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ABSTRACf

A review is made of different exactly soluble models of a fi-
nite number of fermions, in order to study the properties of the Hartree-
Fock approach, relating them to those of the exact Schr~dinger solution.
Particular attention is paid to the description of phase transitions.

RESUtolEN

Para estudiar las propiedades de la aproximación Hartree-Fock
se hace una revisión de los diferentes modelos con soluciones exactas de
~ número finito de fermiones relacionándolas a aquellas de la solución
exacta de Schrtldinger. Se pone atención especial a la descripción de las
transiciones de fase.

* Member of CONICET. Argentina.
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l. INfRWJCfION

Exactly soluble models have proved to he extremcly useful in
thcoretical studies concerning the validity and/or usefulness oí diverse
theoretical approaches developcd in arder to investigate the manifold
aspects of the quantum many-body problem.

Of these models, the most widely kno-n is perhaps the 50-

called Lipkin fbdel (1), which is strongly appealing beca use of its ele-
gance and simplicity, being based on SU2 algebra. In the present ~ork,
~hich is devoted to the Hartrce-Fock (HF) approximation, we shall concern
ourselves with the peculiarities oí this basic thcoretical approach both
in the case of the Lipkin ~bdelJ and in that oí sorne generalizations oE
it, guided by the fact that we have available the exaet Schrodinger 50-

lution. Thus, we will be in a position to 355ert whether special fcatures
predicted within the l~ context have their counterpart in the exact wave-
function.

The basic ingrcdicnt of the rnoJels to be described lies in
the so-called quasi-spin algebra, which we discuss below.

". QJASI-SPlN OPERATORS

The models that will occupY our attention deal with N parti-
eles, distributed in two (Zn)-fold degenerate single-partiele (s.p.)
levels which are separated by the s.p. energy £. We characterize the 2n
lower states by Ip,u = -1) and the zn upper ones by I P,u = 1) (for
p = 1,2, ... Zn). Thus, each s.p. state is completely characterized by
the two quantum numbers p and u.

Lipkin et al~l) introdueed the operators

'. ¡: t
J. J' e x ep p,. p,-

1 ¡: u e~,u
( 1)

JZ ¿ eP,u
P,u

\\'here

whi le

e is the Uestruct ionP,uct crea tes a particlcP,u
operator for the single [cmion state P,lJ.

in that state. 'loe opcrators (1) satisfy
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cornmutation relations iclentical to those for angular momentum operators.
thus the narre quasi-ópin [q.s.). Wehave then to deal with an SU2 algebra
and there exists a Casimir operator

(2)

.hich corrmutes with the three operators J+' J anu JZ' Sorneof the l~
~y b~y states of OUT system can then be classified as eigenstates of
J2 and JZ labelled by quantum-mmbers J, ~f such that

,
J2 J,M } J(J +1) I.J,~f),

~f IJ,M) .
(3)

Lipkin's hamiltonian reads(l)

HL
E L ~ ct e + K L L ct ct"2 ¿ e eP,l.! P,lJ Pl'lJ P2' \J P2,-lJ PI,-lJ~ Pl,P2 ~

E Jz + K L L c
t [ L"2 e e ) e

~ PI Pl,~ P2
P2,¡J P2,-jJ PI,-lJ

(4)

~ñen the interaction, that does not affeet the p-quantum number and is
accordingly referred to as a monopole ane, is switched off, the system
will be found in its unperturbed ground state (u.g.s.)

I u.g.s. ) - NIJ = "2 M N )¿ (5)

as it is easily seen from the definitían (1), i.c., the lowest possible
value of JZ is obtained when a11 particles accomodate theITlSelves in the
lower level, ando acoordingly. the rnaximum possible value far J is the

rrDdulus of I\IN.

It is obvious from (4) and (Z) that

IHL ' J21 = O, (6)
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".,.hichmeans that J is a good quantum number and that the exact solution
is obtained by diagonalizing HL ",,'ithin a given J-multiplet. Since the
lT1<'1ximum\"aluc of J is i, the size of the matrix to be diagonal i zed 1S at
mast (:\+1)>: (:\+1), a simple task if ~ i5 not too large. \\'c sC'e tl]('n that,
".,.ith Lipkin's hamiltonian, only a few of the ZNrnany-body st<ltes rcferreJ
to aboye becomc relevant, and one is often interesteu just in the ~+1
states pertaining to the J-multiplet that eontains the u.g.s.

