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A formal hydrodynamic approach to Brownian metion is presented
and the corresponding equations are derived. Hydrodynamic quantities
are expressed in terms oi the physical variables characterizing the
Brownian systems. Contact is made with the hydrodynamic model of
Quantum Mechanics.

RESUNEN
Se presenta una descripción hidrodinámica formal del movimiento

Browniano y se derivan las ecuaciones correspondientes. Los parámetros
hidrodinámicos se expresan en función de las variables físicas que ca-
racterizan a los sistemas Brownianos. Se establece contacto con el mo-
delo hidrodinámico de la Mecánica Cuántica.
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INTROllJCfION

It is found in sorre fields of Physi.cs, that the different:hl
equations reprcscnting a theory suggest a faunal analogy wi th those of
Hrdrodynamics. In the case oí" QuanttUTI ~1echaniC's, slIch an analogy ""3'>

recognized long ago, when MadeItHlg(l) propased that the JOOtionof .1

quanttun particle cml1d be described 3S that of ahighly localized innomo-
gencity in a continuous fluid. rhe statcncnt of hydrodynamic equations
for thi5 system frem the usual d~finitio.1S of the density and the
current of probability(2) leaQ' to the appoarance of the so.called
Bohm's potcntial(3,4,S) directly related to the pressure tensor of the
hypothetical fluid, and to thepossibilityof a causal fonnulation of
QuantUJ:JMecbanics. (6,7)

In thi5 paper, we atte~)t to establish the analogy be~'een the
equat ions goycrning the motion of a brol\'Tlian system and the equations of
HrJrod~llamics. Such an :malogy is first suggested by thc €.<istenec of
a continuity equatian far brownian systems. From thi5 equation and a
specific form far the ve10city of the brawnian particles, "'"ederive
SnDluchowski's and the hydrad)11amic equath.;lS, including an e.xplicit
express ion [ar the pressure tensor in tenns of the qUíllltities defining

the br~nian system.
The case we dcal with, is that of a brownian partiele actea on

by an extelTIal eonservative force field, and whase velocity is rota-
tiona!. Thereforc, the expression [ar its velocity illcludes. besidcs rhe
contribution from the dcnsity gradicnt, a term arising [roro the prcsenc0
oí the extenla1 force and another giving place to the required rotational

character.
Smoluchowski's eguatian, and the hydrad)l1amic equatian of rmtion

are obtained in 5ection l. VI'here :m expl ici t C').vres5ion far the prcs5urc
tensor i5 given. Alsa, a "Hyuradynamic force" i5 defined thraugh an
"effective potential" in tenn..<;oí the actual potent ial acting on the
hrownian syst~. The relationship between thcse potentials is exaITÜncd
further in 5ect10n tI ,,"here we 1ineari:e it to obtain a Schrodingcr-like
equatian solvable for the true potential. In Section lIT, eontact is
made with thc hydrouynamic fOrnRllation of QuantumMechanics, and a
Bohm's potenti31 15 found. An altemat1ve fOrnTUlntion oí the Hydrody-



171

namic IOOdeloí Ql1antuIl ?v'ecI13rlics in term.c; of the 'pressure tensor is

proposed in Section IV.

J. A BRC1\NIAN SYSfBI 11"1111RafATICNAL VELOCITY IN A FORCE FIELD

Consiuer a closed systcm of brewnian particles where the conti-
mü ty eguatían.

(1)

.,
j

~
pv

~x a, (2)

.•.;heT~ the £.irs! term on the right hand sitie arises from Fick's lüW and
contains the drivi.ng force propoTtional to the gradient of the density
of brlJ\~lLian particles in a hast fluid, the diffusicn coefficient D
being asst.nred constant. In t..'1e prcsence of an externa] potential [icId,
another driving force appears sudl that the flux 1S proportional to it,
\'1ith a proportionali ty factor pS -1 J ""he re S is a rrca5ure of the viscos-
ity oí the br~lian particles such that 8-1

~ tr (tr is the relaxation
tirrc of the brownian system). An additional driving force is given by
the last term, ~here a is assumed to have no explicit time dependence.
but is othe~'ise arbitrary. This term is introduced to inelude the ease
of rotational diffusion flux.

