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ABSTRACT

A review is made of different exactly soluble models of a fi-
nite number of fermions, in order to study the properties of the Hartree-
Fock approach, relating them to those of the exact SchrBdinger solution.
Particular attention is paid to the description of phase transitions.

RESUMEN

Para estudiar las propiedades de la aproximacidn Hartree-Fock
se hace una revisidn de los diferentes modelos con soluciones exactas de
un niimero finito de fermiones relaciondndolas a aquellas de la selucidn
exacta de SchrBdinger. Se pone atencidn especial a la descripcidn de las
transiciones de fase.

* Member of CONICET, Argentina.
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I. INTRODUCTION

Exactly soluble models have proved to be extremely useful in
theoretical studies concerning the validity and/or usefulness of diverse
theoretical approaches developed in order to investigate the manifold
aspects of the quantum many-body problem.

Of these models, the most widely known is perhaps the so-
called Lipkin Mode1(1}, which is strongly appealing because of its ele-
gance and simplicity, being based on SUZ algebra. In the present work,
which is devoted to the Hartree-Fock (HF) approximation, we shall concern
ourselves with the peculiarities of this basic theoretical approach both
in the case of the Lipkin Model, and in that of some generalizations of
it, guided by the fact that we have available the exact Schrodinger so-
lution. Thus, we will be in a position to assertwhether special features
predicted within the HF context have their counterpart in the exact wave-
function.

The basic ingredient of the models to be described lies in

the so-called quasi-spin algebra, which we discuss below.

IT. QUASI-SPIN OPERATORS

The models that will occupy our attention deal with N parti-
cles, distributed in two (2Q)-fold degenerate single-particle (s.p.)
levels which are separated by the s.p. energy €. We characterize the 2Q
lower states by |p,u = -1) and the 22 upper ones by | p,u = 1) (for
p=1,2, ... 2Q). Thus, each s.p. state is completely characterized by
the two quantum numbers p and u.

Lipkin §5_§l€11 introduced the operators

o F
J+ - J' - Z;CPD'"X gs' ’
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>
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where Cp is the destruction operator for the single fermion state p,u,

’ - -
while CE i creates a particle in that state. The operators (1) satisfy
3
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commutation relations identical to those for angular momentum operators,
thus the name quasi-spin {q.s.}. We have then to deal with an SU2 algebra

and there exists a Casimir operator

~ A

2 = Brx(J Jd +J I, (2)

9| —

+

~

which commutes with the three operators J,, J_ and 32. Some of the ZN
many bogy states of our system can then be classified as eigenstates of
J2 and J, labelled by quantum-numbers J, M such that

J2 | I,M) = J(J+1) |I,M),

(3)

]

I, | I,M) M [J,M)

Lipkin's hamiltonian reads (M
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When the interaction, that does not affect the p-quantum number and is
accordingly referred to as a monopole one, is switched off, the system
will be found in its unperturbed ground state (u.g.s.)

lugs.y = |3 =5, M= -5, (5)

as it is easily seen from the definition (1), i.e., the lowest possible
value of J, is obtained when all particles accomodate themselves in the
lower level, and, acoordingly, the maximum possible value for J is the

modulus of MMIN
It is obvious from (4) and (2) that
I, 32| = 0, (6)
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which means that J is a good quantum number and that the exact solution
is obtained by diagonalizing ﬁL within a given J-multiplet. Since the
maximum value of J is E, the size of the matrix to be diagonalized is at
most (N+1)x (N+1), a simple task if N is not too large. We see then that,
with Lipkin's hamiltonian, only a few of the ZN many-body states referred
to above become relevant, and one is often interested just in the N+1
states pertaining to the J-multiplet that contains the u.g.s.

There are some additional operators of the type (1) that will
be of interest too as the q.s. pairing (q.s.p.) operators introduced by

Cambiaggio an Plastinofz)

8. = o = %

Q+ Q_ .g) Cps"' 9 ’ »

0 = l + - = l N -

Qo 5 p{ucp’u ™ B sN-@a, (7)

where N is the mmber operator. It can be easily shown that the a obey
angular-momentum commutation rules. Moreover, any Q operator Lommutes
with all J- operators (SU2*SU2). Obviously, Q creates (and Q destroys)
two particles which yield zero contribution to the J; value, and which
could then be said to '"couple" to M = 0. Thus, the Q-operators behave in
the same way as the pairing ones of the theory of nuclear superconducti-
vity(3).

