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ABSTRACT

On the basis of the critical state model, and using as its
equation JCH-Y = 0, the magnetization of cylindrical hard superconduc-
tors is calculated. The external magnetic field is applied parallel to
the axis of symmetry of the sample. It is shown that there are three
types of magnetization cycle curves that depend of the maximum applied
magnetic field. It isdemonstrated how to determine the parameters o and

Yy for any

) Y
cion Jcﬁi
geometria
lo al eje

experimental magnetization curve.

RESUMEN

Partiendo del modelo del estado critico y usando como su ecua-
=qa, se calcula la magnetizacidn de superconductores duros de
cilindrica cuando el campo magnético externo se aplica parale-
de simetrfa. Se muestra gue hay tres tipos de curvas ciclicas

de magnetizacidn que dependen del valor midximo del campo magnético apli-

cado. Se

demuestra como determinar los parametros a y y de las curvas

de magnetizacidn experimentales.
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I. INTRODUCTION

As it is well known, superconductors can be classified in two
large groups, namely type I and type II. Magnetization measurements
have played a very important role in determining the behavior of super-
conductors and in particular in their classification.

The main magnetic properties of type I superconductors can be
easily described in the case of a long cylindrical sample with its axis
parallel to the applied magnetic field H. Magnetic measurements show
that the superconductor is a perfect diamagnet, a property known as the
Meissner effect. In the superconducting state, there is no magnetic
flux inside the material because surface currents circulate to give the
specimen a magnetization exactly equal and opposite to the applied
field. This negative magnetization disappears when the applied field
strength reaches the critical value H. and the superconductor becomes
normal. For a pure specimen this behavior is reversible. The general
properties of type I superconductors are well explained by the BCS mi-
croscopic theory(I).

Consider now a long cylindrical type II superconductor, again
with its axis parallel to the applied field H. The total exclusion of
the field from the sample (Meissner effect) occurs only for values of
H smaller than Hc1’ the lower critical magnetic field. Above H_, the
flux begins to rise internally, but remains less than the external flux.
The normal state is reached at the field H_,, the upper critical magne-
tic field, at which the internal flux becomes equal to the external
flux. The region H., < H <H_,, called the mixed state, is threaded by
a large number of filaments of normal material lying parallel to the
applied field and each carrying the quantum unit of flux. The filaments
are surrounded by current vortices and repel each other so that they
tend to be spread evenly through the mass in a regular pattern known as
the Abrikosov lattice. The magnetization of type II superconductors is
a thermodynamically stable state, reversible and independent of sample
size. The theory of the magnetic behavior of ideal type Il superconductors
was developed by Ginzburg-Landau(Z), Abrikosov(s) and Gor'kov(d) (GLAG
theory) .



For type II superconductors having chemical and physical inho-
mogeneities exceeding atomic dimensions, the experimental magnetization
shows characteristics that are different from those predicted by the
GLAG theory. These superconductors show lower and upper critical fields;
that is, there is amixed state, but the magnetization curve is irreversi-
ble showing a hysteresis loop that is dependent on the sample size. For
an ideal defect-free sample of a type II superconductor in the mixed
state, the flux filaments threading the sample are free to move, subject
only to their mutual repulsive interactions and to a viscous drag, and
any nonuniform distribution of flux filaments disappears quickly.
However, for nonideal type II superconductors the flux filaments are pin-
ned or trapped by defects in the structure of the material and give rise
to an internal flux gradient. Such defects can be voids, normal inclu-
sions, grain boundaries, compositional variations, dislocations, etc. In
general, type II superconductors with the behavior described above are
called hard superconductors and in particular those with high HC2 values
are called high field superconductors.

