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ABSTRACT

This paper contains the derivation of the attenuation function
for a fluid in which a chemical reaction takes place. The main result
involves the explicit account of heat transport processes besides the
ordinary viscous ones. The connection with experiment is briefly indi-
cated in the context of previous work.

RESUMEN

Este trabajo contiene una deduccidn de la funcidn de atenua-
cidn para un fluido en el cual ocurre una reaccidn guimica. El resulta-
do principal involucra tomar en cuenta, explicitamente procesos de con-
duccidn de calor asi como los procesos viscosos usuales. La conexidn
con el experimento se menciona brevemente en relacidn con trabajos publi-
cados anteriormente.
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The purpose of this paper is to calculate the amplitude atten-
uation of plane waves F, in an infinite fluid in which a chemical reac-
tion takes place, taking into account heat transfer and viscous pro-
cesses. Diffusion processes will not be considered. The amplitude
attenuation F for relaxing fluids has been shown(]'z) to be a quantity
of physical interest in the evaluation of the bulk viscosity and the
relaxation time. In (1) and (2) F was derived for the particular case in
which heat transfer could be ignored. The present derivation takes this
effect into account. The resulting equation is referred to as the Kir-
chhoff-Langevin equation. Since the wave vector K associated with the
propagation of a sound wave in a fluid is usually complex, one can
express the quantity F in terms of the imaginary part of f, the ampli-

tude attenuation coefficient a(s). It is easily seen that(z)
p=2 a/k ) M
1- a?/Kk?

where k is the real wave vector.
To find an expression for F in terms of thermodynamical pro-
perties of the fluid, we start with the set of hydrodynamic equations

given hy(a), the continuity equation,
- pdivi . 2
dt

Here, gf’ is the substantial derivative, p the density and U the veloc-
ity of the center of mass of the fluid particle. The momentum conser-
vation equation
péﬁ = - div(T + p 1) (3)
dt & &
where we have omitted any external force and (T + p 1) stands for the
pressure tensor assumed to be symmetric. The energy balance equation
de

pgg=- (T+pW)grad U - div SQ > (4)

where £ is the specific internal energy of the fluid particle and jQ is
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the heat flow vector. The Gibbs relation

ds _de _ -2do, p[3s)
TR p%dt*T[dg)a,pE ' (5)

where T is the temperature, p, the equilibrium density, £ the degree of
advancement of the reaction and the quantity T gé'e,o is the de Donder
chemical affinity. This set of equations is complemented with the

phenomenological relations for the flows T, 3 3 %% and the equations

Q
of state. Succesively, these equations are

5 4 i B L, +. 5

Tz + n%) = -gdivu ] = _TEAy - 2n(grad u)° , (6)

5

JQ = - Agrad T , (7N

d L i .

d—'§=——§£A-_-;£d.vu (8)
and

p = P (p,A,s) ,

£ = E£(p,A,8) , )]

T =T (p;Az8)

Here n is the shear viscosity, ¢ the bulk viscosity, A the heat conduc-
tivity, Lrr and Lrv the Onsager coefficients for the chemical reaction
and the coupling of viscous and reactive processes respectively. Clear-
ly, the coefficient Ly, is such that | Lyy|=-|L_| @,

In the so called acoustical approximation, the variables in
the above set of equations are replaced by their linear deviations
from equilibrium only. Indeed, in terms of their instantaneous values
Z(t) and their average values, one has that

Z(t) = Zo + 2(t) (10)

and quantities of second order in the deviations are neglected. Zp re-
presents the equilibrium value of Z(t).

Thus, the set of hydrodynamic equations is transformed into
the following linearized one, namely,
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20 - p divi (11
- - 1 ~ %
Po % = - grad p + nAG + 3n+c]grad div u + Lyr grad A, (12)
9E _ = -193p
Qo—a—f = A E\T“‘poﬂo 3t ’ (13)
3 _ % Po 3
Tost "3t =, 2 0t . a4
(0]
9& Ley « rv >
== == A-—d 15
Ry Ty TR (15)
5w | 2R ap 3p
P [ oA ]spdA " l ap sAdp+ s JpA s 5
P oa (B 3p %
5 [ 5A ]spdA * [ 3 )sl\do * { S (4
= 1 8T oT aT
mi 7[R [(Bar [Flas
One now assumes plane wave oscillations for the variables,
that is,
Pl ottty a7
where the complex number K is defined as
Kzk#id. (18)
1f we now take the Laplace-Fourier transforms of the set of
equations (11)-(16) and make use of Eq.(17), one finds that
w = pk-U, (19)
B o iR | i o oA
iwp,u = iKp + nK-Ku +[=5n+ c} K(K*u) - iKL /A, (20)
- > >N =1 . =
iwp £ = AK+KT + PP, iwo (21)
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TS = € - PopZd (22)

