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ABSTRACT

Several examples from both many- and one-body quantum physics
of bound states in which the application of some scheme of "successive
approximations" does not automatically lead to a regular (i.e., conver-
gent power series) perturbation theory but rather to a singular cne are
illustrated.

1. INTRODUCTION

In a great many problems in physics and engineering one is fi-
nally confronted with adifferential equation, in one or many variables,
which one is either umable to solve analytically or unable or unwilling
(or both) to recur to numerical techniques to achieve a solution.

A common procedure has been to attempt a method of successive

approximations by doing a perturbation expansion about the known solution

* work sponsored in part by CONACyT and ININ.
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of a certain part of the original problem. In quantum mechanics this
solvable part of the Schrodinger equation may be, e.g., the hydrogenic
atom, the harmonic oscillator, etc., or, in many-body physics, it may

be the ideal (i.e., non-interacting) gas of particles, or even some
Hartree-Fock independent particle model. The complete solution for, say,
the ground state energy and wavefunction, is then expressed as a power
series in a coupling parameter ) (which multiplies the part of the hamil-
tonian called the "perturbation''). For sufficiently small ) the first
few terms of this power series generally suffice for a satisfactory des-
cription of the full solution. This is known as regular perturbation

theory, if the pewer series converges.
However, not all such problems of differential equations, in

either quantum physics or engineering,allow in principle a perturbative

solution as a power series in the coupling parameter A but rather give
rise to expansions in A which are non-analytic(1). That is, the expan-

sion may contain fractional powers of A, logarithm terms in A and even

-const A~

so-called essential singularity terms like e Singular pertur-

bation theory is generally accepted as constituting these latter kind of
problems or as power series perturbation expansions which do not converge
(whether or not they are asymptotic). In fact some of the most interesting
perturbation problems are of the singular type and it is our purpose here
to give a brief survey of some examples of singular perturbation theory
taken from both one-body and many-body quantum physics.

IT. SOME EXAMPLES FROM MANY-BODY PHYSICS

a) The Electhon Gas.

In the many-body perturbation treatment(z) for the ground state
energy of N(>>1) point charges of mass m and charge e submersed in a rigid
uniform background of equal total but opposite charge (so as to ensure
net neutrality) one finds divergent contributions to the perturbation se-
ries beginning in the second order of the coupling parameter rg = To/a,,
where ry is a measure of the interparticle separations and is defined in
terms of the volume per particle V/N = 411 3/3 and a, =h¥me? is the
first Bohr radius. A rearrangement of the (diverging) series, or, alter-

natively, an infinite partial summation over the most divergent contri-
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butions (Feymman diagrams) to the perturbation series, allows obtaining
a finite but non-analytical correction to the umperturbed (plane-wave

Hartree-Fock) energy value, namely a fn rg term as first discovered by
Macke(s)in 1950. Gell-Mann and Bmec]cr1er(4) recalculated this term and
the subsequent one (which is a constant) by doing the ''random phase
approximation'' (RPA). Dubois(s) in 1959 and Carr and Maradudin(® in
1964 determined the coefficients of the next two terms (finding again a
2n rg term) by sumiing to infinite order and evaluating the next most
divergent Feynman diagrams beyond the RPA. The resulting expansion for
the ground state energy per particle is

=2 2 api 2
Eo/N ':ﬂrs [a -brg + s lnrg corg? +
r':

(M

+ cardnrg + curg + o(rg" &ars]]

and clearly gives a weak-coupling, singular perturbation expansion. The
(positive) coefficients a, b, c1 to cy are known and found in the litera-
ture cited above.

Happily for this problem one also possesses a strong-coupling
theory. This was developed by Carr(n and others in 1961, following an
earlier suggestion by Wignerts) in 1934 that for rg>>1 the electrons
would go onto the sites of a perfect lattice, (giving us the so-called
"Wigner solid''). The strong-coupling theory perturbs about this perfect,
classical lattice (all potential energy) in terms of perturbing kinetic
energy contributions which introduce first harmonic zero-point energy,
then anharmonic corrections, etc., to the leading Coulomb lattice energy

-a/rg. The result is

t r¥?

B a , b c d .o i 2

Eg/N A2 5 S (2)
| 3/2 T /2 T

s '.l"s Tg s Tg s

vhere the positive coefficients a to d are found in the literaturel.
Again one begins with a power series expansion not in rg but in r;
(and hence nen-regular); but eventually "exponential" terms related to
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intersite overlapping electron clouds also appear.

b) Bosons with shont-ranged fonrces.

