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ABSTRACT

A formal hydrodynamic approach to Brownian motion is presented
and the corresponding equations are derived. Hydrodynamic guantities
are expressed in terms of the physical variables characterizing the
Brownian systems. Contact is made with the hydrodynamic model of
Quantum Mechanics. y

RESUMEN
.

Se presenta una descripcidn hidrodindmica formal del movimiento
Browniano y se derivan las ecuaciones correspondientes. Los pardmetros
hidrodinamicos se expresan en funcidn de las variables fisicas que ca-
racterizan a los sistemas Brownianos. Se establece contacto con el mo-
delo hidrodindmico de la Mecanica Cuantica.
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INTRODUCTION

It is found in some fields of Physics, that the differential
equations representing a theory suggest a formal analogy with those of
Hydrodynamics. In the case of Quantum Mechanics, such an analogy was
recognized long ago, when Madelung(1} proposed that the motion of a
quantum particle could be described as that of ahighly localized inhomo-
geneity in a continuous fluid. The statement of hydrodynamic equations
for this system from the usual dsfinitions of the density and the
current of probability(z) leads to the appearance of the so-called
Bohm's potential(3’4'5) directly related to the pressure tensor of the

hypothetical fluid, and to the possibility of a causal formulation of
Quantum Mechanics. (6,7)

In this paper, we attempt to establish the analogy between the
equations governing the motion of a brownian system and the equations of
Hydrodynamics. Such an analogy is first suggested by the existence of
a continuity equation for brownian systems. From this equation and a
specific form for the velocity of the brownian particles, we derive
Smoluchowski's and the hydrodynamic equaticins, including an explicit
expression for the pressure tensor in terms of the quantities defining
the brownian system.

The case we deal with, is that of a brownian particle acted on
by an external conservative force field, and whose velocity is rota-
tional. Therefore, the expression for its velocity includes, besides the
contribution from the density gradient, a term arising from the presence
of the external force and another giving place to the required rotational
character.

Smoluchowski's equation, and the hydrodynamic equation of motion
are obtained in Section I, where an explicit expression for the pressure
tensor is given. Also, a "Hydrodynamic force' is defined through an
"effective potential in terms of the actual potential acting on the
brownian system. The relationship between these potentials is examined
further in Section IT where we linearize it to obtain a Schrodinger-like
equation solvable for the true potential. In Section IIT, contact is
made with the hydrodynamic formulation of Quantum Mechanics, and a
Bohm's potential is found. An alternative formulation of the Hydrody -
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namic model of Quantum Mechanics in terms of the pressure tensor is
proposed in Section IV.

I. A BROWNIAN SYSTEM WITH ROTATICNAL VELOCITY IN A FORCE FIELD

Consider a closed system of brownian particles where the conti-
nuity equation,

Bav.(pv) =0, ©
holds for the diffusion flux
5‘: p-{r = -DVp—%Vt{: +VX-5, [2)

vhete the first term on the right hand side arises from Fick's luw and
contains the driving force proportional to the gradient of the density
of brownian particles in a host fluid, the diffusiocn coefficient D
being assuned constant. In the presence of an external potential field,
another driving force appears such that the flux is proportional to it,
with a proportionality factor 98—1, where 8 is a measure of the viscos-
ity of the brownian particles such that 8-1 o Lo (t, is the relaxation
time of the brownian system). An additional driving force is given by
the last term, where A is assumed to have no explicit time dependence,
but is otherwise arbitrary. This term is introduced to include the case
of rotational diffusion flux.

Using expression (2) to obtain the divergence of p_\7, and intro-
ducing this into Eq. (1) one gets

2-v.@p- §%), (3)
where i: = -7$. Eq.(3) is Smoluchowski's equation(s) and describes the
system for t>> t.

The streaming and time derivatives of ¥V can also be calculated
from Eq. (2) to yield, after some lengthy but straightforward algebra,
the desired hydrodynamic equation:
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where the symmetrical tensor of the second rank T is given by

3 [ 3
T = -02| v2pa+n)T - AV(V0) - Elvp:m

1 > >
5 @A + 0]+ o5 (0A) (Pd)

1 [ (T<A) V9 + Vo(Va)] )
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f being the unit tensorand A is an arbitrary constant. In order to
complete the analogy, a hydrodynamic force per unit mass has been de-
fined in Eq. (14):

(6)

an

in terms of the "effective potential

voe 2wy - Lowe e g3 (7)
Hence, Eq. (1) is formally identical to the hydrodynamic equation of |
mot ion when F 1s identified as the external force per unit mass and T
is made to play the role of the pressure tensor.