Using expression (2) to obtain the di vergence oí p-;, and intro-
ducing this into Eq. (l) ooe gets

v • (D'lp - ~ t), (3)

"he re k = -v~. Eq. (3) is SlIlOluchowski's equation(8) and describes the

system for t» tI'.
The streaming aIld tine uerivatives of v can also be caleulated

fram Eq. (2) to rield, after sarre Jengthy but straightfoward algebra,

the desired hydrodynamic eq~tion:
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:¡
',.;here the sy;rvretrical tensor af the seconJ rlInk T is givcn by

:¡
T A7(Vp)

+ 1

BD
( 5)

ot
[ being the l.T\it tensarand..\ i;; :m arbitra:-y constan~. I:1 arder to
con:plcte the analogr, a h¡drod)l1<lmi,: forc~ per lnit m....tss has been ue-
fined in Ego (14):

-9 v ,

in tenns of t:,e "effective ?Qtential"

(6)

v 01, (V~)2 + ( 7)

lI€'nce, Eq. (.l~~15 fonnally idcntical to the hydroJ~11amic equat ion of :~
rootion .....-hen F 1:; iL1entifieu :lS the external fon.:c per unit ITk1.SS anu r
¡s made to play the role of the prcssure tensor.

f1ithcrto, .•.•.e havc sh()\OOTIthat an cxpression for the \clo('ity of
the bro .•.•llian particles and the cont inult)' cquation are suffkicnt to
render SnJ(:Jll~chOVw-ski's ami the hyJrod)1lamic motian ('quat ions, t:q~. \ 3) ,mu
(-l). It i~ a1:-;o f'o3siblc to stllJy particular C"3ses of the gen€'ral prob-
Il'm .•.•'l' ¡la\'e tre<lted :l1ong tlle sarr.c linc ',\'í' \.l5cd ht'rl' or, :lJ,elll~lti\('ly,

~Ddifyillg OUT rrcvious re'sult$ <1ccording to appropriate physical coodi-

tions. mese particular ca-;es are:
a) ,\ brO\\nl,m systerr. y;hose lJarticles ha\'e irrotat.lunal vclocity ar.tl are

aeteu 00 hy a force rield. Thc velocit¡ can thC;1 be \\Tittcn as

•lO D ~ 'Vo
o
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~
and the hydrod)TIamic~1 [orce F is spen to coincide ~ith that of the
general case, [qs. (().l and (7). Thc prcssure tensor, on the other

ha:1d, tílkcs on the sirr.plc [om

1- 7[;'70e
( 8)

a'ld thc hydrod)l1amic equation of metion is f:q.(4) ,,~'ith To lrlstead of

1.
b) A force- free brov.nian systcm of particles ~i~h rotaticmal ,"daci ty,

the express ion for "hieh is

~
v

1 1 ~O - 'iJp + - Ilxa
p p

Thc hydrod)l1amic force vanishes as expected. an tne prcssure tensor

is o~tained from Eq. (5) as

~
.•.•.hen 10 is givel1 by Eq. (8). The hydrodynamic equation of :rotion for

the force-free case reduces to

av -~ .....
at"+v,'iJv= 1 v. i

p 1
(9)

e) A force-free bro,,",nian s)'5tem oí particles \.:ith irrotational velocity,

the expression of "hich is

~v = 1D - V.
p "

".,...ith vanishing hydrodyna.'Tüc force a'ld a presure tensor gh"en by To in

loe¡"(8)" n,e hydrodyn'll:1ic equat i~n of mot ion is that gi\"cn by Eq" (9)
~~en fa 15 uscu in the place oí T

1
•

In the last t",o (¡'lses a diffusion cquation,

dO 23t = -DV p
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is obtaÍnE'dinstead oí the usual SIOOluch()\oo'ski 's. This is an expected
result, since the latter reduces to the fonrer far force-free brov.nian

systems.