We see that a complete orthonormal basis exists characterized
by the eigenvalues of the operators 32, 62, 32 and ao' i.e., | J,Q,M,Qq? -
The minimum possible value of Q, is attained when N, the number of parti-
cles, is zero and then QO = -0 . The maximum Qo obtains when N = 44 ,
and then Qo =®. In the Lipkin Model one always has N= 2Q and Q, =

Let us now consider the general multiplet IQ,QO ) « The
eigenvalues of 60 will depend only onthe particle-number, which for given
Q varies, according to (7) between

Nor (= -B) = 24« 24 (8)

and
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NMAX{QO:Q) = 20+ 20 (9

We can define a "seniority' quantum mumber v, which can be referred to

as a q.s. seniority, as
vio= N (Q = -0, (10)

which indicates the number of particles not "paired" to M = 0, since

1]

Q lQ -q»=o0, (11

and so, v is the number of "unpaired" particles in a Q_ multiplet.
From (8)

Q = y@-v) . (12)

Now, if for a given pair J, Q we have v unpaired particles, the minimm
possible value for JZ in this (J,Q)-multiplet is equal to -v/2. Conse-
quently, the q.s. seniority fixes also the value of J:

J = v/2 , (13;

J+Q =@. (14)

So that the states pertaining to the above mentioned SUZ x SUZ multiplets
are characterized by just three quantum numbers: v, Qo and M.

In the case of the Lipkin Model (N = 2Q), the u.g.s. has J=Q,
M=-gand Q=Q, =0. In the u.g.s. miltiplet, only M varies, from-%
to+{ . For this multiplet v equals 2f. The remaining multiplets in
the Lipkin Model can easily be characterized with the help of the q.s.
seniority concept, since for them v decreases from its maximum value down
to zero in steps of two.

This seniority classification of the different multiplets of
the Lipkin Model constitutes one of the main advantages gained by the
introduction of the operators (3 Another is that, by allowing Qo to
vary, we can generalize the model to a variable number of particles.

Another interesting set of q.s. operators is the following

(4,



e = oAl st
S, = S =] “p,+ C20-p*1,-
P
- A (15)
By = Iy

The S-operators commute among themselves like angular momentum ones. I[f

one wants to work simultaneously with these S-operators and the above men-
tioned.fones, it is necessary to introduce
1

U = =

+ i
2 LU Camy ¢ (16)

in order to close the algebra. Besides, it is very useful to define

V+ = V_ = (J+ + S+) 3

" K § A "
W= W =20, -8,

(17

. g g
V, = 2@, + O ,
W, = 1@, -

g = g U ,

obtaining two additional commuting q.s. sets, the V_ and the W_ operators
(SU2 x SU2).

III. THE HARTREE-FOCK APPROXIMATION

In the case of the models discussed here, the HF approach is
both elegant and transparent in its application.

The Lipkin Model is particularly relevant to the mixed-parity,
HF treatment of nuclei by Bleuler g;nglﬁsl One can consider the p =+ 1
shells as representing subshells in the jj-coupling nuclear shell model
having the same value of j and opposite parity. Whenever states have
the same value of the quantum number p and opposite values of the shell
quantum number, they must have opposite parity. The hamiltonian (4)
conserves parity as the interaction always involves a simultaneous
change in parity of two particles. The parity operator can be defined

formally in temrms of q.s. operators as a 180° rotation about the Z-axis
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kol

in q.s. space

I = oWz gtt (18)

L]

where the choice of the phase factor e’ér‘h does not affect any physical
result. Moreover, any hamiltonian built up with the operators 3+, 3_
and 32 will commute with J2 and with the operators

T IE, C;,u “pou L8
defined for all values of p.