Hitherto, we have shown that an expression for the velocity of
the brownian particles and the continuity equation are sufficient to
render Smoluchowski's and the hydrodynamic motion ecquations, Egs.(3) and
(4). It is also nossible to study particular cases of the general prob-
lem we have treated along the same line we used here or, altematively,
modifving our previous results according to appropriate phyvsical condi-
tions. These particular cases are:

a) A brownian system whose particles have irrotational velocity and are
acted on by a force field. The velocity can then be written as

¥ o= =D v;-g'w,

o=



c)

5]

1

and the hydrodynamical force F is seen to coincide with that of the
general case, Egs. () and (7). The pressure tensor, on the other
hand, takes on the simple form

3 )

3
T, = - D2 [ Wp(as1)T - AW(V) - © 7o% j (8)

-
End the hydrodynamic equation of motion is Eq. (4) with TO irstead of
.

A force- free brownian system of particles with rotational velocity,
the expression for which is

> 1 1 -+
= -D—=—Vp+—Uxa.
v o P70

The hydrodynamic force vanishes as expected, an the pressure tensor
is obtained from Eq.(5) as

>
>

F ot - lwd) @@ ¢ Dive ) + (mR)Te)
1 °© p p R

25
when To is given by Eq.(8). The hydrodynamic equation of motion for
the force-free case reduces to

v

- -
S @ V-VV =

o (9)

1 3
— VT
o 1
A force-free brownian system of particles with irrotational velocity,

the expression of which is

> 1
V=-D5Vp,

with vanishing hydrodynamic force and a presure tensor given by %o in
Eq.(8). The hydrodynamic equation of motion is that given by Eq.(9)
when Ty is used in the place of %1.

In the last two cases a diffusion equation,

30 - _ppe2
3t DVv4p

2
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is obtained instead of the usual Smoluchowski's. This is an expected
result, since the latter reduces to the former for force-free brownian

systems.

II. RELATIONSHIP BETWEEN THE ACTUAL AND THE EFFECTIVE POTENTIALS

From the definition of the effective potential per unit mass
V, Eq.(7), it is seen that a relationship exists between this and the
actual external potential ¢. Whenever ¢ is known, V can be easily
computed from this equation but, if V happens to be known, then ¢ can
in principle be obtained by solving the differentialequation (7); how-
ever,this is non-linear and its solution is not easy to get. In order
to linearize this equation we assume that a function f(¢) exists such
that Eq.(7) is a linear differential equation in f(¢). Using this
function we get that

V2E(¢) = £'(9) VZ¢ + £'(0) (V)2.

Comparison with Eq.(7) shows that

i ) TR
£'(¢)

or
FITC N B
£'(¢) 2D8

and integrating this last equation twice we arrive at the desired expres-

sion for f(¢), namely
f(¢) = - 2DB exp(-4$/2DR)
and the equivalent linear differential equation reads

D272y + V¥ = -2D %‘tf , (10)

where
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¥ = v/ny exp(-¢/2D8). (11)
Let us examine this equation: It is known{B) that

ZDB = .Zﬂ z
m
where k is Boltzmann's constant, m is the mass of a particle of the sys-

tem and T is the absolute temperature of the system. Therefore, Eq.(11)
can be written in the form

¥ = /ng exp(-m$/2kI) . (12)

On the other hand, Boltzmann's law of Statistical Mechanics
predicts(g) the distribution finction

n(F) = n, exp(-mp(r)/kT) (13)

for the number of particles arownd T, belonging to a system of np parti-
cles at temperature T and acted on by the external potential o (T).
Comparing Eqs. (12) and (13) we conclude that

¥y = /n

Hence, Eq.(10)and the meaning of ¥ resemble the Schrédinger
equation and the wave function of Quantun Mechanics, since in both cases
|¥|2 produces a probability density. It must be noted, however, that
Eq. (10) differs from Schrodinger's in that the coefficient of the time
derivative is real, which makes ¥ a (decreasing) monotonic function of
time instead of having the oscillatory behaviour of the wave function.