There are sorne additional operators of the t)~e (1) that will
be of interest too as the '1.5. pairing ('l.s.p.) operators introdueed by
Cambiaggio an Plastino(2):

Q+ 't ¡: et etQ- p p,+ p,.

Qo 1 ¡: et . 11 1 ' .11, (7)2" e 2"N
p,~ p,lJ p,~

Q2 Q2 + i (0+ O + Q Q+)o
,

~here N is the number operator. It can be easily sho".,n that the Qi obey

angular-rrorrcntum cOJIlllUtation rules. :Moreover, any Q-operator COTTvnutes
with all J-operators (SU2 x SU2). Obviously, Q+ cre~tes (and Q. destro)"s)
two particles which yield zero contribution to the J~-vallle, and which
could then be said to "eouple" to M = O, Thus, the Q-opcrators behave in
the sarue way as the pairing ones oí the theory of nuclear st~erconducti-

vit/3) .
Wc5ee that a complete orthono~'1l basis exists characterized

by the eigenvalucs oí the operators 32, 62, 3z and Oc, i .c,' I J ,Q,M,Qo>.
'f11eminimumpos5ible valuc of 0

0
is attained when N, the ntmber of parti-

eles, i5 zero and then 00 = -O. The maximumOc obtains when N = 40 ,
and then Qo = n. In the Lipkin Model onc always has N = 2 n and Qo = O.

Let us no".,'considcr the general multiplet I O,Qo > . Thc
eigen\'alucs of 0

0
will depcnd only onthepartic1e-ntmbcr, v..hich for gh'en

Q varics, according to (7) bet"een

and

-; (Q = -Q)
MIN o 211 - 2Q (8)



2n + 2Q. ( 9)
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We can define a "scniori tyl! quanttun munber v, which can be referred to

as a q.S. senioritYJ as

v = N (Qo = -Q),MIN (10)

which indicates the m.mi:>eroí particles not "paired" to M = O, since

Q I Q, - Q) ;;O , (11 )

and so, v i5 the nurrber oí "tmpaired" particles in a Q_ rrn.J1tiplet.
From (8)

1Q = 2 (2n - v) . ( 12)

Now, if far a given .....pair J, Q we have v tmpaired particles, the miniJmJm
possibIe val,e for JZ in this (J,Q)-muItipIet is equal to -v/2. Conse-
quently, the q.s. seniority fixes a150 the value oí J:

J = vl2

J+Q =n
( 13;

( 14)

So that the states pertaining to the aboYementioned SU2x SU2multiplets

are characterized by just three quantum numbers: v, OC and M.
In the case of the Lipkin Model (N = 2n), the u.g.s. has J = n,

M = -n and Q = Oc = O. In the u.g.s. rnultipIet, only M varies, from- n
to +í¿. For this mI tiplet v equals 2n. The remaining JJRJltiplets in
the Lipkin Model can easiIy be characterized with the heIp of the q.s.
seniority concept, since fay them v decreases from it5 maximumvalue clown

to zera in steps of two.
This seniority classification of the different multiplets of

the Lipkin ~bdel constitutes one of the main advantages gained by the
introduction of the operators Q. Another is that, by allowing QQ to
vary, we can generalize the JOOdel to a variable ntmber of particles.

Another interesting set of q.s. operators is the following(4):



.?~8

't I •
5+ S c e 2:l-p+l,-

p P,+

,
S. J_

( 15)

I'he S-operators (ornmute among themseIves 1ike angular rooTTlentumones. If
one ,,:lnto;; to \.\ork :.:.imuItaneously with these S-operators and the aho\"e men.
tioned l-ones, it is necessary to introduce

U
1 I ct ( 16)"2 ~ cZQ_p+l,~ '

~ p,~

in order to clase the algebra. Besides, it is very use fuI to define

V 't 1
(J+ 5+)V "2 ••

't 1 ,
\\'+ W "2 (J. S+)

( 17)

V 1 (.JZ • U)z "2

Wz
1

(JZ U)"2

abtaining th'o additianaI cornmuting q.s. sets, the V and the W operators
(SU2 x SU2).

