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Several examples froroboth many- and one-body quantum physics
oí bound states in which the application oí sorne scheme of "successive
approximations" does not automatically lead to a regular (Le., conver-
gent power series) pertürbation theory but rather to a singular one are
illustrated.

1 • U>'fROOOCfICN

In a great ~~y problems in physics and engineering one is fi-
nally confronted with adifferential equation, in ene ar manyvariables,
which ane is either lmable to salve analytical1y or tmable or lD1willing
(or both) to recur to numericaI techniql~s to achieve a solutian.

A COITJnOn procedure has becn to attempt a ncthod oí succcssive
approxirn.."ltionsby doing a rerturbation expansion about the moW1l solution

* Work sponsored in part by CONACyT and ININ.
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of a certain part of the original problem. In quantton mechanics this
solvable part of the Schrodinger equation may be, e.g., the hydrogenic
atom, the harmonic oscillator, etc., aT, in many-body physics, it may
be the ideal (i.e., non-interacting) gas oí partieles, ar even sorne

Hartree-Fock independent particle núdel. lne complete solution for, say,
the ground state energy aod ",,:avefunct ion , is then expressed as a ~
series in a coupling parameter , (which multiplies the part of the hamil-
tonian called the "perturbation"). For sufficiently small , the fi rst
few terms of this power series generally suffice fay a satisfactory des-
criptian oí the full solution. This is k~~n as regular perturbatíon
theory, if the power series converges.

HoweverJ no! all such problems oí differential equat ions, in
either quantum physics ar engineering,allow in principIe a perturbative
solution as a PO\o;CT series in the coupling pararreter A bu! rather give
rise to expansions in A which are non-analytic(l). That is, the expan-
sicn way contain fractional ~'ers of A, logarithm tenms in A and even,-1so-called essential singularity tel~ like e-const Singular ~tur-
bation theory is generally aeeepted as constituting these latter kind of
prablems ar as power series perturbation expansions which do not converge
(whether or not they are asymptotic). In faet sone of the rost interest ing
perturbation problems are oí the singular type and it is our puJ1X'SC hcre
to give a brief survcy oí sorneexamples oí singular perturbation theory
taken from both one-body and many-body quantum physics.

1I. S(ME EWIPLES FRCMH'INY-BODY PHYSICS

0.1 The EteÚ'lon GM.

In the many-body perturbatíon treatment(2) far the ground state
energy of Nf» 1) point charges of mass m and ehargc e suhmerscd in a rigid
lBlifonnbackground of equal total but opposite charge (so as to ensure
net neutrality) one finds divergent eontributions to the perturbation se-
ríes beginning in the second arder of the eoupling parametcr rs = ro/ao'
~TIere ro is a mcasure of the interparticle separations and is dcfined in
terms of the volume per particle V/N = 4TIr03/3 and "o =h'lme2 is the
first Bohr radius. A rearrangement of the (diverging) series, or, alter-
natively, an infinite partial surnmationaver the mest divergent contri-
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butions (Feyn¡¡¡andiaglams) to the pcrturbation series, a11"",s obtaining
a fmite but non-analvtical correction to L"le tmperturbed (plane-wave
Hartrce-Fock) energy value, Th~ly a in fS term as first discovered by
~facke(3)in 1950. Gell-~L'lIlI1and BnJeekner(4) reealeulated this term and

the subseqlJent one (which is a eonstant) by doing the "random phase
approximation" (RrA). 01.1>0is(5)in 1959 and Carr and ~L1Tadudin(6)in