For a many-boson system with central pair interactions (no mat-
ter how singular, as with hard cores) one can apply analogous many-body
infinite sumation techniques and express the ground state cnergy per par-
ticle, at low particle density p = N/V, in terms of the "dimensionless
smallness parameter'' Ypa3 , where a is thewell-known scattering length
depending entirely on the free two-body problem. The result, to which
very laboriously have contributed l.,enz(Q) in 1929, lLee, Huang and Yang(m)
since 1957, Wu(”) as well as Pines and Hugenholtz“z) and also Beliav“s)
in 1959, is just

2
Eo/N ‘;' E;l pa [1 + cyvpad + cypadlnpad +
pad<<i

(3)
+ O(pald) + Ol(cnali‘)ﬂ/2 fnpaszl

L]

where we again see the singular nature of the resulting perturbation ex-
pansion in the new smallness parameter vpa3. The coefficients, c; and
c; have been determined and appear in the literature.

It is possible to think of several many-boson as well as many-
fermion systems interacting via a simplified two-body interaction poten-
tial (Fig. 1, snset) consisting of a hard core of diameter ¢ surrounded
by an atractive square well of range b and depth -Vy. In this case,
standard effective range theory[M) gives us the expression for the scat-
tering length (in units of the hard core diameter) as

tan / EZO (b-c)
alc = 1+ b-c 1 - i » (4)
& Mg
p2 (b-0)

which clearly becomes unity when the attraction vanishes. The interaction

parameters b, c and v, have been adjusted in the literature to the two-
boson systems: He? - He4 (13) and two alpha particles(m); to the two-
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fermion systems: He3 - }b3 (same interaction as between He“) and nucleon-
nucleon systems(17) like neutron-proton, proton-proton, etc. If we take
b as approximately 3c we can display these widely different dynamical
systems on a single graph of a/c vs. /mv,/n2 (b-c), the "attractive
strength'!, Fig.1. We note first of all that of the two-body problems
considered only the neutron-proton system, in the spin-triplet [351)
state, and the alpha-alpha one, without Coulorb repulsions, are suffi-
ciently attractive so as to bind the pair. (Recall that Y /hz (b-c)=n/2
is exactly the condition for a square well depth v, and range (b-c) to
bind a particle of mass m/2 with zero energy). Secondly, we notice that
although the remaining two-body systems considered here do not bind, the
attraction is sufficiently great so that the corresponding scattering
length is negative. For the many-boson system whose ground state at
very low densities is described by Ec.(3) this means that, because of the
non-regular term Ypa3 , the energy of the N-particle system not only can
become negative but also complex. But this we know {although some think
this to mean a breakdown of the theory) means the appearance of a non-
stationary state with a finite lifetime which could very well be a meta-
stable quantum state consisting of very brief formations of n-body clus-
ters (2<n<N) which undoubtedly occurs before the N-body cluster (e.g.,
liquid Heq) is stably formed at higher densities.

¢) Fermions with shont-nanged <interactions.
A similarly heroic effort has been carried out for the many-

"

in 1971. The result, again a singular expansion in the ''smallness para-

fermion problem, beginning with Lenz(g) in 1929 and ending with Baker

meter" kpa, where the Fermi momentum kg is defined through the particle
density p = N/V = ka3/bTr2 for a v-species fermion system, is (for v=4:

balanced nuclear matter):

h

E /N ™

2

k

o KE 4 cy(kpa)® + cp(kpa)* + ca(kpa)®
kpa<<i =

| e

+ cu(kFa)EﬁnlkFaE + c5(kga)® + ..., -

(17

The coefficients ¢, through c; have been determined in the literature



and their dependence on purely two-body scattering parameters specified.
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( for b=3¢c)
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Fig.1 Scattering length a (in units of c¢) for the hard-core-plus-attrac-
tive-square-well potential shown in inset, Efnmp,‘hf (b-c) which
is a measure of the attractiveness of the well, for b=3c. Th2 pols
at T/2 designates the well strength at which the first zero-an
bound state appears. The open dots refer to the empirical values
reported in the literature for the different two-body systems. Notea
that upper scale is linear while the bottcm is logarithmic.




249

d) BCS theory of superconductivity.