1 [1. 1l1E fl'J{fREE- FOCK APPROX lMATlCl\

In the case of the models discu ..<;sed here, the HF approach is

both cIegant and transparent in its application.
The Lipkin ~bdel is particularly relevant to the mixed-parity,

HF treatmcnt of nudoi by Bleuler ~.'~.(5! One can consider the ~ = ~ 1
shells as representing subshcl1s in the jj-coupling nuclcar sheIl model
ha\ing thc same valuc of j anu opposite parity. "henever states have
the saTI€ value of the quantum mnnber p and opposite valllCS of the shell
quantum mnnber, they must have opposite parity. The hami1tonian (4)

conserves pari ty as thc interact ion al\.\'ays invol ves a s imuItaneous
change in parity of t\.\'o p;ntides. The parity operatar can be defined
formally in tenns of q.s. openltors as a 1800 rotatian ahollt the :-axis
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in q.s. space(Ó),

( 18)

where the choice of the pr.1.se factor et1J dces not affeet any physical
resulto }breover, any hamiltonian built up with the operators J+, 3
ana Jz wiU COTIlTlutew'üh 32 amI with the operators

(19)

defined far all values af p.
In searching for the HF solution ene tries to Tet:ün in it as

r:'I3ny synaretries as possible. For the hamiltonian P) thcre exists a HF
solution which cansen'es all symnctries, being un eigcnstate of ]2 J

of fi :md of <111np' This is the U.g.S. (clearly a HF 501ution since
the intcTaction tem can produce onIy t",'o.particle exci tal ions en th i5
state). Other solutions -v.:ill viola te same of these s)'mnetries, and
people have concentrated mostly an those h'hich violate pari ty conserva.
tion. Such HF sta tes are called "defonnetl" anes by Agassi, Lipkin and
~~shko./6)" The rcquirernent that a trial flmction reIMins an eigenftll"lc.
tion of np restricts it to a vcry simple fom;. One necc1s emIy to consid-
er s.p. states obtaincJ by mixing a particular state having a given value
of the quantum numbers p and ~ with its partner in the othcr shell having
the sarre p-valueandopposite)J. A mixing of these u-."O states corresponds
simply to a rotation in q.s. space. The ~wapproach consists then in
looking for the zero particle-zero hole (Op-Oh) wave function in the ro-
tated frarne. The corresponding angle is that which will minimize the
expectation value of a given hamiltonian, built up ,,"'ith the J-operators,
with respect to this wave function.

tie (le.fine thus a "self-consistent" representat ion "a", in \\"hlch
:h,= b:ISis anrJ the s.p. sta tes are conne.::tetl by the lD1itJ!"y tra.¡'1:;fonnation

r ap ,- 1

l ap,.J
3

CO.3 "j

. . O
-.{ Slll 1

-~ sir. ~ 1 r Cp'_]

cas ~ J ep,.
(20)
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Ine lnvcrs~ tra.,sfonrration reads

Cp,_

,-....p,+

r cos ~
I
I

: i.. sin ª
l 2

<. sin -ª-2

cos Ii
2

r ap,-l
I a Jl p,'

( 21)

ano allows t~ to relate the 3.operators in the old basis to those in the
new one:

1 ,
Jx(c) 2" I J.le) • J _(e) J Jx(a)

,
:f¡

, ,
JyCe) 2 J_(e) ,).(e) J cos 8 JyCa) - sin S Jz(a)

, ,
JZ (e) eos B JZ(a) • sin S JyCa) (22)

In q.s. space this corresponds to

le
la

R(-B)!a},

R(B)le},
( 23)

S being the second Euler angle representing a rotation R arOl.md the
x-axis.

Since the HF state will be the Op-Oh state in the "a"- represen-
tation,it wil have the forme?)