1964 <1eterminedthe coefficients of the next two terms (finding again a
in 1'5 term) by sl1llT.lingto infinite arder and evaluating the next rrost
divergent Feynmandiagrams beyond the RPA.The resulting e~,sion for

the ground state enerzy per partieJe is

(1 )

and clearly gives a wcak-coupling, singular perturbation expansiono The
(positive) eoeffieients a, b, el to e, are knownand found in the litera-

ture eited aboye.
Happily for this problem one also possesses a strong-eoupling

theory. This was developed by Carr(7) and others in 1961, following an
earlier suggestion by wigner(8) in 1934 that for 1'5»1 the cleetrons
would go anta the sitcs of a perfeet lattiee, (giving us the so-ealled
''Wigner solid"). The strong-coupling thcory perturl>s about this perfeet,
elassieal lattiee (all potential energy) in terms of pcrturl>ing kinetie
cnergy contributions which introduce first hanocmic zera-poiot energy,
then anhanoonic corrections, etc." to the leading Coulonb lattice energy

-a/rs' Thc result is

d re-con5t r51/
2
]

-+ al
TS

S
/2 TS '

(2)

where the positive coefficients a to d are found in the literatuTe.
Agaln one begins with a pawer series expansion not in TS but in r;l/2
(and hence non-regular); but eventually Itexponentialll terms rclated to
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intersite overlapping electron clouds a150 appear.
bJ B060n6 with 6ho4t-~ged 6o~ce•.

For a many-boson systern with central paír interactions (no mat-
ter how singular, as "ith hard cores) one can apply analogous many-body
infini te Slmmation tec1miques and c.x-press the grotD1d statc cnergy rer par-
ticle, at 10\V'particle density p = N/V, in tenns cf the lIdirrensionless
smallness pararrcter" ¡¡:¡aJ , \.;here a is thc wel1- knm.•n scattering length

<lepending entirely on the free tl<o-body problem. The result, to "hich
very laboriously have contributed Lenz(9) in 1929, Lee, Huang and Yang(lO)
since 1957, Wu(l1) as wel! as Pines and Hugenholtz(12) and also Beliav(i3)
in 1959, is just

(3)

where we again see the singular nature oí the resul ting perturbation ex.
pansion in the new srnallness pararreter;¡;aT. The coefficients. el and
C2have been determined and appear in the literature.

It is possible to think of several many-boson as "ell as many-
fermion systems interacting vía a simplified ~'o-body interaction poten-
tial (Fig. 1, snset) consisting of a hard eore of diameter e surrounded
by an atraetive square well of range b and depth ovo' In this case,
standard effeetive range theory(14) gives us the expression for the scat-
tering length (in units of the hard eore diameter) as

a/c ffotan - (b-c)
112

fITS'¡h2 (b-e)
J. (<1)

\\nich clearly becomes unity when the attraction vanishes. The interaction
pararnetcrs b, e anu Vo have been adjusted in the literature to the two-
boson syste:ns: 11e"- lIe4 (15) and two alpha particles(16l¡ to the two-
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f. H3 3( .erml0n syste~$: e . ~~ sarne lnteraction as bet~eenHe4) and nuclcon-
nucleon systems(17) like oeutran-protao, proton-proton, etc. If ~e take
b as approximately 3c we can display these widely different dynarnieal
systcms on a single graph oí a/c ~ ~ (h-e), the "attractive
strength", Pig.1. \ie note first of all that of the two-body problems
considered 001y the oeutren-proteo system, in thc spin-triplet (351)
state, ~~dthe alpha-alpha one, without Coulorrb repulsions, are suffi-
eientl)" attraetive so as to bind the pairo (Recall that Imvo,'íí2 (b-e)=./2
is exaetly the eondition for a squ.1re well depth vo a.~d range (b-e) to
binJ a partiele of ~ass ml2 with zeTo energy). SeeonJly, we notiee that
a1though the remaining two-body systems eonsidereJ here do not bind, the
attraction i5 sufficiently great so that the corresponding scattering
Jength i5 negative. Far thc many-boson system whose ground statc at
very low densities is deseribed by Ee. (3) this means that, beeause of the
non-regular term lpa! , the energy of the ~-particle system not 001y can
become negative but a150 complexo But this "e know (although sorne think
this to rrcana breakdO\\TIof the theory) rreans the appearance of a non-
stationary state with a finite lifetime which could very well be a rrcta-
stable quantum state consisting oí very brief fonmations of n-body clus-
ters (2<n<N) which lmdol~tedly oceurs before the N-body cluster (e.g.,