The first phenomenological model to expla%g)the magnetic be-

veloped by Kim et al.(ﬁ), and is called the critical state model. The

havior of hard superconductors was proposed by Bean and further de-
basic premise of this model is that there is a limiting macroscopic su-
perconducting current density JC(H) that a hard superconductor can carry;
and, further, that any electromotive force, however small, will induce
this full current to flow locally. On the basis of this picture, there
is always a full current flow J. perpendicular to the external field H,
except in those fegions that have never felt the magnetic field. The
sense of the currents depends on the sense of the electromotive force
associated with the last local change of field. Bean(s) considered, as
a first approximation, a current density independent of H and found, in
a static magnetization experiment with a sintered VsGa sample, a rather
detailed agreement for fields below 10 kOe. On the other hand, Kim et
§1§6) reported a series of experiments on Nb-ZIr, NbBSn and V.Ga speci-

mens, covering a wide range of fields, and found good agreement with
the critical state model predictions using a field dependent current

density JC = o/ (H+Bgy), where o and B, are constant parameters.
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Silcox and Rollins(T) have calculated the magnetization of
hard superconductors considering the pinning force due to defects in
the structure of the material and the interaction force between flux
filaments. They were able to deduce the irreversible behavior and the size
dependence of the magnetization curve. It can be shown(g) that the
equation that gives the mean flux threading the specimen, derived by
them, can be reduced to the critical equation, J B const. Following
the approach taken by Silcox and Rollins, Yasukoch1 et at. (8) found
that the critical state equation that satisfactorily describes their
Y2 = const. On the
proposed the critical equation

experimental data on a Nb-IZr specimen, was JcB
(9)
1,

JB = a(e™BB+y). Each one of the empirically chosen equations agrees

other hand, Fietz et al

quite well with the experimental data obtained by each group. Thus, it
can be concluded that the critical state model is a satisfactory de-
scription.

This paper deals with the magnetization of cylindrical hard
type IT superconductors specimens, with the external field H applied
parallel to the axis of symmetry of the sample. As the critical state

equation it is proposed
JHY = (1), (1)

where the temperature dependent parameter o(T) is a quantity related to
the pinning strength of the flux quanta and the parameter y gives the
power dependence of the critical current density Jc on the internal
magnetic field Hi of the sample. In principle the parameter y can
take any real value, but the observed behavior of hard superconductors
is well described by taking y in the range 0sy <1.

Let us consider the response of the superconducting specimen
to changes in the applied field. Ampére's law for cylindrical symmetry

and for the critical state model reduces to

0, in regions where
there is no field ,
(2)

dr + 4T 4 in regions where
there are fields |,
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where the sign is fixed by Lenz's law. Now, combining Eq.(1) and Eq.(2)
and the boundary conditionl%=lii at the surface of the cylinder, we can
¢ilculate the internal field distribution in terms of H and r, for the
different field regions. It can be shown that an increment of the ap-
plied field in a virgin sampie causes a magnetic flux to penetrate
inside the sample to a penetration depth A, yielding an internal ficld
distribution, as is indicated schematically in Fig.1. The field profile
depends on the value of the parameter y. The current flows in the super-
ficial layer of thickness A. For a sufficiently large applied field,
H=H*, the front of the field profile reaches the center line of the
cylinder and currents flow through the entire volume of the specimen.
Let us now consider what happens when the field is lowered from the
maximum applied field, or peak field H,. As the field is lowered, the
surface feels an emf oppositely directed to the one felt as the field
was increasing, and this causes the flux to move out of the sample

(see Fig.2). Starting at the surface of the sample and moving inwards,
there is a reversal of the local current flow. When the field reaches
H=0, the field distribution is that shown in Fig.2 and there is a
trapped (or remanent) flux.

| H=H*
I
:
| |
H 5
| o
O A R r

Fig.1 Schematic representation of the internal field distribution for a
cylindrical hard superconductor specimen of radius R when the ex-
ternal field H, applied parallel to the axis of the cylinder, is
increased from H=0 to H=H*.
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Fig.2 Schematic representation of the internal field distribution when

the external field is de« reased from the maximum applied field
Hy to H=0.