10, a) " I J, -J, a} R(B)IO,e}

= ¡: [M,e} (M,e I R(B) I O,e }
M

(24)
J J
¡: '1-1 _J(B) I M,e) ,

M==- J J

•...here IM,e} = IJ,M,e} _ The flIDetions d are defined by Edmonds(S) ,
although the phase convention (21) requircs the replacement of his sint
by -i. sin ~ (7) The absolute squares of the mr.plitudes in (24) reprcsent
a binomial distribution, as found by Agassi et a1-(6).

We sce that the dynamics of the problem will determine 8, but
[or any hamiltoni~, that ~e may construct ~ith the q.s. operators J, the
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stl~Lture of the HF state will be that given by (24).
:\otiee, that the rotation (21) preserves the fonn of the oper-

ators Q defined in Eq. (7).
Finally. if one builds L~ a hamiltonian with the V- and W-oper-

ators oí (17), it ¡s not sufficient to perfonn a rotat ion ~h ich mixes

the : P.~) state with the I P,-~) one. as (21) does. Looking at the
definirían of the S.operators, Eq. (15), it is clear that ene must a1so
mix the s_p. orbital I P.~) with 1211-p+l,-W). This is eonveniently dene
in ~'O stcps, ¡.c .• ane performs the two successive rotations

As a result of (25) anu (26) both the V-q.s. and W-one rotate around the
x-axis. the fonner in an angle (a+S), the latter acording to (a-S)_

IV. SPIN-FLIP ~DDEL

In arder to obtain the exact solution corresponding to the
hamiltonian (4), it is necessary to diagonalize it. A simpler hamil-
tonían, a special case oí the Lipkin ~bdelJ has beco studied by Plastino
and ~~szkowski(9). for which both the exaet many-bod)' problem and the HF
one can be soIved analytieally. We shall eonsider it as our first appli-
cation. The harndltonian reads(9)

It is easily seeo that a "spin-f1ip" interaction. i.c .. one



th.l only exchange> the p.quantum nunber (p.spin) of the interaLting par-
tilI~s 15 giVf'n hy {2'71, wht're one .iu.•.•t "'IJh~tracts the (h.tgonal elements

. 1" ..
t I'olt the clllTtl~!l.tr 10n "2 (J.J • J '. In€' lerro to he ..:.ubstracted, let us

,.1Pllott.' 1 t I:n r, hile: tl,t'" f(\nn

1 -
2: N (28)

where cP 1$ a two-body operator whtch COITDTIutes with hoth ]2 and 3z' !\ow

IH ,.JZ I = O,PM
(29)

so that the exact ground-state solution will be that one, belonging to
the rult iplpt .J = "'J/2, \-o'hose 3z-value is such tha! the E'lleTgy 15 a mini-
mm. I"h15 value depends upon the strength oí the interaction, as wil1 be

seen he 1••", .
~ ..J N",e u.g. ,. 15 I = ¿

1h dl*,rator ,;p ,,¡h.ays yields ¿ero:

•

Within this .J.mu1tiplet

(30)

so we shall forget it in what follows. Setting £

(27) as

[. " 1'].JZ - k .J' - .JZ - Z N .

l(k K/E) we rewrite

(31)

FOT k = O the ground 5tate energy 15 Ea = - ~. Ií we switch on the inter-
action and le! k grow, the u.g.s. will becorne unstable when the expr~ssion
(31), for M =. ~. 1, is smaller than . ~. Illishappens fork=l/(N-l).
At this value, the 4uantum numbcr M of the interacting ground state jumps
from - Nl2 to (-,'\/2 + 1). This latter value will again becorne unstable
as k I.."Ont1Ooo5growing, and so on. One gets sevc:ral "phase transitions"
in M ¡lI1ti1 the value zero for the cigenvalue of JZ i5 attained. The
"phase t rans it ion" between M= -n and M = (-11+1) occurs at

k
(32)
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In particular, far 0=1 1,o,'e get k=l as the critical coupling constant fol',
which the grot.D1u statc of thc interacting system reaches ~1=O, a critica!
value which is ¡"dependen! of N. The ground state encrgy for k> 1 is
gi\'en by

E(M = O) - kN'/4. (33)

In order to use the HF theory we perfonn the transfonnation (20) :md,
with the help of (22), obtain