. ~ - ~ —2 - ~

iwg = L. p, A+ Lrvp0 iwp , (23)
A 9 ~ EE ~ _B,E ~ s
P [ BA]psA+ [ Bp]sAD+ [ asta
A 1 aE ~ ﬁ ~ aE ~
& [_B'K ]ps ¥ [ ap )shp = [B—s ]pAS (24)
2o () AL (oT) s, (20 3

anid T_[BA]QSA+{BDJSAD+{SS]QA

Combining Egs. (19) and (20) we obtain that

A a 2 i 3
P'LvrA'Ii%+%§l%”+‘:)j|p=0 ) (25)

and combining Eqs. (21) and (23),
~ g r)A
iwpyTys - AKSKT =10 . (26)

The condition for the set of algebraic equations (23)-(26)
to have a non-trivial solution is that determinant of the coefficients

vanishes. Thus,

1 0 0 0 [”’2 + 'wl;l
. - =+
LVI' KZ J
0 0 0 iwp T, -AK? 0
0 -Lyy/pg iw 0 0 —Lrvagiw
= 0
1 - |13p 0 - |3 0 - |2 ’
3A)ps 9s)PA 9p/sA
. |28 - |28 |28
0 {aA]ps L [BS}DA 0 [Bp)sh
ol aT aTl
oo {ﬁJos b s 1 - (&5
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which after expansion it transforms into

,
-iwp,T, % . 3p Lrr & @ELJIV_M] = im{—?ﬁ 9E 3k 313)

| L %0 g " BATp 2 3A 30 OA 0
)
Lrvlvr er[wz ; ] ; ( B _ 38 Wl , 5ol
- SEVVE Gy - =5 | 4+ 1wB| + dw [Lyy 7 *+ 1wB| |
p? o K2 %  9A Ik JJJ
(6]
ol (o amag % o o )
+ Ak 1o |3s 3% ~ s Bp] A [3s 3 " 35 3p
f i @g_aggn]_ﬂ(mgn,gewm] (27)
“3A (3s 3p ~ 3s 9p)  3s | pg 9p  9A py2
a L iwl . . aT 38 9E (w2 . . 1)
op (BT Lpy 3T Lpyiw 9 [L_-_[__*mg
Y 3s [ap °, ©°A pon * s \Mvrep T BA (K2 JJ
., 3¢ for 9T ”aI{LL Lre m2+-w3]]1 "
T s {%L"r a8 [z * 1B]) s T T, T |
Here, B stands for the quantity ;— (4/3 n + ). Introducing the Maxwell's
relations s
13 _ 1 (ap
[*55]35 T sz [@]ps (28)
and
ol _aEJ . [B_T} §
002 (35 Ap aD As . {2 )
and the definitions
= Po [3&
e Lyr [3AJDrS 1 (30)
_32 2
c3, = C§+[——[—]—r‘£ Ko | (31)
Po E
dA)p,s

and
Ci= [EE]A,S (32)
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into Eq. (27) and rearranging it, we obtain the following expression
for the dispersion relation of sound waves:

2 2p.-1 T 27l 9T
AKH{ )osnr - () ce unfl) - o (e fod) (1)
9s e as Ap das Ap BE_DS as s 3A s

o] 2 [T EEBEB_T_EE][ET]
+ iw [Coo [as]pAJ' 2[35] [as]m[ap] [Bs o3P )ag
f: I 1 | -
s () () o) - o e () o) )+ ofE) v .l
o [BE pstas g B.I\JD o 3E) o\35) LA} (35 JJ

a1

= =1 R -, |
+ K2 {mzpoTO(Cgo + BT 1) + [E W T+ dw ]: TE.T

la

2 -1 aT) [3g 1) ] y ; -1 _
= DOTOT + hw? (B_EJ [ ] [—BEJQA J>— w DOTO - 1m3pOTOT =0 .
(33)

This equation may be written in the form

AKH(A+dwm) + K2[(Cy+ACy) + iw(Dy+AD,)] -1 =0

or (34)
AKZ[ K2(A+diwm) + Cp + iwDy] + K2(Cy+iwDy) - 1 =0
where the meaning of the symbols A, m, C;, Co, Dy, Dy and I is immediate
after comparison of the coefficients between the terms in Kq, k% and K
in expressions (33) and (34).
To order A = 0, this equation reduces to