It can be seen that for a given hard superconducting sample
for which y has some fixed value, there are three different field pro-
files for the remanent flux, that depend on the value of the peak
field Hg, as is illustrated in Fig.3. The first one (see Fig. 3a) oc-
curs when H, is not sufficiently high in order that the flux front can
reach the center line of the cylindrical sample. I[n that case, when
the field is lowered from H=H, to H=0, the resultant remanent field
profile is as that shown schematically in Fig.3a . The second one oc-
curs when H, is such that the flux front reaches the center line of
the cylinder but not so high as to completely Tub out the increasing
tfield protile when the field is lowered to zero, the field profiles for
the reranent flux is as shown in Fig.3b. The third one occurs when, Hg is
sufficiently high so that when the field is lowered to zero,the remanent
field profile does not exhibit any trace of the increasing field pro-
file, as is shown schematically in Fig.3c. Therefore, these three dif-

ferent remanent field profiles lead to a three distinct types ~f mag-
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netization curves that depend on the value of the peak field Hy. Our
aim is to calculate explicitly, by the use of the critical state
equation (1), the three different symmetric magnetization cycle curves
for cylindrical hard superconductor samples with the external applied
field parallel to the axis of symmetry.

! ! i
i . !
| i i H=Ho
! v = -“‘N : 4"“ --------
| : H=Ho
! e [ e N/
1 \\‘ 1 ’/ '
! H=H° \\ ! f’ :
e W B i \i -
N | I ‘i i/ 1
s \ / “!: \
A\ | 'l .
’ :
\ i H=0 ; H=0 : H=0
0 R 0 R 0 R
(a) (b) (c)

Fig.3 Schematic representation of the three possible remanent internal
field distributions.

II. CALCULATICN OF THE MAGNETIZATION

The magnetization M is defined by the following equation:
-4nM = [(H - Hy) dav Id\/, (3)

where both integrals are over the volume of the specimen, H is the
external applied field and H; the internal field. To perform the inte-
gration, H; must be stated in terms of H and r for the different field
regions of interest. This is done by the pertinent combination of

Egqs. (1) and (2).
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For the first stage of the magnetization, that is, when the
applied field is increased from 0 to H<H*, we have

0, O<rzh,
Hy(r) = 4

47
AN CR)! j;a(R-r)lL“Y+1), A<r<R,

where we assume that H; =H at r=R. The penetration depth A is the value
of the radius at which Hi becomes zero, that is
H'Y+1

L e R—
(y+1) adn/c (5)

Now, when A becomes zero we have, by definition, H=H*; therefore

_ Am 1/(Y+1)
H* = l:(\"'"} TGRjI i (6)

It is convenient to introduce the following dimensionless
variables:

P )
H*

: - -
TR

(where n represents any subscript that appears in the context). Using
these quantities, Eqs. (3) and (4) can be written as

-4mm = f(h-hi)dv/l(dv (8)

and

0 O<pss

hi (p) (9)

l[hyﬂ - p]"l/(YH)' s<p<l

where

dv = pdpdedz
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and

6§ = A/R = 1-p"™ (10)
a) Magnetization Cycle |.

Let us now calculate the normalized magnetization cycle corre-
sponding to the case when the residual magnetization profile is like
that of Fig.3a; that is, when the normalized peak field h, satisfies
0<hg<1. Fig.4 illustrates schematically the normalized internal field
distribution (only the right hand side of the cross section of the cy-
linder is shown) for the different stages of the magnetization cycle.
Following this scheme we have:

Step 1. The external field increases from h=0 to h=hy. The flux
front penetrates into the sample up to a point marked by ;. For

0< h< hy, the normalized internal field distribution is given by Eq.(9).
Substituting Eq. (9) in Eq. (8) and performing the integration, we have
that the corresponding normalized magnetization 1is

- 4gm = h- 201 qy*2 1_F_Y_ﬂ_h7”-| an
(v+2) 2y+3 Eh

Step 2. Once the field reaches h,, the field is diminished to h=0.

The magnetic flux begins to move out of the sample. From Eqgs. (1) and (2)
it is found that for hy<h< 0 the distribution of the normalized internal
fields is

05 Ospsdo

’
hy(p) = 4 [ALY' -1+ oM 5 <pcs (12)

[hY+1 i = p]1/(Y*1)’ §'<psl

bl

where

s, = 1 - h'y

L Ty g e 1--{}{5”-11“‘], (13)

1
2



152

—————

/el

———— =

C:’Sl. 3 1 p
1

0
% !
/ l
i o ; L=
h= H o
: \\‘\ -h’ZV(Y."hg
i A il
!
'
STEP (1) STEP (2) STEP (3)
hl_a-i/(yvlih'