liquid He4) is stably formed at higher densi tieso

e) Fellmion.6 wilh ohoJt.t-!UU1gedú,.teJ",WOn.6.
A similar!y hcroic effort has been carried out £or the many-

fermion problem, beginning with Lenz(9) in 1929 and ending w.ith Baker( 17)

in 1971. The resu1t, again a singular expansion in the Itsmallness para-
rrctcr" kFa, where the Fenni JOOncntumkF is defined throur)1 the particle
density p = N/V = vkp3/brr2 for a v-speeies fermion system, is (for v=4:

balanceJ nuclear matter):

(5 )

111e coefficients e, through es have been detennined in the literature (17)
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and their dependence on purely two-body scattering paraneters specified.
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Fig.1 Sc~t~erlng length a (in uni:s oi e) for the hard-core-Dl~s-attra~-
~:ve-squ~.re-wcll potential sh:r",n in in.set, ~ Im':0':h2~ (t.-e) ....'hic:l
is a rr.easc.re oi t:!1e attracti ••..er.ess :)f the \V'ell, f(l'!:: ::>=3c. ':'h<¿!?oJ~
.J.t 7':/2 ~].,~3iyn,:),te.:;t;¡;:! Hel! s~rength J.t ,•.•.;lich ~be fir:3t z<:ro-.~r,E:rg'!
bound st!lte appeaL3. 1tle open .J.ot3 refer to the I::r.'.pir.i.=al values
repo=ced ir. the literatun~ ioc the di£f0r~:Jt t....,o-b:)i.-i~' 3yste:!!s. tlc::'..:!
th3t ~~per ~c31~ i5 lir.earwhile the bo~tcm is logaTich~ic.
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di Bes theo~y 06 &up~co"duet(vity.
The Rardeen-Cooper-Schrieffer lBCS) theory( 18)of superconducti.

vity is welJ.known to lead, as the relevant (eJeetron'phonon) eoupling
pararrcter ).+ O, to a l()\o,'~ energy peT electron oí the "superconduct ing"
re lat ive to that of the "nonnal" state by an anotm!

E ----4 E - N e -eo/A
super),-+{) normal e

(6)

where e and Ce are positive4 constants. Thus, the two problems, "complete"
(superconducting) and "tmperturbed" (nannal) , are!!£!.. connected by a re-
gular perturbatían theory but rather by a singular ane, in faet, by an
extremely singular ane ealled an "essential singularity". ~arrely, the
funetion feA) = e'e/A can easiJy be seen to have no TayJor series expan-
sion in l s!nee [f(nl (A)] = O, for aH nth order derivatives.

)=0

11I. SCJ;IEACADFMIe eNE-BODYEXAMPLES

a) Shallow attractive wel1 in 1-, 2- and 3-dimensions. Tt is
.eJI-known that in three dimensions a square well potential v(r):"v06(a'r)
supports a bound state for apartide of mass m if and onJy if

(7)

(ef. e.g., Fig.l, put b-e=a and replace m by 2m). Also of eornrnonknowl-

edge 1S the fae! that in ene dimcnsion a square well potential
v(x) ". v

0
6(a-1 x~) always has a bound state, no matter how shaHow the

depth vo, and that the bound state energy E tends to O' as vo ~{). 1ike

_....!!!..- v 2a2+ higher arder tenns,
2f¡2 o

(8)

i.c., analytically
well case v(r,~)
but as(19)

in v. Less well-known is the two-dimensional squareo --vo8(a-r) where, as the binding cnergy approaches 0-

h2-- e
ma2

(9)
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I.€"., !!2D'<3!!.'.l)It_il:'!.lly. fhu.s a rcgulGlT perturba.tion theoI)' for this
problem ~oe~ ~ot ~xist.