A difference also appears inthe coefficient of the Laplacian operator
which has a different sign from that of Quantum Mechanics.

I1I. BOHM'S POTENTIAL

Consider the tensor

+ 3
T = 02 vPoa)T - AV(YR) - %va

Since it enters the hydrodynamic equation of motion through its diver-



gence, and since
3
Velvipl - 9(W)] = 0,
it follows that we have only to consider the remaining term

2
- D2(V2pI - % VpVp) ;

the i-th component of its divergence being

33 i

3 1
= -2 | £ _° _ e
Q E ( BXj GXh éﬂh o)

L X

9p_9p
- 3)(4.; 9x

r
(repeated indices indicate summation from 1 to 3).
Using the fact that
B(fﬁikj E

Bxk axi

for an arbitrary function f, and interchanging the differentiation order
in the first term, differentiating the sscond term with respect to X,
and rearranging terms we are lead to the equation

6 = -9U, | (14)

where

(=]
n
)

o

Lo2p- L vpewp (15)

has the same density dependence as’ Bohm's potential(3’4’5)obtained in

the hydrodynamic formulation of Quantum Mechanics. The difference
between Eq. (15) and its quantum mechanical snalogue is the sign of the
right hand side. This result has the same origin as the difference dis-
cussed when dealing with Eq.(10) and the Schridinger equation.

IV. ALTERNATIVE FORMUIATION OF THE HYDROLMAMIC — MODEL OF GQUANTUM
MECHANICS

. ; : 4,5
In the vsual hydrodynamic model of Cuantum Mechanics (32 %25)
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one deals with the force Q defined in Eq.(14), and it is introduced in
the hydrodynamic equation of motion as the gradient of Bohm's potential:

-
v *> w B
5t + veyYv = f-7VU
with
U = -(h/2m?| L vzp - ] Vp-v;ﬂ.
L P 2p? J

We have shown in the previous section, however, that such a
potential can be obtained from a pressure tensor as that given in Eq.(8).
Henceforth, the above procedure can be reversed and a pressure tensor,

# 3 1
T = (h/2m)? |V2p(A+1) 1 - AV(Vp) - BVpr) ) (16)

for the quantum-mechanical case can be obtained. The correspending
hydrodynamic equation of motion will include the divergence of this pres-
sure tensor, emphasizing the formal analogy between this model and the
equations of Hydrodynamics. Again, the sign difference directly related
to the two Bohm's potentials is observed in Eqs.(8) and (16).

CONCLUSIONS

It has been shown that a formal analogy between the equations
governing the brownian motion and those of Hydrodynamics exists, and
the explicit form of the hydrodynamic force and the pressure tensor for
the hypothetical fluid have been given in terms of the quantities de-
fining the brownian ensemble,

In our approach, the equation of continuity has been assumed
to hold, and Smoluchowski's equation was derived from it. It is possi-
ble, of course, to assume the latter instead, but we have chosen this
view since, as we mentioned in the introduction the formal analogy we
studied is first suggested by the existence of an equation of conti-
nuity for brownian systems. Smoluchowski's equation is seen to reduce
naturally to a diffusion equation for force-free systems.

It has been pointed out to us that, in the approach which
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takes Smoluchowski's equation as the startingpoint, a more general ex-
pression for the diffusion flux would contain & tetmqu(?), with f(;) a
solution of Laplace's equation. The new flux is indeed consistent with
Egqs. (1) and (3), and modifies the form of the pressure tensor. Never-
theless, our results do not seem to be substantially affected by the
presence of new terms in that tensor.

We have also shown that the relationship between the effective
and the actual external potentials leads to a Schrodinger-like equation
for an exponential function of the latter, except that its solutiocns
are monotonically decreasing functions of time due to the real nature
of the diffusion coefficient of brownian systems.

A potential similar to Bohm's has been derived for brownian
systems from the pressure tensor of the hydrodynamic model and, con-
versely, a pressure tensor has been proposed for the hydrodynamic model
of Quantum Mechanics which so far had made use of Bohm's potential only.
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