T i o_..‘_._._...._._

STEP (4) STEP (5) STEP (6)

STEPR {7}

Fig.4 Schematic representation of the normalized internal field distri-
bution for the different stages of the magnetization cycle, for
the case when hy< 1 (only the right hand side of the cross section
of the cylinder is shown).
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The magnetization is calculated again substituting Eqs. (12) in Eq. (8),
giving

e - no 2000 | [M‘JW””*” [z-h“u h**]
o
(y+2) 2

<R | 12 Bg™ ] ] . (18)
2y+3

Step 3. The applied field is now negatively increased from h=0 to
h=-2"Y0*D) | The field distribution is

=

0,

nggéo 3

[h‘Yo-l-1 -1+ 011/(Y+1), GQSDSGO' ,
hy(e) = < (15)

EETY L 8 o6,

»
_[ ’thﬂ 1 o ]1/(Y+1), 65[351 ,
where
%

§F = 15 %ho” ) (16)

The calculated magnetization is

hY*1 (Y+2) /(Y+1)
-d4rm = - |h| - 2(00+1) [ 205 2 - hg+1
(v+2) l 2

. ih’w[z - ]] ' (17)

Step 4. The applied field h is now -2'1/(Y+1} h05}15 -h_, the field

distributicn is
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0, 0<p<é,

1
hi(p) = e R R e T (18)

Y
DY RARE IS AL AR P03

and for the magnetization we obtain

~4mm = - |n - 220 b%+1_|mvﬂ]w+n/w+n
(v+2)

(1 (1) hg+1 _(r+2) Ih|Y+1]
(2+3) (2Y+3)

+2 Y+1 Y+1
- lh]Y [1 Gk |h] ] ) (19)

(2¥+3)

To complete the magnetization cycle, we have to calculate the
normalized field distributions and the normalized magnetizations corre-
sponding to steps 5, 6 and 7 of Fig.4. The normalized field distribu-
tions can be obtained from those of steps 2, 3 and 4, by means of re-
flections through the p axis. Theexpressions for the normalized magnet-
izations for steps 5, 6 and 7 can be obtained from Eqs. 14, 17 and 19,
respectively, considering the effect of performing the inversion through
the origin of the graph of -4mm against h.

Fig. 5 shows a curve of a magnetization cycle, calculated
from the above equations, for the arbitrary values hy = 0.85 andy= 0.3.

b) Magnetization Cycle 1|
When the remanent magnetization is like that of Fig.3b, the
magnetization cycle is calculated when the normalized peak field h,

1/ (Y+1)

satisfies 1<hys2 The normalized internal field distribution,

for this case, is represented schematically, step by step, in Fig. 6.
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Fig.5 Normalized magnetization cycle curve for hpo = 0.85 and Y = 0.3.

The calculation of the complete symmetric normalized magnetization curve
can be done in a way similar to that of cycle I. The results are:

Step 1. Increasing field for 0<h< 1.

The field distribution and the corresponding magnetization are the same
as those of cycle I, that is Egs. (9) and (11) respectively.

Step 2. Increasing field for 1<h<hg.

The field distribution is given by

Y+1

hy(e) = (71— 1wV Opsl (20)

and the corresponding magnetization is

TR el [ pr+2 [1_Eﬂ_ hY”]
(v+2) (2Y+3)

L 0+1) [hYH ) 1](2¥+3)/(Y+1) 2N
(2v+3) ’
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Fig.6 Schematic representation of the normalized internal field distri-
bution for the different stages of the magnetization cycle for
the case when 1<h_< 21/(Y+1? (only the right hand side of the
cross section of the cylinder is shown).
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Step 3. Decreasing field for hoS hz0.
In this case we have

D R R S
ol w >
Bl = 0 L /) (22)
{_1 h "+ 1 - 9] ' S'<pel

whera 6' is given by Eq.(13). The resulting magnetization is

’ )
2(y+] RItT 4 pTHT | R0y ¢ ; :
- 4rm = p-20D !-{ng *h | ;2+hr‘+1_hrr+ﬂ
CONRR > | { ¢ |
L
| .
b 1 i £ : 47 »‘ RPN - \," \'.'1
__~|,‘1+2;1+ 'Y*"!Jh'-ﬂ i r'\dm)_.hé;pl- T'(Er"l\ F)l
| (2r+3) et ” J