b¡ Ine single- and double-delta attractive well. A very
simple model far H2+, (..JT even far the invcrsion spectrum oí ~3 ",,"here
the nitrogen <ltom ase 11 lates hetween Th'O patentia! minima) is the dauble
oscillator \\:ell{2tl)or the infinite square well with a finite repulsive
square harrier placed in íts center(21), both in one dimensiono A even
simpler such model is the doubJe attractive delta well problem(22).
Consider first a partiele of mass m in the single wel1

v[ x) h2 >.---6(x)
2m a

A, a ;> O . (10)

"Iñe negative energy leve! is given by

K,' _. 2m ¡E,I. "() K 2 () >. 6( ) ( )u x - ,u x • - - x u x •
h2 a

u(~w) • O u(x) • e-K,lxl. ¡xl >0 (11 )

At x=O the first derivative oí the wave function u(x) is discontinuous,
namcly

u' (x) I x=O+
>.= - - urO)a • ( 12)

~hich Lmmediately gives the eigenvaluc equation

>.K, =-2a

The dOlble-well problem

v(x) = _ f¡2 1 r.; (x-a) + ó(x+a)l
2m a L ~

( 13)

(14)

on the other hand. is easily seen to give the bound state energy E2<O
solut ion. ","ith ,2 _ 2m I IK, • h2 E, •
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u(x) e -;<:2 x for x > a

A cosh K,x for -a < x < a ( 15 )

e K2x for x < -a .

Matching u(x) and u' (x) at, say x=a, gives, respectively,

(16 )

which allows elimination of the constant A and gives the new eigenvall~
equation

•• X2 > !- = KI- 2a - (17 )

so that E2<E1. Hence ~+ is more stabJe than H and H+ lIDbOlmd. ~Iore
importantly, the IS+ state cannot be gotten by regular pertu.bation theo-
Ir sincc, on taking very large separation a~, we have

(18 )

or

That is, the total (double-well) energy tends to the lmperturbed (single-
wel1) energy non-analytical1y in the smallness pararneter a-l~ O.

e) The quartie anharmonie oseillator(23). Ne have here the
hami 1tenían

( 19)

= Ha + AH}, H} _ x4 .
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,
" I" ¡ -i¡,(O. 2) n
••o

1 l. 150000, 1. 153750

S 1. 176~99

I
10 .2.U2~9íl

~

:

I" 168.S9S7jQ

:I I
" I 3.0lI0S.I19$16~

" '\, • lO.}

1,O()¡) j ~ ~ IJ2•000 j
Table r. Ro.yl~igh-SC'hrüdillger sedes, p,"lrtially slU!l.LIedto arder ~J, ter

the ground statc p.nergy of the ,)nharmonic oscillator Ec. (1'))
fer A = 0.2. (Sce Ref.26).

SIOij~l\ .
state ~

o x

resonance
(non-sto'ionory)

,...•., state
-'_."-X,

\
\, \

- ¡l/:(' \'

"'---\,
7iy.2 PotentL11 w~11 {dLlSh~J .::urve) of the quartic anhacr.lOnic oscillZltoT

ha~iltoni3n for bot~ positive and n~Sdtive q~artic rert~r~dtion xl,
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Thc standarll Ra)'lL-igh-Schrodinger, i.e., rCt,,'ular, perturbatíon series
for lhe grOlmJ slale energy Eo(>') in >.

(~( ¡)

....-here standard perscriptions apply in the detennination of the 3n'S,
diverges for all >. • This ;;as apparently Hrst noted by Kramers(Z4) "ho
discovered that ~ goes lHe (n:)2 for n ..•.00, \~'hichby the Cauchy r:nio

test indicates divergence of the series. The divergence, moreo\~r, is
not at a11 obvious from the fir5t few orders (so that it wouId go cntire-
Iy tmnoticcd in a staml.1rd quantum rrcrnanical exercise.) as rabIe
shows.