, N k(HF IHpMIHFl = (Hl= ¿1-cosS -¿ (N-l) sin'Sl, (34)

and

~ =~[sin S - k(N-l) sin S cos B 1 .as 2

The :mgle S which minimizes ( H l may then adopt the values

B O (trivial solut ion). 1J [for k > N~ 1 ]cos B k(n-1] r

(35)

( 36)

We see that the HF theory predicts a phase transition exactly
3t the poi"! where the SChrodinger solution exhibits ane. However. the
remaining phase transitions Isee Eq.(32]) are not seen within the HF

-1framework. The HF energy is, for k larger than (N-l) ,

E
HF

= ~ [-k(N-l] - ~] ,

which for k» 1 and N fioí te not necessari1y too large

( 37)

""-kE
HF

"" "4 N(N-l) (38)

Cor~aring (37) al' (33) with (33) cne sccs that EHF/Eexact- 1 as N - ~
Le., the HF3nproximation 15 exact in the thennodynm:ucal limito
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V. lllE LlPK1N HA'lILTCI':lA'IA'U HF lllEORY

We return now to the hamiltonian (4) and treat it within the HF
framcwork. Equation (22) yields(6)

( HF I HL I HF) = -£ J kos B + k(J-l/2) (1-cos2B)} . (39)

The HF solution is obtained by choosing S to minimize the expectation
vall~ (39). Setting E=l as befare, we obtain ~'O solutions:

a) for k(N-l) $ 1

B = O , EHF
N ( 40)2

b) for k(:-l-l)> 1
_ 1 E N [ -~]. ( 41)cos B - JWI=lT = 4 -k(N-1)HF

Comparing with (36) and (37) we see that tho HF treatment of
nL predicts a phase transition at the same vall~ cf k than in thc spin-
f1 ip casco Moreover, the analytical express ion for the HF energy is
identical in both cases.

HOh"CVer, the phase transitions that appear in both models are
actually very different. In the Lipkin ~~de), when one studies the prob-
lem for a finite number cf particles, one finds a critica1 coupling
constant in the HF approach, but not in thc exact 501ution. In the
thcrnodynamical 1imi t (N +00), instead, the ('xact grOlmd- state energy
presents a second-order phase transition. In the spin-flip IOCldelone
obtains a set of critical coupling constants in thc exact solution, even
far finite N. But they carrespond to first-order phase transitions which
are, indeed, level crossings. This rrcans that when the cOL~ling constant
reaches a critienl value, the energies of two different levels becomc
equal so that befare the phase transition the ground state is given by
ane of these levels and after it, by the other DIle. In thc H ..t: approach,
only thc first oE these critie,l coupling constants is cbtained.

Th(' hamiltonia"1 I"r. has the dra~back (frem the JlF vieW'"'¡-Á>int) oi
producing only two particle - t\\,'O hale excitatians. The u.g.s. thercfare
is already the IlF state and anl}' [ar not too SJMll valucs of the inter-
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action canstant the unperturbed solution becomes unstable. lt is desir-
able to have a moJel "hich yields fo,..'!.!l values of the eoupling eonstant
a non-trivial lW solution in arder to clarify this point. This will he
considered in the next section. In the spin-flip rnodel, although we do
have a trivial HF solution, this coincides with the exact one, so that,
when the U.g.5. becares unstable this is because the c.xact eigenstate
with ~1=-N/2, which represented the ground state befare the phase transi-
tion, becomes now one oí the ~xcited states of the system.

VI. THE AFP ~ODEL

A model with the cha,.aeteristies required at the end of the
preceding section has becn introduced by Abecasis, Faessler and Plasti-
no(lO). The eorresponding hamiltonian is

HAFP I L et • K L e L o te v e Cq,t1J P,lJ p,~ 7 p,vqOT q,o
p,~ P,lJ,V , ,

K ( z.12 2:12
, , , A A ,. •••••2 .•..2. e Jz • • • 2JZ(J.'JJ • 2(-J••J,)JZ-J_ -J)7 z

In this case it is convenient to perfonn the HF transfonnation with a
different phase than that of Eq. (20), namely.

eos 1!2

, sin ~

sin ~

eos ~
(43)

The s.p. transfonmtion (43) eorresponds in q.s.-space to the
following rotation:

A
,

Jx(e) . cos a Jx(a) sin a Jz (a)
,

Jy(e) Jy(a) (44)
,

JZ(e) cosa JZ(a) • sin B Jx(a)
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\Oiith Eqso (43) and (44) \oleobtain (£=1).
(HF! HAFplliF ) = -J cos S, k J {2J cos'S+1+sin'S+2sinSI,

(45)

"tere the angle B is found by sol ving the equation

2 1<( (N-1) cos S - cotg S 1

The fiF encrgies are quite close to the exact ones(IO) and the
overlap (EXAcrlfiF) ;s al\olays greater than 95~(IO) o

Possible phase transitions are not so clearly seeo in this
rr:odelas in the previous anes bccause nei thcr the exact 501utioo nor the
l:¡: are analytical. But p10tting the ground-state energy versus the
coup! ing constant it can be seen that there ls a critical value fay which
the curvature of the function changes(l1) o

VI J. QoSo PAIRINGPWS ~WOroI.E MJDEI.

We turn now our attcntion to the q.S. pairing plus monopole
interaction studieJ in Refo 2,

(47)

where we have se! £=1 and g is a positive coupling constant. As shown
in Refo 2, the last term in (47) has al1 thc properties of the pairing
interaction that plays a ftm.damental role in nuclear structure descrip-
tioo(3).

In (47) we have two compcting interactions, which 3Ct in dif-
ferent \oIays. <XI the one hand, the term Q+ Q_ favors states \oIith J=Oo As

a matter of faet, rOya hamiltonian of the fonn

Ii = J - ~ Q Qp Z 2 + o

thc ground state will be IJ=O, M=O, Q=Ü, Qo=O) for

(43)

4n[ N Jo'g>-20--+1
o N 2

(see Ref. 2) o
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'" 2 " 2Thc JOOIlopole force J+ + J_' instead I acts in such a way that
the system tries to attain the maxi.mwn possiblc value oE J. Weare

thus reminued of the competitían be~.cen pairing and deformatían in
atomie nuelei(12).

tenns of the operators "a"
are iovariant tmder the

A A

the operators Q+ an~ Q_
After writing d~n H in(21) •transfonnation

one obtains (2)

The exaet solution if found by diagonalizing H in the hasis
IJ, M, Q, Qo = O) and it should be renenhered lhat the hamiltonian eom-
nilltesboth with}2 and er. Jt i5 found in Ref. 2 that if one varies g
for a fixed value of k, the ground state of lhe systern, "hich is
al"ays charaeterized by J = O for g suffieiently small, jumps abruptly
to J = O at a given critical value oí g. We have thus a phase transi-
tion írom a "normal" to a "superconducting" phase. The system can be
in its grOlmdstate only in ene oí these states (J =n or J = O), ac-
eording to the relative values of g and k (see Fig. 2 in Ref. 2).

In considering the present model frem the poio! oí vicw oí
the HF approach, a new feature rnakes its appearanee: the abnormally
oeeupied HF solution(13l Within our eontext, this neans that, after
performing the transformation (20), the eorresponding trial stales are
obtained by building up in the new hasis "a" the Slater determinants
IJ,~I= -J,Q = O-J,Qo = O). The novel feature referred to above eonsisls
in the faet that the J-value eorresponding to the u.g.s. (J=n) will not
necessari1y yield the lowest energy: other "abnonnal" .]-values may givc,
lower energy.

Notiee that

A

(IlFIIlIHF)= -J eos e + ~ (1-2J)J sin2e - ~ (O-J) (O.J+1) ,
(49)

which is to be minimized with respect to B. TWosolutions exist:

a) for k(2J-1) <

B = 0, EHF -J !; (O-J) (0-J+1)
2

(50)

b) for larger valucs of the monopole coupling constant
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(51)

B =cos

k(2J-l) > 1 one gets
1

k(2j-l)

JbJ[ 1] g- - - 1 - - - - (O - J) (O - J + 1)
b 2 b2 2

The palrlng force does not eontribute to ~ for J = O. On
the other hand, for J = O, the monopole IW eontribution is null.