The Bardeen-Cooper-Schrieffer (BCS) theory of superconducti-
vity is well-known to lead, as the relevant (electron-phonon) coupling
parameter A+ 0, to a lower energy per electron of the "superconducting'
relative to that of the '"mormal" state by an amount

(18)

E ——3 E . Nce‘CO/A

Super A+0 normal ’ (6)

where ¢ and cy are positive.constants. Thus, the two problems, ''complete'
(superconducting) and "unperturbed" (normal), are not connected by a re-
gular perturbation theory but rather by a singular one, in fact, by an
extremely singular one called an "essential singularity'. Namely, the
function f(}) = e /A can easily be seen to have no Taylor series expan-

sion in ) since [£™ ()] = 0, for all nth order derivatives.
A=0

11I. SOME ACADEMIC ONE-BODY EXAMPLES

a) Shallow attractive well in 1-, 2- and 3-dimensions. It is
well-known that in three dimensions a square well potential v(r)s-vyé(a-T)
supports a bound state for a particle of mass m if and only if

vea? > h2 72/8m (7

(cf. e.g., Fig.1, put b-c=a and replace m by 2m). Also of common knowl-
edge is the fact that in one dimension a square well potential

v(x)=- v G(a |x!) always has a bound state, no matter how shallow the
depth vp, and that the bound state energy E tends to 0 as v, +0" like

Pl 5 vy2a’+ higher order terms, (8)

vrot Zh?

i.e., analytically in v, Less well-known is the two-dimensional square
well case v(r,¢) = -voe(a r) where, as the binding energy approaches 0~
but as(19)

E—> -—— € m2y, (9)



1.e., non-analytically. Thus a regular perturbation theory for this
problem does not exist.

b) The single- and double-delta attractive well. A very
simple model for H,*, (or even for the inversion spectrum of NHj; where
the nitrogen atom oscillates between two potential minima) is the double
oscillator welllzn]or the infinite square well with a finite repulsive
square barrier placed in its center(ZIJ, both in one dimension. A even
simpler such model is the double attractive delta well problem{zz).
Consider first a particle of mass m in the single well

_h2
2m a

v(x) = 8(x) ; x,a>0. (10)

The negative energy level is given by

2 .
E,<0, K72z h—fz" Eal, W' - K2u@) = - 2 sum),

Ky | x|

u(*=) =0 = ux) =e , x| >0 (11)

At x=0 the first derivative of the wave function u(x) is discontinuous,
namely

u' () w2 2uo (12)

x=0+
which immediately gives the eigenvalue equation

A

Ky =53 (13)
The double-well problem
o 1}_;% Eﬁ(x-a) # 6(X+aJ:| ) (14)

on the other hand, is easily seen to give the bound state energy E,<0

2m

solution, with _
! Ka & 55 |E2|



Kyx

u(x) = e for 26 s a
= A cosh K, x for ~-a< x < a (15)
Kox
=g 2 for x< -a.

Matching u(x) and u'(x) at, say x=a, gives, respectively,

-Koa

e = A cosh K,a,

(16)
- K,e X2® . K,Asinh K,a = = g

which allows elimination of the constant A and gives the new eigenvalue

equation

A 1-tahKacl e K>

A
i X, (17)

2a )

so that Ez<E;. Hence H2+ is more stable than H and H' wnbound. More
importantly, the P5+ state cannot be gotten by regular perturbation theo-

ry since, on taking very large separation a»e, we have

_2e Kea A |
tanh K23ﬁ1 Ze "X, 15 (18)

or
- 18Ky
B2 BEi1(1- 227 D)

.

That is, the total (double-well) energy tends to the unperturbed (single-
well) energy non-analytically in the smallness parameter a™l+ 0.

c) The quartic anharmonic oscillator(zsj. We have here the
hamiltonian
H:—d2 +x2+l)(l+
2
o (19)

_HO+ lH]_, HIEXL’.
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TABIE 1
K n
N 1 a0.2)
n=0
1 1. 150000
3 1.153750
5 1.176999
10 -2.442598
i3 168.8957.30
15 3,0005. 179516
50 ~ oy ot
1,000 ~ 3 102:000

Rayleigh-Schrddinger series, partially summed to order N, for

the ground state energy of the anharmonic oscillator Ec. (12)