Ki (Cl*‘ile) -1=0
or

I
A N
Ll

2 . .
We now substitute kK by K, in the A-term above, thus obtain-

ing
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Al i s P . .
Ty + 1dD; [Cwiwnl ] Il el 0 KR pelagd) L

From here, we immediatly arrive at

1 Al I

K? = - r
Cr+iwD;  (Cp+iwDp)2 G+ iwD;

(A+ B imD2}>

(35)

We now proceed to the construction of Eq. (1), taking into
account definition (18). First we separate the real Re from the imagi-
nary Im part, then we form the ratios Im/Re and Za/k/l-cxz/kz, equate
them and finally we arrange the expressions in powers of the frequency.
The result is the following one, namely,

2 a/k - owll + BOMB +yquwb + 60031’ +EgWw? + 85

' 10 T 1,6 [ 1,42 1
1-02/k2 Opw Y + Bow® + Yiw® + Sw? + e4w? + 6]

(36)
+ Alaw!® + bwd® + cwb + dw' + ew? + £]
+ Aa'w!0+b'wlic ' wb+d wre ' w2+f']

where the meaning of the letters ag, ao's Bo» Bo's Yor Yo» Sgs 645 Eo»
€y By By'y dy @'y by by €, €'y dy A', &, 6", £ and £' i5 listed in
the appendix.

We now call

2a/k _ n P1o + AR1o
1-a?/k? Q1o + AS10

, (37)

where the quatities Pjy, Ryg, Qip and S;y are read directly from Eq.(36).
Then, by synthetic division, it is verified that for X =0, the ratio
w P15/Qoreduces to

0, BTy C2) +u2B T2

10 2 2 2,9 ’ (38)
C0 + COOT N

ik
Q

which is none other than the expression for the attenuation function FA
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previously derived(z). From Eq. (32) and Eq.(33) we obtain finally that

QuiB+T(Coo-C)+ P BTY ;o
C% + Cozo szz ’

2 a/k
1-02/k2 Qg+ ASy

or that

B+ T(Cg - Cg) + w?T2B F - S —-1
2ok @R[ [ 1+ AR
-aZ/ke Co + CooT” w Quo| (39

Equation (39) is the Kirchhoff-Langevin equation, i.e., the
sought relationship between the attenuation coefficient and the wave

vector k [see Eq.(1)] with the frequency and the thermodynamic proper-
ties of the reactive fluid. When X =0 it reduces to the expression
already obtained in Ref.2, where a method was presented whereby one can
determine the transport coefficients g, L .and L from the experimental
sound attenuation data. Once these transport coefficients are known
one may use Egs.(39) to estimate the importance of the terms R,;/Q,,and
S10/Quo which, as coefficients of the thermal conductivity contribution,
are directly related to the heat transfer process in the relaxation
region. However, this is by no means a simple task. Examination of
Eqgs.(36) and the expressions given in the Appendix will immediately
reveal their complexity. This feature has strongly hampered any
realistic or practical estimations of the heat transfer contribution.

CONCLUDING REMARKS

As we have pointed out in earlier stages of our work“’z’s) .

the contribution of the coupling between the bulk viscosity and the
chemical transport in a chemically reactive fluid is not just of an
academic interest. Previous approaches to the problem of chemical
relaxation processes using sound dispersion and attenuation have either
neglected this effect by assuming that the bulk viscosity of the fluid
is zero or by introducing the concept of an "effective viscosity" to
explain part of the sound attenuation which cannot be accounted by the
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standard processes namely, shear and heat flows. This last approach to
the question has the enormous disadvantage that such an effective vis-

(5)

cosity has no clear physical meaning

Our procedure which is essentially based on linear non-equili-
brium thermodynamics leads to important results which we think clarify
considerably the physical interpretation of chemical relaxation process.
These results, of which Eq.(39) is the most general one, are:

i) The bulk viscosity % is shown to have a status of its
own as a true transport coefficient free from any specific interpreta-
tion.

ii) The viscoreactive coefficients L., and Lyy have a strong
bearing in the formula given in Eq.(39) accounting for the attenuation
of sound.

iii) As we have insistently pointed out in Refs. 1, 2 and 5,
the method commonly employed by physical chemists to measure the time
relaxation of a one step reaction, finds its place within the frame-
work of irreversible thermodynamics.

APPENDIX

The meaning of the coefficients of the polynomial is w given
in Eq.(31) in the text, is the following:
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