(23)
: : . ; -1/ (Y+1)
Step 4. Increasing field negatively for O0<h<-2 hg.
( i ‘
GRS N L T
1 1 . .
h(e) = L1-el/T, geoce (24)

|
T TRARE S LA

1%

and
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P |2 AR ) ¥
h¢ ( ) ]

r_
- 4mm = - |p|- 22D 2-h
5 o]

(v+2)

Y. [
e (o Jommroen (e |

(25)
Step 5. Increasing field negatively for “2-1/(7‘1)h05}15'1'
T¥1 1/ (Y+1)
[hy - 1+p] ' O<psé
h; (o) (26)
1
3 A1V RAE O LA AL P 7
and
2(v+1 +1 +1) (Y+2) / (Y+1)
«#ym = = || - 2020 (hz -|hﬂ‘]
(v+2)
[1 S v (D) v
2v+3) ° (27+3)
O KT L [RYE3V (YA
(v+3) | °
S R I | YA (27)
(2Y+3)

We can observe in Fig.6 that steps 6, 7, 8 and 9 have the same
normalized field distribution as those of steps 2, 3, 4 and 5, respective-
ly, but with -h instead of h . In the same way as we have done in
cycle I, we have to do an inversion through the origin in order to obtain
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the corresponding magnetization. Fig.7. shows a normalized magnetization
cycle curve wheny= 0.75 and h, = 1.3.

-4rn|[
y=0.75
he=13

Fig.7 Normalized magnetization cycle curve for hy = 1.3 and ¥ = 0.75 .

c) Magnetization Cycle 111

When 21/(Y+1)5 h, << hc2’ we have a situation corresponding to
a residual magnetization like that on Fig.3c. The normalized internal
field distribution is illustrated in Fig. 8. The calculated results are
as follows:
Step 1. Increasing field for 0 < h < h.
The field distributions and the corresponding magnetization are the same
as those of step 1 and 2 of cycle II.
Step 2. Decreasing field for hg < h < (hOY+1— 2)
The corresponding equations for field distributions and magnetization
are Eqs. (22) and (23) of cycle II, respectively.
Step 3. Decreasing field for (hDY+1 - 2)1/Y+15 h: g 0.
For the field distributions we have

1/Y+1
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Fig.8 Schematic representation of the normalized internal field distri-
bution for the different stages of the magnetization cycle for
the case when 21/ (Y+1)< n <<h.5 (only the right hand side of the
cross section of the cylinder is shown).
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1

hit) = [h'*" w1 . g/ Ten, Osps1 | (28)

and for the magnetization
T

- B = oSl ’ Y+2(1+£’L‘)_h‘f’”]
(v+2) I_ (2v+3)

_ e ( v+1It2Y+3)/(Y+1)_].{29)
(2v+3)

Step.4 Increasing field negatively for 0 < h < -1,
We have

[ = p) WEED 0<pss |

’

hi(p) = . 2 (30)
= (IR = 1w pg YRR | S<pel

and

- 4rm = -|h| + 2—@1[ Ih|Y+2(2 - ,h)"”] - U*—U—J (31)
(Y+2) (2y+3)

Step 5. Increasing field negatively for -1 < h < -h,.

We have
h,(p) = - [IhIY+1 =] +pl1/m”. O<pst (32)
and
“4mm = - |n| + 20 [_1h|‘“2 [1 . m“‘]
(v+2) (2v+3)

- ‘) “hlv+1_ l](2¥+3)/(Y+1;1r33)
(21+3) ,- i
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“4mTm _-

=1
hu=2.o

Fig.9 Normalized magnetization cycle curve for hg=2.0 and Y =1.0.

086

-4Tm — he =23

04

02

-02

-0.4

-08

Fig.10 Three magnetization curves, corresponding to Y=0.1, y=0.5 and
Y= 1.0 whith h_=2.3. We observe that the normalized field
hpaxs the negative normalized meximum magnetization -4Tmy.. and
the remanent magnetization 4me have, in each case, different
values.