A ve!)' simple hcuristic proof of the di vergencc of the RS
series exists. Fig.2 shows a graph (dashed curve) of the patential "el!
for both A>O and A<O. Clearly, stationary states (of real energy) are
possible cnly far the fonner case, while far ).<0 even the 10\,,'cst energy

state "il1 be a non-statiana!)' (rcsonance) state Kith a finite lifctime
sincc thc particle can ttmnel away through the "shoulders" of the ",,'el l. Ho"".-

cver, if a convergentexpansion (20) existed atall, it "".~uld converge rcgard-
lessofthe sigh of A. But for ).<0 thisexpansion"ould yielJa real (perhaps
ncgative) energy incontradiction \,.;lth Fig.2; thcrefore, it cannot converge.

Inspite oí this divergcncc oí the series, a sequence of Padé
approximants(2S) constructcd on the basis oí the cocfficicnts an, hith
n = 0,1 •...• 2N, for the IN, Nlapproximant is seen(26)[Table JJ) to
con....erge vel)o ""c11and quickly to the exact answer E:~xact(O.2) = 1.118292

obtainable by nlmcrical integration oí the Schrodinger equation,
d) Spiked osei Ilators (27). This is lhe name gi ,.en to the

elass of problems defined by the hamiltonian

11 d2 x2 + _A_ a>O
- - +
dx2 Ixla

(21 )

- 1I0+AH¡ H¡ " Ixr
a

Foro.>2, t"-'onotable surprises occur(28): a) as A+Othc nth (n=O,l,2",)
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TABLE II

N EolN,N 1 for ~ = 0.2

1 1.111111
2 1.117541
3 1.118183
4 1.118272
5 1.118288
6 1.118292
7 1.118292

E~xact (0.2) = 1.118292

T~le 11 Value af succesive (N,N] Padé approxirnants constructed on the
first 2N+1 coefficients an of the RS series (20). See Ref.26.

,tate ~(~) dos not becore En(O) " (2n+1) (the ground andexcited states
of Ha) but rather the corresponding nth state of Ha supplemented by
Di richlct boundaI)' condi t ions. i. e., Ha,Dse (naJrely that at x=O the 50-

Jution vanish). ThU5. instcad of the nth state approaching the sta tes
on the left-hand column of Fig.3, it goes into those of the right-hand
column, as A~O. Spccifically, the ground state wavc function oí Ha Dse
is xe-~ whereas that of Ha is just e -x2¡, (cnergy eigenvalue of 1) ~d
thc fonncr, morcover. is degenera te wi th I xl e -x2¡2 both having encrgy
eigenvalue of 3. A so-called "\'estigial ('freet" (0£ the interaction)
re~~ins. Also. b) an aS)TIptotic series in [ractional poftcrs of A for
the eigcnvallX.'s of 11 results.T:lblc IJI stmnarizes the results obtained

by env10ying ~~ techniqucs to solve the Schrodinger eql~tion for s~,ll

A • We see that not only fractional powers of A appear, and also )'ln A

terms, but evcn ).2tn2). terms. Sote the similarity of thcse expansions

w.i th those of many-body theory mentioned in Chapter 11 above.
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+ E,(o) 4-slote# 3 doo~,o
degenero!e

~ 3 3+I-+ 5 • 7•I
~7

, 7
~

Fig.3 First few wave functioos oí the ene dimensional oscillator hamil-
tenian (left column) together with the associated energy eigen-
value (2n+1), 0=0,1,2, ... Same, but fer oscillator hamiltonian
subjected to Dirichlet boundary conditions (DBC). í.e., that the
wave function vanish at x=O. Note that the lowest energy i5 3,
instead of 1 as befare, and that each energy level i5 doubly-dc-
generated.

TAJlLl 1I1

,,0

o " .•~>o E (1) • E (O) t:....~.,.,
o o ~¡ft

<J < ~12 ell. e¡11, ...