In searching for the HF solution one tries to retain in it as
many symmetries as possible. For the hamiltonian (4) there exists a HF
solution which conserves all symnetries, being an eigenstate of J2 .
of 1 and of all ﬁp. This is the u.g.s. (clearly a HF solution since
the interaction term can produce only two-particle excitations on this
state). Other solutions will violate some of these symmetries, and
people have concentrated mostly on those which violate parity conserva-
tion. Such HF states are called ''deformed' ones by Agassi, Lipkin and
Bbshkov(é). The requirement that a trial function remains an eigenfimc-
tion of ﬁp restricts it to a very simple form. One needs only to consid-
er s.p. states obtained by mixing a particular state having a given value
of the quantum numbers p and p with its partner in the other shell having
the same p-valueand opposite yu. A mixing of these two states corresponds
simply to a rotation in q.s. space. The HF approach consists then in
looking for the zero particle-zero hole (Op-Oh) wave function in the ro-
tated frame. The corresponding angle is that which will minimize the
expectation value of a given hamiltonian, built up with the 3-operators,
with respect to this wave function.

We define thus a '"self-consistent" representation ''a', in which

the basis and the s.p. states are connected by the unitary transformation

- - .0 e ﬁ .
{ap;} tc&,§ &alel Ic%_}
‘ . . ! (20)
l a, . h [-4‘510 5 cos % j Spoe|
J
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and allows us to relate the J-operators in the old basis to those in the

new one:
S = 1iie ¢ L1 - @
SNORE £13.(@ - 1,1 = cos Jy(a) - sing @,
5@ = cosg Jy(a) + sing J(a) - (22)

In q.s. space this corresponds to

L R(-B) | a?,

R(B) e,

(23)

|.a:

8 being the second Euler angle representing a rotation R around the
Xx-axis.
Since the HF state will be the Op-Ch state in the ''a"-represen-
tation,it wil have the form(7)
|0,ay = | J, -J,ay = R()|0, c)

(24)

J
T My (Myc [R(B) | 0,c) = T dy 5(8) [Mycy
M M=—-J

where [M,cy = [J,M,c) . The functions d are defined by Edmonds(s),

although the phase convention (21) requires the replacement of his sh1%
7

by £ sin B ) The absolute squares of the amplitudes in (24) represent

2
a binomial distribution, as found by Agassi et 31(6)_

We see that the dynamics of the problem will determine 8, but
for any hamiltonian that we may construct with the q.s. operators J, the
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structure of the HF state will be that given by (24).

Notice, that the rotation (21) preserves the form of the oper-
ators @ defined in Eq. (7). R R

Finally, if one builds up a hamiltonian with the V- and W-oper-
ators of (17), it is not sufficient to perform a rotation which mixes
the | p,u) state with the | p,-4 ) one, as (21) does. Looking at the
definition of the §—operators, Eq. (15), it is clear that one must also
mix the s.p. orbital | p,u) with |[2Q-p+1,-u) . This is conveniently done
in two steps, i.e., one performs the two successive rotations

B o1 e (B
C2ﬂ-p+1,- cos 5 -4 sin 3 azn-p+l’_
= (25)
¢ o B B
Pt -&smf COS“2- ap’+
and
a L.
2, - cos 3 -4sin 5 bp,-
- (26)
oo @ o
atp’+ - 4sin > cos > bp’*

As a result of (25) and (26) both the V-q.s. and W-one rotate around the
x-axis, the former in an angle (a+B), the latter acording to (a-R).

IV. SPIN-FLIP MODEL

In order to obtain the exact solution corresponding to the
hamiltonian (4), it is necessary to diagonalize it. A simpler hamil-
tonian, a special case of the Lipkin Model, has been studied by Plastino
(9), for which both the exact many-body problem and the HF
one can be solved analytically. We shall consider it as our first appli-

and Moszkowski

cation. The hamiltonian reads(g)

s sb ]

(3 3 + 3 3+] - "forward scattering' terms|. (27)

It is easily seen that a ''spin-flip" interaction, i.e., one
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that only exchanges the p-quantum number (p-spin) of the interacting par-

ticles 1s given by (27), where one just substracts the diagonal elements
) ) ; ‘| Ll - -

from the combiiation 5 (J,J + J ! .. The term to he substracted, let us

denote 1t by T, has the form

A

N ¢, (28)

o —

where ¢ is a two-body operator which commutes with hoth 32 and 32. Now

m 0 = M 1 &
[Hop» Jé| = |HPM, le = 0, (29)
so that the exact ground-state solution will be that one, belonging to
the multiplet J = N/2, whose 3Z-value is such that the energy is a mini-
mm. [his value depends upon the strength of the interaction, as will be
seen heluow.

