are shown in Fig. 10. The result is quite similar to the curve
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The reflectivities of s- and p-polarized light as a function of the
angle of incidenc?zi?t constant frequency) in the experimental confi-
guration of Fig.8'" The deep minimum in the Rp curve is a result of
surface plasmon excitation. Definitions: D = dw_/c, where d is the
film thickness, Q = w/wp, N = v/wp, Q= qxc/wp.
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The dispersion relation for surface plasmons determined by simulating
an optical experiment in the geometry of Fig.8. The arrows in the
four insets at points along the dispersion curve show that these have
been determined from the minima of the versus Q curves (at cons-
tant 0). The scales of the Q variables of the insets are identical
with that of the main plot. Note the backbending at Q = Oy = 1.165.
The "light-line" Q= Q (broken line) demonstrates that the entire dis-
persion curve lies in the "non-radiative region". (From Ref.21).



labeled S in Fig.7. However, as q > the limit w~ wg is not attained.
Rather, the dispersion curve bends back at a limiting value of the wavevector
and a frequency slightly lower than(%. The reason for this effect lies in the
damping of surface plasmon-polaritonstzz) (in Figs. 9 and 10 finite values of
v/wp were chosen).

We conclude with an interesting point, attention towhichwas called
by Cardona{?s) The surface polariton is an undriven oscillation of the electro-
magnetic fields at the surface. Therefore it corresvonds formally to a reflec-
tivity problem with no incident wave, i.e. to an infinite reflectivity. Then
the denominator of Eq. (44) should vanish under conditions which give rise
to the existence of a surface polariton. We use Egs. (53), (54), and (18) to
prove that this is, indeed, true. The denominator of Eq. (44) may be then
expressed as follows:

el s -
€ cos + JE e - €2 sinEl (sqzo + eoqz)/(qoigg)

The expression in the first brackets on the RHS vanishes when Eq. (57) is
satisfied, as anticipated.
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