11 • ~/Z Cl~ • c¡j,ll ••.•• e,AI ••••

S/2 • <J < 3 1 < " < Z (lA' el1" • 0(11)
I

I
o • , I , ., c¡lúA • tll • O(llbll¡'l

3 < " < 4 1/2<\1.1 tl1" • e,1 • t>(lIV¡

" ~ 4
, ! 112 el." • Opl"¡

Table 111 Singular perturbation energy shifts for several values oí the
exponent a in the ground state of (21), with respect to the
unperturbed value Eo(Q) = 1 for aS 2, but:c 3 for a>2. See
Ref.27.
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el St~er-singular perturbations(29). An example of these is

H

(22)

where the matrix elerrents of!JI c1early diverge in the Ha oscillator
basis. The leading term in the energy shift of the grauno state, as
A.)o O. is fmuld to be the highly singular express ion

with K a positive constant.
f) TreatIrent of bmmd and resonant states. A beautifully

simple example has appeared in the literature(30) wherebv both bound
(stationaryl and resonant (non-stationary) states can be analyzed
within a singuJar perturbatían scheme. This is the hamiltonian

(24)

a>OH d'- --- - a6(x) + AX'
dx'

- He + )Jj¡ , H¡ = x'
wbere the potential well is graphed in Fig. 4 for both A>O (top) and A < O.
Clearly, the latter gives rise, if at a11, only to resonant states.

Consider first the case Á? O. Expanding the eigenstates ofEe.

(24) in terms of the complete set of eigenstates not of He, as is the
usual practice. but of -d2/dx2 + ).x2 , ane can easily arrive at the

eigenvalues E equation

a I
n=O

~k(O) _ =

E2n - £
(far ~ states), (25 )

where the oscillatoT energies E2n are

Em = 2A (m + 1/2); m = 0,1,2, ... (26 )

and ~2n(x) the associated eigenstates. For odd states the levels are
~shifted because ~7n+l(O)= O for n=O, 1,2, ... , and thus
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\>0

x

V(J.I __ aS(.l+lJ.
(a>OI

1 < O

Fig.4 Potential well far the hamiltonian Ec. (24) for both positive and
negative A.

2/).- (2n + 3/2) (for odd states),
n= 0,1,2, ...

(27)

Note that Ec. (25) could in principie be sol ved graphieally for eaeh
(a,A) pair since "e kn"" ~2n(O) and E2n. In faet, Ee.(20) beeolJ'Csexplico

itly

00

=~A1/4L
¡1T 0=0

(. Jn (.1/2 J --o _1 aF(A,eJ.
n 2.1: (2n+1/2) • E

(28)

Using thc binomial expansion

ous integral representation,

(1'S2)1/2= r l(.1~2'J S2m, as "ell as an obvio
m=O

~e can write F(A,C) as
E

1 J:dS
S.2,7A

F (A,a)
2Iñ A1,.4 IS(1'S2) (29)

1 [(1/4 E/4,iA)

4,\1/1.< r (3/4 E/4/).1

the last stcp following frorrl the integral reprcsentation of the beta func-
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tion(3l)

B(m+l. n+') _ r(m+ 1) r(n+ 1)
r(m + n + 2)

( 30)

Changing variable S == e-n, and restricting ourselves to the lowest
eigenva1ue £ " 0E' < O. the rhs of Ec. (29) bccomes

,
,I2E'

( 31)

thus showing clearly the singular character of the problem. Because of
the asyrnptotic series nature of the r functions in Ec. (29), V.'e conclude
that a perturbation expansion for E'(A) in powers of A diverges for a11
A, but is nevertheless asymptotic.

Finally, far A == -X<O, ane can define

F(X,E) == F' + ..i.F" (F', F"real)•

and readi1y see that

P' (33)

so that OUT scheme can be employed to study, systematical1y, the posi-
tions of the resonances.

IV. crnCWS10NS

We havc illustratcd several cNLmples from quantum mechanics
where a scheme of succcssive approximations will not yield a regular
(i.e, convergent power series in sorne smallness par~~ter) perturbation
theory but rather a singular ane. The latter is either a diverging pO"'er
series or a non-power series which may contain fractional po~ers, loga-
ritlL~ic tcnms or even cssential singularities in the s~11lness pararne-

ter
All the examples discussed, both physical and acadcrrUc, are

cOlUlectcd with the study of "condensed", i.e" self-botmd, many- or onc-
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b"dy qtk1Iltumsyslems.
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