163

To complete the magnetization cycle, we have to calculate the
normalized field distribution and the normalized magnetizations corres-
ponding to steps 6, 7 and 8 of Fig.8. These calculations can be done
from steps 2, 3 and 4, respectively, just as we have done in cycles I
and IT. A complete magnetization cycle for y = 1 and h, = 2, is shown
in Fig.9.

Fig.10 shows three magnetization curves for Y= 0.1, y = 0.5
and Y = 1.0 with hy = 2.3, when the field h increases from zero to h,
and goes back to zero. Among the features appearing in these curves we
notice the strong dependence of the fall off of the curves, after pas-
sing through the maximum, on the parameter v; that is, we find that the
decay is bigger as y increases. Also, the normalized maximum magneti-
zation and the normalized field value at which it occurs depends on Y.
From Eq.(11), taking the derivative of m with respect to h and equating
it to zero, we obtain the normalized field hmax at which the normalized
maximun magnetization '4“"hmx occurs; that is

pYH L Y2 - Y Y(y+2)

(34)
L 2(v+1)
substituting this value of hmax in Eq.(11) we have
4am = O 1w fule Y+2 - /Y(Y*2) | 1/0v+1) )
max (2y+3) Y42 2(v+1) .

Hence, we have that both e and _4““hmx depend only on the parameter .
Fig.11 and Fig.12 show the graphs of hmax and -41'rmmax against y, respec-
tively, for 0 < y < 1. Another characteristic we observe in Fig.10 is
the dependence on y of the normalized remanent magnetization 4nmR.
Taking h = 0 in Egs. (14), (23) and (29) we can obtain 4ﬂmR, for any
value of h,. Fig.13 shows curves of 4mmp as a function of hy for ¥ = 0,
y = 0.5 and y= 1. We have tat the remanent magnetization, for any
value of y, increases with increasing h,, until hg, reaches the value
21/(Y+1}, and that it becomes constant thereafter. This constant value
will be large if v is large.
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Fig.13 The normalized remanent magnetization 4mm_ as a function of the
normalized peak field ho for y=0, y=0.5 and y=1.0
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III PARAMETERS w AND ¥y

We shall consider now how to determine the values of the
parameters a and y for any particular experimental magnetization curve.

When a virgin hard superconductor sample is magnetized, the
negative magnetization increases from zero, goes through a maximum and
then decreases. This part of the magnetization is given by Eq.(11).The
normalized field hmax at which the maximum normalized magnetization
'Mmmax occurs, is given by Eq.(34) as a function of the parameter y. By
definition hmax=Hmax/H*, where Hoax is the external field at which

maximm magnetization occurs. H__. can be measured from the particular
experimental curve. Therefore we can cobtain H* in terms of Hooo and .

06 —%
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£ 04 T
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E
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h |
<

]

0.2 —

]
0] 02 0.4 0.6 o8 1.0

e

i -4 H agai + for 0 < < 1.
Fig.14 Plot of 4vaax/ _— gainst y Y 5
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Putting h = h in Eq.(11) and substituting its value from
Eq. (34), we obtain

-4 - 41M 1
" Mrax o " max  _ (v+1) [1+ / } (36)
h Hmax (2v+3) y+2

max

The ratio -4anaX/Hmax is plotted in Fig.14 as function of the parameter
y(0<y<1). The value of this ratio can be calculated from the particular
experimental curve, then the corresponding value of y is obtained from
the graph of Fig.14. Once vy is known we find immediately the value of
H* and from Eq.(16), the corresponding value of the parameter a.

IV CONCLUSIONS

We have demostrated that there exist three possible symmetric
magnetization cycle curves, that depend on the value of the peak field
h,.
the basis of the critical state model, using as its equation JH; = a(T).

We have calculated explicitly these three magnetization cycles on

We have found that some characteristics of the magnetization curve, such
as the field hmax at which the negative maximum magnetization occurs,

the negative maximum magnetization -4Trrnmax and the remanent magnetization
4ﬂmR, depend on the parameter Y. These facts suggest that there could
possibly be a correlation between y and the pinning centers existing in
the superconducting sample. It will be interesting to perform a series
of experiments, controlling the kind of pinning centers introduced into
the sample, designed to find out if such correlation exists.
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