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This paper contains the derivation of the attenuation function
for a fluid in which a chemical reaction takes place. The main result
involves the explicit account of heat transport processes besides the
ordinary viscous ones. The connection with experiment is briefly indi-
cated in the context of previous work.

Este trabajo contiene una deducción de la función de atenua-
ción para un fluido en el cual ocurre una reacción química. El resulta-
do principal involucra tomar en cuenta, explícitamente procesos de con-
ducción de calor así como los procesos viscosos usuales. La conexión
con el experimento se menciona brevemente en relación con trabajos publi-
cados anteriormente.

* Miembro del Colegio Nacional
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The purpose of this paper is ta calculate the amplitude atten-
uatian of plane waves F. in an infinite fluid in ••..'hich a chemical reac-
tion takes place. taking into account heat transfer and viscous pro-
ccsses. Diffusion pracesses will not be considercd. The amplitudc
attenuation F for rclaxing fluids has becn sho••..n(1.2) to be a quantity
of physical interest in thc evaluatían of the bulk viscasity and the
relaxatian time. In (1) and (2) F was derived far thc particular case in
which heat transfer cauld be ignored. The present derivation takes this
effect into accollOt. The resulting equatian is referred to as the Kir-
chhoff-Langevin equation. Since the wave vector K assaciated with thc
propagation of a sOlDld wavc in a fluid is usual1y complexo ane can

+cxpress the quantity F in tenas of the imaginary part of K, the ampli-
tude attenuation coefficient 0(3). It is easily secn that(2)

F _ 2 n/k
1 - n'/k'

( 1)

~herc k is the real wavc vector.
To find an express ion for F in terms of thenoodynamical pro-

J~rtics of the fluid, we start with the set of hydrodynamic equations
given h/4), the continuity equation,

dp =
dt

+
- pdiv u ( 2)

!lere. ~t is the substantial derivative, p the density and l'j the veloc-
itr of the ccnter of Jrk.ssof the fluid particle. The fOC)rrcntumconser-
vation equation

P du ('1' 1 )dt = - div _ + r J .

.•...here we have omi tted any externa) force
r~ssure tensor assuncd to he sy~tric.

(3)

ano CE • r ~ ) stands far the
The energy halance equatian

do
p dt = - {T. r!1 ):gradu div J

Q
(4)

1,:hC'f(' r is the' spcci ríe intC'rnal enC'rgy oC thC' fluid particle and jQ is
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thc heat flow vector. The Gibbs relation

ds de -2dp [0s J dE;
T Ot = Ot - PPodt + T dE; e,p dt (5)

where T is the temperature, Po the equilibrium density, t the degree oí
advancementoí the reaction and the quantity T (~JE,P is the de Donder
cheroica! affinity. This set of equations is complemented with the
phenOlrenological reIations for the flows !' jQ' ¥t and the equations
oí statc. Succesively, thcse equations are

and

JQ = >'grad T

~ Lrr A _ Lrv di v udt p p

p = P (p,A,s)
E; E;(p,A,s)
T = T (p,A,s)

(7)

(8)

(9)

Here r) is the shear viscosity, e the bulk viscosity, ). the heat conduc-
tivity, Lrr and Lrv the Onsager coefficients for the chemical reaction
and the coupling of viscous and reactive processes respectively. Clear-
Iy, the coefficient Lrv is such that I Lvr 1= - I Lrv I (4).

In the $0 called acoustical approximation. the variables in
the aboye set of equations are replaced by their linear deviations
from equilibrium only. Indecd, in terms oí their instantaneous values
Z(t) and their average valucs, one has that

Z(t) = Zo + Z(t) ( 10)

and quantities of secend order in the deviations are neglected. Zo re-
prcscnts the equilibrium value oí Z(t).

Thus, the set oí hydrodynamic equations is transfenned into
the following linearizcd enc, namely,



490

(11 )

Po ~~ = - grad p + n.1U + (~n + r;)gra.:t div 'ti + Lvr grad A t (12)

aE' _ ). Ü + p P - 1 a¡;
Po Tt - O O Tt (13)

T as. aE' _
o at at (14)

ai; Lrr --'--A-at Po

Lrv- div U
Po

(1 S)

(16)

One now asswnes plane wave oscil1ations for the variables,
that is,

z = Z e i (wt-Kx)

where the complex nturDer K is defined as

K::k+io..