The u.g.s. is|J = g o M -2—) . Within this J-multiplet
th operator ¢ always vields lero:

$|J=%,M>so, (30)

L3

so we shall forget it in what follows. Setting e = 1(k = K/e) we rewrite
(27) as

A

N (31

B =

- 1 T . 32 -
HPM .JZ k| J JZ

For k = 0 the ground state energy is E5 =- If we switch on the inter-

action and let k grow, the u.g.s. will become unstable when the expression
(31),; for'M = - %’-+ 1, is smaller than - g— . This happens fork=1/(N-1).
At this value, the quantum mumber M of the interacting ground state jumps
from - N/2 to (-N/2 + 1). This latter value will again become unstable

Nz —

as k continues growing, and so on. One gets several ''phase transitions"
in M until the value zero for the cigenvalue of J, is attained. The

""phase transition" between M = -n and M = (-n+1) occurs at

_ 1
k = g7 @ (32)
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In particular, {pr n=1 we get k=1 as the critical coupling constant for
which the ground state of the interacting system reaches M=0, a critical
value which is independent of N. The ground state energy for k> 1 is

given by
EM=0) = - kN2/4, (33)

In order to use the HF theory we perform the transformation (20) and,
with the help of (22), obtain

(HF |H, [MF) = (Hy= Yi-cosg -5 (N-1) sin28], (30)

and

3(H)
98

- Nisin g - k(N-1) singcosBl. (35)

The angle g which minimizes (H) may then adopt the values

g = 0 (trivial solution), ]
= 1 1 (36)
cos B = T (for k > N7 ) f i

We see that the HF theory predicts a phase transition exactly
at the point where the Schridinger solution exhibits one. However, the

remaining phase transitions [ see Eq.(32)] are not seen within the HF
framework. The HF energy is, for k larger than -1,

. N ey ) 1
B ™% k(N-1) Ty | (37

which for k>>1 and N finite not necessarily too large

v o=k
EHF a ﬁ'N{N-1) = (38)
Comparing (37) or (38) with (33) one sees that EHF/Eexact* T aAE N=+= ,

i.e., the HF approximation is exact in the thermodynamical limit.
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V. THE LIPKIN HAMILTCNIAN AND HF THEORY

We return now to the hamiltonian (4) and treat it within the HF

framework. Equation (22) yields(ﬁ)

CHE | H_ | HF ) = -e J {cos B + k(J-1/2) (1-cos?8)} . (39)

The HF solution is obtained by choosing 8 to minimize the expectation
value (39). Setting e=1 as before, we obtain two solutions:

a) for k(N-1) < 1

S=0’EH_F=-

(40)

o=

b) for k(N-1) > 1

Ep = % k(N-1) - Ei£-1j . (41)

cos B = g_] §

Comparing with (36) and (37) we see that the HF treatment of
ﬁL predicts a phase transition at the same value of k than in the spin-
flip case. Moreover, the analytical expression for the HF energy is
identical in both cases.

However, the phase transitions that appear in both models are
actually very different. In the Lipkin Model, when one studies the prob-
lem for a finite number of particles, one finds a critical coupling
constant in the HF approach, but not in the exact solution. In the
thermodynamical limit (N +=), instead, the exact ground-state energy
presents a second-order phase transition. In the spin-flip model one
obtains a set of critical coupling constants in the exact solution, even
for finite N. But they correspond to first-order phase transitions which
are, indeed, level crossings. This means that when the coupling constant
reaches a critical value, the energies of two different levels become
equal so that before the phase transition the ground state is given by
one of these levels and after it, by the other one. In the HF approach,
only the first of these critical coupling constants is cbtained.

The hamiltonian ﬁ‘ has the drawback (from the HF viewpoint) of
producing only two particlei-two hole excitations. The u.g.s. therefore

is already the HF state and only for not tcoo small values of the inter-
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action constant the unperturbed solution becomes unstable. It is desir-
able to have a model which yields for all values of the coupling constant
a non-trivial HF solution in order to clarify this point. This will be
considered in the next section. In the spin-flip model, although we do
have a trivial HF solution, this coincides with the exact one, so that,

when the u.g.s. becomes unstable this is because the exact eigenstate
with M=-N/2, which represented the ground state before the phase transi-
tion, becomes now one of the excited states of the system.