Table I.
for A = 0.2. (See Ref.26).
\
)
\
\
stationary \\3
state \
i
Fiy.2 Potential well

hamiltonian for both positive and negative quartic perturbation x°

V{x)=f+1xt

(dashed curve) of the quartic anharmonic oscillator

1
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The standard Rayleigh-Schrodinger, i.e., regular, perturbation series
for the ground state energy Eg(x) in A

Fod) = 1 ann, (20
n=0

where standard perscriptions apply in the determination of the a_'s,
diverges for all ) . This was apparently first noted by Kramers (24) who

discovered that a, goes like (n!)? for n » », which by the Cauchy ratio
test indicates divergence of the series. The divergence, moreover, is
not at all obvious from the first few orders (so that it would go entire-
ly unnoticed in a standard quantum mechanical exercise.) as Table I
shows.

A very simple heuristic proof of the divergence of the RS
series exists. Fig.2 shows a graph (dashed curve) of the potential well
for both A>0 and A<0. Clearly, stationary states (of real energy) are
possible only for the former case, while for A<0 even the lowest energy
state will be a non-stationary (resonance) state with a finite lifetime
since the particle can tunnel away through the ''shoulders' of the well. How-
ever, if aconvergent expansion (20) existed at all, it would converge regard-
less of the sigh of }. But for A<( this expansionwould yielda real (perhaps
negative) energy in contradiction with Fig.2; therefore, it cannot converge.

Inspite of this divergence of the series, a sequence of Padé
approximants(zs} constructed on the basis of the coefficients a , with
n=0,1, ..., 2N, for the [N, Nlapproximant is seenfzﬂfTable 11] to
converge very well and quickly to the exact answer ESXECt(0.2)= 1.118292
obtainable by numerical integration of the Schrodinger equation.

d) Spiked oscillators(27). This is the name given to the
class of problems defined by the hamiltonian

]{:-i+x2+ A 5 a>0

dx? [

217
= Hy +AH; 3 Hy= [x|™%

For @>2, two notable surprises occur(zs): a) as A0 the nth (=00 2%
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TABLE 1II
N EO[N,N] for A = 0.2
1 1.111111
2 1.117541
3 1.118183
4 1.118272
5 1.118238
6 : 1.118292
7 ' 1.118292

ES*a°t (0.2) = 1.118202

Table TTI Value of succesive [N,N] Padé approximants constructed on the
first 2N+1 coefficients aj of the RS series {20). See Ref.26.

state En(A) dos not become Ej(0) = (Zn+1) (the ground and excited states
of Hy) but rather the corresponding nth state of Hy supplemented by
Dirichlet boundary conditions, i.e., HO,DBC (namely that at x=0 the so-
lution vanish). Thus, instead of the nth state approaching the states
on the left-hand colum of Fig.3, it goes into those of the right-hand
colum, as x+0. Specifically, the ground state wave function of HD DBC
is xe "/¢ whereas that of Hy is just e 2 (energy eigenvalue of 1) and
the former, moreover, is degenerate with |x|e il both having energy
eigenvalue of 3. A so-called "vestigial effect" (of the interaction)

remains. Also, b) an asymptotic series in fractional powers of A for

the eigenvalues of H results.Table I11 summarizes the results obtained
by employing WKB techniques to solve the Schrodinger equation for small
A . We see that not only fractional powers of A appear, and also A £&n X
terms, but even A2fn?) terms. Note the similarity of these expansions

with those of many-body theory mentioned in Chapter II above.
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‘—“Hﬂ-ﬂ r—HO‘DN

doubly
degenerate

W

Fig.3 First few wave functions of the one dimensional oscillator hamil-
tonian (left column) together with the associated energy eigen-
value (2n+1), n=0,1,2,... Same, but for oscillator hamiltonian
subjected to Dirichlet boundary conditions (DBC), i.e., that the
wave function vanish at x=0. Note that the lowest energy is 3,
instead of 1 as before, and that each energy level is doubly-de-
generated.

e
Aps o

T 3

TABLA 111
e L] 5 a>0
ax? 1x|*
—
H, AH
{n(.\) ;EIQ(GJ =3 (not 1!)
. vels o0 E,() - Ey0) {:;“;;“"
i a < 5/2 = ok + cgd?+ s
a=5/2 - Cjh ¢ cA2lnd + ca? o L.
S/2<ac<d i 1evel cid + ca” + 0(37)
a= 3,— " v =1 1 cyMad ¢ ¢z + O(A2en2))
Jca<ih W2<vwel B ¥ ¢ cd + 00Y)
| & 24 v e 12 e’ + o™ B

+ E.M. Barrell, II, Ann. Phys. (N.¥.) 105 (1977) 379.