110 RELATICNSHIP BE11I'EEN11JE ACIUAL Al\D 11JE EFFECTIVE PCYfE'.TIALS

Fram the definitían oí the effective potential per unir mass
V, Eq.(7), it is seen that a relationship exists between this and the
actual externa! potential~. Whenever<p is knmo.'Il. V can be easily
computed from this equation but, if V happens to be known, then ~ can
in principie be obtained by solving the differential equation (7); how-
ever,this is non-linear and its solution is no! easy to get. In arder
to linearize this equation we assume that a function f(~) exists such
that Eq.(7) is a linear differential equation in f(~). Using this
funet ion we get that

Comparison with Eq.(7) shows that

or

£ill =
f"(~)

£f'.ill =

f'(~)

-2DB

_l_ d~
2DB

and integrating this 1ast cquation twice we arrive 3t the desired expres-

sion for f(~), namely

f($) • - 2DB exp( -$/200)

and the equivalent linear differential eq~1tion reads
_ 2 D a~at ( 10)

where



~ = 100 exp(-~/206).

J~t us examine thi5 cquation: It i5 kno~n(8)that

175

( 11 )

206 = 2kT
m

'.,,'herek is Boltzm.'1IlJl's constant, mis the m3SS oí a particle of the sys-
tcm and T 1S the absolute tempcrature of the syste~. Thereforc, Eq.(11)
can be wri t ten in the forro

~ = ¡no exp( -m~l2kT) ( ~2)

On the other hand, 301tzr."ann's la"".oí 5t3ti5tica1 ~1echardcs

predicts(9) the distribution fl31cticn

nlrJ = "o exp(-mHr)/kT) ( 13)

for the mUTberoí paTticles arOlJ1d ~, belonging to a system oi no parti-
eles at tempcrature T and acted on by the externa! pateotial ~(r).
Ccmparing Eqs. (12) and (13) we concl~le that

~ = /n
lIence. Eq. (10) and the rreaning of ~ reoe;;:ble the SchrBUinger

equatian and the wave function of Quantwn ~~chanics,since in both cases
I~I'produces a prohability density. Jt must be noted, howe\'er, that
Eq. (10) differs froro Schrodingerls in that the coefficient oí the time
Ueri\'ative i5 real, which makes '¥ a (decreasing) roonotonic ftmction of
time instead of having the oscillatorybehaviourof the V.'avefunction.
A difference also appe3rs in the coefficient of the Laplacian operator
\.hich has a different sign from that of Quantum ~lechanics.

nI. BC1N'S IüfF .•~'TIAL

C0;15 idcr the tensor

1
0
= -D' [ V'p(A+l) t - AV(Vp)

Since it enters thc hydrodynamic equation of mation through its diver-
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gence, and since

V(Vp) ) = O.

it follows that we have only to consider the remaining term

:t 1D'(V'pI - p VpVp) ;

the i-th component of its divergence being

Q. =~

(repeated indices indicate summation from 1 to 3).

Using the fact th3t

a (fÓ'¿k) af

dXk ax.¿

for:m .:llbitrary flU1ction f, anl intcrdl3I1ging the Jifferentiation arder
in the first tenn, differentiatjng the- second tenn with rC3pect to xk
anu n~3rranging tenns WC'are lcad to the ~C¡lntion

where

+

Q = - VU •

_1_ Vp'Vp ]
2p'

(14 )

( 15)

has the srune density JepcnJence as' Bohm'5 potential (3,"¡',S)obtaincd in

the hydrod}71anUc fornulation oE QU.1ntlDTIMech.1nics. 110e uifferencc
bel ..•..een Eq. (15) .md its tllL'lntum mechnnic:11 <:!nalogue i5 the 5i.gn of the

right h~,d 51de. This result has thc S~~ origin as the difference dis-
cusseu when :Jealing wi th Eq. (la) antl t.,'le SChrtlCinger ~quat ion.