V1. THE AFP MODEL

A model with the characteristics required at the end of the
preceding section has been introduced by Abecasis, Faessler and Plasti-
no“o). The corresponding hamiltonian is

& 3 o K t
H = =] we o ¥ I e ) we €
AFP 20u Pod DM Z pliy  P¥ggr WO AT

-~

A A A2 ~ A A A A A 2
=ed; *+ %{ 2J2 + 2Jy + ZJZ(J+-J_) + z(-J++J_)JZ-Jf_JE}

edJ

T2, %2, 72
g+ WAI2+ 3P+ 32 ). (42)

In this case it is convenient to perform the HF transformation with a
different phase than that of Eq. (20), namely,

a cos £ sin ZB' o _

P~ Z P

vl PR B + |- (43)
2+ - sin 5 cos > Co,+

The s.p. transformation (43) corresponds in q.s.-space to the

following rotation:

3x(c) cos B Jx(a) - sinB Jz(a) g

3},.(0} 3),(3) ’ (44)

32((:) cos B jz(a) + sinB Jx(a)
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With Eqs. (43) and (44) we obtain (e=1)

CHF | H__| HF » = -J cos § + k J {2 cos?B+1+sin8+2sing },
(45)
where the angle 8 is found by solving the equation

2k{(N-1) cosB- cotgg}= 1 . (46)

The HF energies are quite close to the exact ones(w) and the

(10)

Possible phase transitions are not so clearly seen in this

overlap (EXACT|HF) is always greater than 95%

model as in the previous ones becauseneither the exact solution nor the
HF are analytical. But plotting the ground-state energy versus the
coupling constant it can be seen that there is a critical value for which

the curvature of the function changes(”).

VII. Q.S. PAIRING PLUS MONOPOLE MODEL

We turn now our attention to the q.s. pairing plus monopole
interaction studied in Ref. 2,

Ho=-J,+Xd2+02) -8qQ , (47)

where we have set €=1 and g is a positive coupling constant. As shown
in Ref. 2, the last term in (47) has all the properties of the pairing
interaction that plays a fundamental role in nuclear structure descrip-
tion(s).

In (47) we have two competing interactions, which act in dif-
ferent ways. On the one hand, the term (3+ (3_ favors stateswithJ=0. As
a matter of fact, for a hamiltonian of the form

H =JZ—

b QL Q (48)

SR ]

the ground state will be |J=0, M=0, Q=0, Qo=0) for

=]
g;%‘i(m-%+|] (see Ref.2) .
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The monopole force 3f ¥ 3?, instead, acts in such a way that
the system tries to attain the maximm possible value of J. We are
thus reminded of the competition between pairing and deformation in
atomic nucleitlz).

The exact solution if found by diagonalizing H in the basis
|3 M, Q; Q= 0,\) and it should be remembered that the hamiltonian com-
mutes both with J? and 62. It is found in Ref. 2 that if one varies g
for a fixed value of k, the ground state of the system, which is
always characterized by J = & for g sufficiently small, jumps abruptly
to J = 0 at a given critical value of g. We have thus a phase transi-
tion from a "normal" to a ''superconducting'' phase. The system can be
in its ground state only in one of these states (J =Qor J = 0), ac-
cording to the relative values of g and k (see Fig. 2 in Ref. 2).

In considering the present model from the point of view of
the HF approach, a new feature makes its appearance: the abnormally
occupied HF solution(13? Within our context, this means that, after

performing the transformation (20), the corresponding trial states are
obtained by building up in the new basis "a" the Slater determinants
[J,M=-J,0=02-J,Q, = 0). The novel feature referred to above consists
in the fact that the J-value corresponding to the u.g.s. (J=R) will not
necessarily yield the lowest energy: other '"abnormal" J-values may give
lower energy.