Table III Singular perturbation energy shifts for several values of the
exponent & in the ground state of (21), with respect to the
unperturbed value EO(O) = 1 for <2, but = 3 for a>2. See
Ref.27.
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e) Super-singular perturbations(29). An example of these is

Ho= - 1
dx ?

u (22)
He ¥ aHy 5 Hy= B

th

where the matrix elements of H; clearly diverge in the H, oscillator
basis. The leading term in the energy shift of the ground state, as
x>0, is found to be the highly singular expression

5 1/2
e-(ﬁnm .

Bsld) - Eo(0) \’j:o+ K(-2n 1) (23

with K a positive constant.

f) Treatment of bound and resonant states. A beautifully
simple example has appeared in the literature(30) whereby both bound
(stationary) and resonant (non-stationary) states can be analyzed
within a singular perturbation scheme. This is the hamiltonian

42 5
H = - = - a8(x) + axx2 , a>0
ax?
(24)
= HO < lHl ’ HIEK2 ’

where the potential well is graphed in Fig. 4 for both A>0 (top) and A <0.
Clearly, the latter gives rise, if at all, only to resonant states.

Consider first the case A> 0. Expanding the eigenstates of Ec.
(24) in terms of the complete set of eigenstates not of Hy, as is the
usual practice, but of -d?/dx? + Ax? , one can easily arrive at the

eigenvalues e equation

= 2
al $2a(0) _ - 1 (for even states), (25)
n=0 Eqp - €

where the oscillator energies E,, are

E, = 2K (m+ 1/2) 5 m=0,1,2,... (26)

and ¢2n{x) the associated eigenstates. For odd states the levels are

unshifted because ¢on41(0) = 0 for n=0,1,2,..., and thus
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Vi
1>0
9 X
Vix)=-a § (x) 42
(x>0)
0
1< 0

Fig.4 Potential well for the hamiltonian Ec.(24) for both positive and
negative A.

¢ = Eopmsy; = 2/ (2n + 3/2) (for odd states),

n=0,1,2,... (27)

Note that Ec.(25) could in principle be solved graphically for each
(a,2) pair since we know ¢on(0) and E;n. In fact, Ec.(20) becomes explic-

itly

= 2L 3N z (-)n ('11/]2] — L = aF(X,€), (28)
2VA (2n+1/2) - €

e E ) :
Using the binomial expansion (1-52) ", ) L 1421 §2m as well as an obvi-
m=0

ous integral representation, we can write F(X,e) as

1 1 §§%T
F(x,a) = JdS _—

a/maAt o /5(1-52)

(29)
1 r(i/a - e/4vX)
4xVs T (3/4 - €/4/X)

the last step following from the integral representation of the beta func-



258

(31)

tion

1
B(m+1, ne1) = D02l) Tlndd) dt to(1-t)m, (30)
J

F(m+n+2) 0

Changing variable S = e N, and restricting ourselves to the lowest
eigenvalue € = -€ <0, the rhs of Ec.(29) becomes

 _£h
1 J s € 2/X 1 (31
wIAYE ) SR e wmot VI

thus showing clearly the singular character of the problem. Because of
the asymptotic series nature of the I' functions in Ec.(29), we conclude
that a perturbation expansion for &€(A) in powers of ) diverges for all
A, but is nevertheless asymptotic.

Finally, for A = -i<0, one can define

F{i,&) = B + 4P (', P'real) (32)

and readily see that

ET

F' = [ei?‘i] F'\<< F! (33)
A0+

so that our scheme can be employed to study, systematically, the posi-

tions of the resonances.

IV. CONCLUSIONS

We have illustrated several examples from quantum mechanics
where a scheme of successive approximations will not yield a regular
(i.e, convergent power series in some smallness parameter) perturbation
theory but rather a singular one. The latter is either a diverging power
series or a non-power series which may contain fractional powers, loga-
rithmic terms or even essential singularities in the smallness parame-
ter

All the examples discussed, both physical and academic, are

connected with the study of "condensed', i.e., self-bound, many- or one-



body quantum systems.
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