[v. ALTER.'L\lTiE FO}~.]IL\Tlt>.'J OF TrIE HynKUIJY~¡A\JTC ~:ODEL OF (UN,T!.:N

,lEl)l,'J]es
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one deals ~ith the force Q defined in Eq.(14l, and it is introduced in
the hydrod)TIamic eguatian oí motion as the gradient of Bohm's pateotial:

Vv ~
f - VU

u - (hl2m)' r .1. v'p - ~ Vp'Vp ) .
, p .p' I

\\'e have ShOhTI in the pre\"ious section, hm.:ever, that such a
patential can be obtained from a pressure tensor as that given in Eq.(8).
Henceforth, the above procedure can be reversed and a pressurc tensor,

t = (h/2m)' [V'P(A+l) T - AV(Vp) - ~ vpvo] , ( 16)

far thc quantum-rnechanical case can be obtained. The corrcsponding
hydrodynamic equatían of rJX)tion y,dll inelude the di\'ergence of this pres-
sure tensor, emphasizing the formal analogy be~.cen this ITDdel and the
equations oí Hydrodynarnics. Again, the sign difference directl)' related
to the ~o Bohm's potentials is obsef\~d in Eqs.(8) and (16).

COt\CLUSlO~S

It has beco sho\o.TI that a fonnal analogy ben ...een the equations
governing the brol'.nian IOOtionand those of Hydrod}namics exists, and
the explicit form of thc hydrod}TIamic force and the pressure tensor far
the hypothetical fluid have been gi\'en in terms of the quantities de-

fining the brownian ensemble.
In our approach, the equat ion of cont inui ty has heen assLmled

to hold, and Srnoluchowski's equation ~as derived from it. It is possi-
ble, of course, to assLDTIethe latter instead, but he haye chosen this
vie", since, as w'ementioned in the introduction the [onnal analogy \,;e
studied is first suggested by the existence of an equation oí conti-
nuit)' far bra ••..•nian s}'stems. Sroolucho••..•.ski '5 equation is seen to reduce
naturall)' to a diffusion equation [or force-free s)'stems.

It has been pointed out to liS that, in the approach •....,hich
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takes Smoluchowski' s equation as the sta1'! ing point, a rore general ex-
pression for the diffusion flux "ould eontain a tenn Vf(r), "ith f(~) a
solution oí LapIacels equation. The ne""flux is indeed consistent with
Eqs. (1) and (3). and modifies the fom of thf' pres5ure tenSCT. Nc\"cr-
theless, OUT results do not seem to be substantially affected by thc
presence oí new tcrms in that tensor.

We have a150 shown that the relationship hetwcen the effectivc
and the actual externa] potentials leads to a Schrodingcr-like eqwltion
£01' an exponential function of the Iatter. except that its solutions
are ITrmotonical1y decreasing ftmctions oí time duc to the real nntur('
oí the diffusion coefficient oí hrrn~ian systcms.

A potential similar to Bohm's has hecn derived far bnownian
systems from the pressure tensor of the hydrodynamic model ando con-
versely, a pressure tensor has been proposed for the hyurodynamic model
of Qu<mtum ~~chanics which so far had made use of Bohm's potential only.

REFEREI'CES
l. Madelung, E., Z. für Physik, 40 (1926) 332.
2. See for example: Landau, L.O.and Lifshitz, E.M., ~ntum Meehanies

Non-Relativistie Theory, Pergamon Press, Oxford (1975)ehapter 111.
3. Bohm,O., Phys. Rev., 85 (1952) 166.
4. Bohm,D., Phys. Rev., 89 (1953) 458.
5. De Ja Peña-Auerbaeh, ~ and Gare;a Colin,L.S., J.Math. Phys. ~ (1968)

922.
6. Bohm,D. and Vigier, J.P., Phys. Rev., 96 (1954) 208.
7. Keller, J.B., Phys. Rev., 89 (1953) 1040.
8. Chandrasekhar, S., Rev.Mod~Phys., 15 (1943) l.
9. See for example: Morse, Ph.M. ,Thermai Physies, W.A. Benjamin lne.,

New York, (1965).