( 17)

( 18)

If we now take the Laplace-Fourier transforms oí the se! oí
equations (11)-(16) and make use of Eq.(17), one finds that

~~~
K(K'u)

( 19)

(20)

(21)
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ToS £ 2'
POPOP

, _1 A +
-2 . ,iw~ LrrPo Lrvpo lwp

p = [ ~ 1 ' [ ~ 1 ' [ ~ 1 'aA psA + dP SAO + as DAS

[ ., 1 ' [ ., 1 ' [ .,] ,, aA osA + Clp SAP + as PA
s

and ' [aT J ' [aT J ' [aT 1 'T = aA psA + ap SAP + as DAS

Combining Eqs. (19) and (20) we obtain that

(22)

(23)

(24)

, '[W2 iw [4P - Lvr A - K2 + Po 3" n

and combining Eqs. (21) and (23),

(2S)

(26)

The condition for the set of algebraic equations (23)-(26)
to have a non-trivial solution is that determinant of the coefficicnts
vanishes. Thus,

[w
2 )

-Lvr O O O ,+ iwBl
K J

O O O iwPoTo -AK2 O

O - Lrr/ Po iw O O -2.-LrvDolW

[~lps [~JPA [~JSA
O

O O

O [~Jps [mPA O [~~lsA
O [%}Jps O [~;lpA [~:JsA



which after expansion it transforms into

_ Lr~L2vr iw _ L~rO [W
K

,2 + iWB] + iw [1 a( a( [W2
+

, ..' . 'vqp - aA K2
o

(27)

+

. ai' [aT
lW as dpLvr-

aI LrviW'J + i¿I [L a~ _ a~ [w
2

+ iwBlJ'JaA P02 as vrap dA LK2

al c¡W2 'wBJJ al [LvrLrv . Lrr ~2 + l' B]Jl- - + 1. -- ~lW-- ~ W J
aAK2 as Po Po

o

Here, B stands for the quantity...!- (4/3 n + 1;). IntroducinpthcMaX'Wcll's
Porelations

and

~ [TsJAP- [~~JAs
o

and the defini tions

and

co''' [2£]dP A,s

(28)

(29)

(30)

(31 )

(32)



into Eq. (27) and rearranging it, we obtain the following cxpression
for the dispersion relation of sound waves:

AK4 { [~]'p -2t' _ [oT] c' tI + W'B[aT] _as o as o as
Ap Aa Ap

, [aA) [aé) [aT) Bw ai; 3< aA
~)s pA pS

+ iw [c' [aT] + 2 [~] [ai;] [aT] _ [~] [aT]
00 as pA a~ ps as pA ap As as Ap ao As

_ c' [(aA) l(£.T] [ai;)) _ 2 Lrv ¡aA] [~] ¡aT) + B(ar] T-,llo ai; as AA A p20 ai; as aA as A J Jps ps p ps pA ps P

+ K' {w'p T (C' + BT-') +o o 00

w4p T - i w3p T T- 1 = oo o o o
(33)

This equation may be wri tten in the fom

AK4(A+iwn) + K'[(C,+AC,) + iw(D,+AD,)] - 1 O

or (~)
A K' [ K'(A+ iwn) + C, + iwD, 1 + K'(C, + iwD¡) - 1 = O

where the neaning of the symbols A, TI, el, e2• DI. D2 and I is iJmOC'diate
after comparison of thc coefficients betwecn the terms in K4, K2 and KO
in expressions (33) and (34).

To order A = O. this equation reduces to

or
K' (C, + iWD¡)
o

1 = O

K'o

ing

,
We now substitute K2 by Ko in the A-term aboye, thus obtain-
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e,: ~wO, G, + LD, (A+ iwrr) + C, + iwO:J + K'(C, + iwO,) - 1 = o .

From here, we immediatly arrive at

K' = __ 1__
el + iwD}

A 1
(C, + iwD,)2

( 1te¡ + iwD1
(A +

(35)

We now proceed to the construction oí Eq. (1), taking into
account definition (lB). First we separate the real Re from the imagi-
nary 1m part, then we form the ratios 1m/Re and 2alk/l-a2fk2, equate
them and finally we arrange the expressions in powers oí the frequency.
The result is the fol1owing ene, namely,

2 ex/k

1-,,'/k'
=w

a w1o+B wB+y w6+6 wlt+e: w2+8o o o Q o o
a' w10 + B IwB + y' w6 + Ó 'w4 + £: 'w2 + 8'o o o o o o

(36)

+ A [aw1 o + bUla + cw6 + dw4 + ew2 + f 1
+ X[a'wlo+b'w8+c'w6+d'w4+e'w2+f']

where the meaning oí the letters 00' uo'. Bo' Bo', Yo, Yo' 60, ód. £0'

£0', 801 Bo' J a, a', b, b', e, el, d, dI, e, el, f and £1 is listed in
the appendiJ<.

We now call

2,,/ k
1-,,'/k'

_ w PIO + ARIO

Q,o + A5,o
(37)

where the quatities p,o. R,o, Q,o and 5'0 are read directly from Eq.(36).
Then, by synthetic division, it is verified that fay A= O, the ratio

w PIO/Ql0reduces to

w B + T(~o- (5) + w2B r2
c; + C~oT2w2

(38)

which is nane other than the express ion fay the attenuation function FA
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previously derived(2). From Eq.(32) and Eq.(33) we obtain finally that

ar that

w

2 2
Q¡O!B + T(Coo - Co) + w2 B PI + AR¡O

C~ + (020 T2w2

Q¡O + AS,O

2 a/k
l-a2/k2 ~

[
S ~-,+ wAR,oQio 1 + A-il. .
QlO (39)

Equation (39) is the Kirchhoff-Langevin equation, Le., the
sought relationship betwecn the attenuation coefficient and the wave