Notice that the operators a+ ang a_ are invariant under the

LAFsl]

transformation (21). After writing down H in terms of the operators '"a

(2)

one obtains

(HF[H|HF )= -J cosB + % (1-27)J sin?g - g @) @),

(49)
which is to be minimized with respect to f. Two solutions exist:
a) for k(2J-1) < 1
B=0, E_=-J- % (@-J) (9-J+1) , (50)

b) for larger values of the monopole coupling constant
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k(2J-1) > 1 one gets
1 -1

cos B = - = B

k(2j-1)
g, = -3 1l 1.2 Bm-519 (51)
L b 2 b2) 2

The pairing force does not contribute to B for J=Q. On
the other hand, for J = 0, the monopole HF contribution is null.

The important point to be remarked here is that the transi-
tion between the 'mormal' and "superconducting'' phases is fairly well
predicted by the HF approach, i.e. the values of the corresponding
"critical" coupling constants are similarboth in the exact and in the
HF treatment. On the other hand, the numerical value for the ground

state energy may appreciably differ in both approaches(z).

VIII. SUZ x SU2 MODEL

An SUZ x SU2 model built up with the V- and the W-operators
defined in section IT, has been proposed by Cambiaggio and Plastino(4).
The hamiltonian reads

+ k|1 + F
C C +5 | 5 =
P?U ¥ PsH DP,H 2 [8 P?qr{ng = Ny CCI:T {Cq,T Cp,U

= oo ]
n
N m

" ©20-q+1,7%0-pt1, 4

1 ¥ }
+ — -
7 L Copu Spymu Soneqrr, Saneper, )
P9,
= et @V, W WV W V,). (52)

Since HS commutes both with V2 and W, exact solutions are
obtained by diagonalization within a given multiplet |V, W, Wz, WZ )

The w.g.s. is

|:g -8 ¥ = |V =W=N/4, Vz = = -N/4 ) . (53)
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So, the exact ground state must be a linear combination of states per-
Eaining to the multiplet V=W=N/4. Moreover, as HS also commutes with
J%, we can label the exact solutions with the q.s. J and write down the
energy explicitly as

By o (VEHN/) = -+ % [J(I+1) - 2WOW+1)] (54)

with J<N/2 and k=K/e (we have takene= 1).

Studying the energy difference between two states of different
J one finds a set of critical coupling constants kJ = 1/J. At k =k,,
the Lipkin q.s. of the ground state changes. So, the ground state of the
system, which for k = 0 possesses the maximum possible J compatible with
N, will run downward in J as k grows, passing through all possible values
until it reaches J = 0 at k = 1.

In order to find the HF solutions for this model one performs
the two successive transformations (25) and (26), and then determines
a and B minimizing the expectation value of the hamiltonian with re-
spect to the new (Op-Ch) state.

The HF solutions are two:

a). fer'k %-5 1

a=B=0' E =--§(1-5§q~]; (55]

b) for k » 14

' 2
a= 0, B=arc cos[f%] , EHF = —i% - %% . (56)

It has been shown that these HF solutions are obtained, even if one uses
a more general trnsformation(]4).

For small enough values of the interaction strength, the HF
solution matches the exact one. Then, a phase transition is reached at
a coupling constant which corresponds to the first critical value found
in the exact solution. It is to be noted that the situation is similar
to the one encountered in the spin-flip case of section IV. Both models
present several first-order phase transitions which are actually level
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crossings, as discussed in section V. In addition, HF theory "detects"

only the first of these phase transitions.

IX. CONCLUSION

We have -ompared HF results to exact ones for different models
whose main characteristic is that such exact solutions can be found
without great trouble.

We have interested ourselves in answering the question: Can
the HF approach reasonably predict qualitative features of many-body
interacting systems, i.e., more specifically, phase transitions or level
crossings?

The answer can be in the affirmative but not without reserves.
It has been seen that in cases where several transitions existed, only

one was predicted within the HF framework. The one transition ''seen'
by the selfconsistent approach is always the first one, i.e., that one
occurring at the lowest possible critical constant.

Notice also that in all these models this first transition
can always be associated with a radical departure from the properties
associated with the u.g.s.

One may thus tentatively conclude that the HF theory is able
to detect the passage from a ''gas-like' state (as represented by the
u.g.s.) to a "liquid-like'" one. For larger values of the interaction
strength, the one-body approach loses validity, as expected, and is no
longer able to detect additional transitions.

Since HF theory is one of our main tools for trying to unravel
the intricacies of the quantum many-body problem, probably more effort

along the lines exposed in this review would be of some interest.
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