The important poin! to be remarked here is that the transi-
tien between the "normal" and "superconducting" phases is fairly well
predieted by the HF approaeh, i.e. the values of the eorresponding
"critical" coupling constants are similarboth in the exact and in the
IW treatment. On the other hand, the nurnerieal value for the ground
state energy may appreeiably differ in both approaches(2).

VIII. SU2 x SU2 mDEL

An SU2 x SU2 model built l~ with the V- and the W-operators
defined in seetion 11, has been proposed by Cambiaggio and Plastino(4).

The hamiltonian Tcads

Ils .£ í ~et e +~[.!í oTet et le e2 p,~ p,~ 2 8 p,a q,l q,T r,crp,~ p,q,qt

+ -41 í et et (e e - e e ) ]p,q,1J P,lJ q,-IJ q,lJ P,-lJ 211-q+1,IJ 211-p+l,-)J

(52)

Since Hs COIJ1JTR.Jtes ooth with y2 and W2, exact solutions are
obtained by diagonalization ""ithin a givcn ITnlltiplet IV. w. Wz' WZ)

The 1l.g.5. is

lu.g. s. ) (53)
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So, the exact ground state mus! be a linear combination of states per-
taining to thc multiplct V=W=N/4. ~~reover as A also comrnutes with
A ' s
J2 J ,",c can label the exact solutions wi th the q.s. J and ""rite do,,",nthe
encrgy explicitly as

EJ,N (V=W=N/4) = - J + f [J(J+l) - 2W(W+l)] , (54)

with J S N/2 and k = K!£ (we have taken £ = 1).
5tudying the energy difference beto'een two states of different

J one finds a set of critical cot~ling constants kJ = l/J. At k =kJ,
the Lipkin q.s. of the ground state changes. So, the ground state of the
system, which for k = O possesses the maximum possible J compatible with
N, wiIl run downw3rd in J as k grows, passing through all possible values
until it reaches J = O at k = 1.

In order to find the IIF solutions for this model one perfoms
the two successive transformations (25) and (26), and then determines
a and B minimizing the expectation value of the hamiltonian with re-
spect to the new (Op-Oh) state.

The HF solutions are two:

a) for k ~ ~ J,

B O EHF
N [1-¥1 (SS)(l = I

b) for k ~ l ,

O, B = are cos[k1 E
HF

1 kN2 (56)(l = -2T( 16

It has becn shown that these IW solutions are obtained, even if one uses
a more general trnsformation(14).

For s~11 enough values oí the interaction strength, the HF
solution matches the e~~ct ane. Then. a phase transition is reached at
a cOl~ling constant which corresponds to the first critical valuc found
in the exact solution. It is to be noted that the situation is similar
to the one t:'I1cotDltercdin the spin- fl ip case oí section IV. Both models
present several first-order phase transitions which are actually leve!



crossings, as discu.c;sed in section V. In addition, HF theory "det€'cts"
only the fir5t of these phasc transitions.

IX. C(J.o;(WSI~

We have 'ompared HF results to exact ones for different models
whose main characteristic is that such €'xact solutions can be fOlnd
without great troublc.

We have interested ourselves in answering the qucstion: Can
the HF approach reasonably predict qua] itative features of many-body
intcracting systems, i.e., more specifically, phase transitions or level
erossings?

The answer can be in the affinnative but not without reserves.
It has been seen that in (ases ",.hereseveral transitions existed, only
one ""as predicted within the HF frarrev.rork. The one transition "seen"
by the selfconsistent approach is always the first one, i.e., that one
o(curring at the ]owest possible critical constant.

Sotiee also that in al1 these models this first transition
can always be associated with a radical departure from the properties
associated with the u.g.s.

One may thus tentatively conclude that the HF theory is able
to dcteet the passage from a "gas-l ike" state (as represented by the
u.g. s.) to a "1 iquid-like" one. For larger va 1ucs of the interact ion
strength, the one-body approaeh loses validity, as expected, and is no
longer able to detect aciditional transitions.

Sinee HF theory is one of our main tools for trying to lmra\'el
the intrieacies of the quantum ~>ny-body problem, probably more effort
a)ong the lines ex~sed in this review would be of sorne interest.
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