vector k [see Eq. (1)J wi th the frequency and the thenrodynamic proper-
tíes oí the reactive fluid. When'\= O it reduces to the expression
already obtained in Ref.2. where a rrethod was presented whereby one can
detennme !he transport coefficients .;, Lrrand~v from the experimental
sound attenuation data. Once these transport coefficients are known
onemayuse Eqs.(39) to estimate the importance of the terms RlO/Q¡Oand
SlO/QIO which, as coefficients oí the thermal conductivity contribution.
are directly related to the heat transfer process in the relaxation
region. However, this is by no means a simple task. Examinatían oí
Eqs.(36) and the expressions given in the Appendix will irnrnediately
reveal their conq>lexity. This feature has strongly harnpered any
realistic or practical estimations of the heat transfer contribution.

CC1IICWDING REMARKS

As we have pointed out in earlier stages oí our work(1,2,S),
the contribution of the coupling between the bulk viscosity and the
chemical transport in a chcmically reactive fluid is not just of an
academic interest. Previous approaches to the problcm of chemical
relaxation processcs using sound dispersion and attenuation have either
neglected this effect by assumQng that the bulk viscosity oí the fluid
is zero or by introducing the concept of an "effective viscosity" to
explain part of the sound attenuation which carmot be accounted by the
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standard processcs naJl'ely, shear and heat flows. This last approach to
the qucstion has the cnormous disadvantage that 5uch an effective vis-
eosity has no clcaT physical meaning(S).

Our procedure ~TIich is essentially bascd on linear non-equili-
brilDTl thenrodynamics leads to important rcsults .•..,hich we think claTify

considerably the physical interpretatlon of chemical relaxation process.
These results, of which Eq.(39) is the IDOst general one, are:

i) The bulk viscosity ~ is shO\\lTI to have a status of it5

Ov.TI as a true transport coefficient free from any specific interpreta-

tion.
ii) The viscoreactive coefficients Lrr and Lrv have a strong

bcaring in the formula given in Eq. (39) accounting far the attenuation
oí sornd.

iii) As we have insistently pointed out in Reís. 1, 2 and S,
the rrethod conm:mlyemployed by physical chemists to lTCusurethe tirre
relaxation of a one step reaction, finds its place within the frame-
work of irreversible thenoodynamics.

APPENDIX
The meaning of the coefficients of the polynomial is w given

in Eq. (31) in the text, is the following:

Yo p T B(-6C4 C'Br-1 _ 16C' C'B'r-' - lOC'B3r- 3 + C. + 6CG Br 1
o o 00 o 00 o o 00 00

_ C6 C2 _ 8C6 C2BT-1 _ 18C+ C2B2T-2 _ 16C2 C2B3r- 3_ SC2B4r-41
00 o 00 o 00 o 00 o o
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o o T C' B"o o 00
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6' o T (- 4C"C' BT- 3 + 6C"B'T-" + 2C" C"T-' 6C"C' B'T-" _ 4C"B3T- 5o = o o o 00 o 00 o o 00 o
+ C8 C'T-' + 4C" C'BT-3 + 6C" C"B'T-" + 4C' C'B3T-S+ C'B"T-")

00 o 00 o 00 o 00 o o J

a = O

b [ap]' B3T-l _ t1B'(2C'BT-1
as oA 00' o

+ t"B'(3C' + BT-
1
)00

3C" + 3C'C' )
00 o 00

e =
, -2 2 23C" + 2B T ) + tl(3C"B'T- + 3C" B'T-

00 o 00

6C" C'BT-1 + 2C' B3T-3 C8 + C'C" + 6C"C' BT-1 - 6C" C'B'T-'
00 o 00 00 o 00 o 00 00 o

+ 6C' B'T-' + 2B3T-3).
00

Here, t1 - (~;]Aomts and

t, - 2(*] [~;] (~~] - (~] (m - 2Lvro;'(m [~]
ps Ap As pA As ps pA
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d =
+ 3C" C2

00 o
3C" BT-I

00

e

f =

a'

b'

e'

d'

C6 T-6

[.£E] 2 o
as pA ~

B3( -t2 - tI (C2 - C2])00 o

[.£EJ2 B2T-I + t¡(3C6 + 3C" BT-I 3C"BT-¡ - 3C" C2)B
as pA Do2 00 00 o 00 o

+ t2(-2B2T-2 + 3C", + 3C2BT-1)B
00 o

[.£E] 2 P -2 T-3 (-6C2C" 6C2C2 BT-I 6C"BT-I + 3C2 c"as pA o o 00 o 00 o 00 o
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+ t¡(4C2 C2 + 3C2BT-1 C' 3C' - 3C2 BT-')C'T-300 o o o 00 00 o

e'

[ar] - 5+ -- (-3C2 C6T -
as pA 00 o
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